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Abstract— The perimeter defense game has received interest
in recent years as a variant of the pursuit-evasion game. A
number of previous works have solved this game to obtain the
optimal strategies for defender and intruder, but the derived
theory considers the players as point particles with first-order
assumptions. In this work, we aim to apply the theory derived
from the perimeter defense problem to robots with realistic
models of actuation and sensing and observe performance dis-
crepancy in relaxing the first-order assumptions. In particular,
we focus on the hemisphere perimeter defense problem where
a ground intruder tries to reach the base of a hemisphere while
an aerial defender constrained to move on the hemisphere
aims to capture the intruder. The transition from theory to
practice is detailed, and the designed system is simulated in
Gazebo. Two metrics for parametric analysis and comparative
study are proposed to evaluate the performance discrepancy.

I. INTRODUCTION

The pursuit-evasion games (PEGs) have been widely
investigated over the past years and are used in many
applications including mobile robotics [1]. There are many
variants of PEGs under different assumptions on the
players and the environments. One route is to consider
the players as point particles [2], [3]. Liang et al. [2]
address a PEG with three point particles: target, attacker,
and defender. The attacker aims to capture the target
while avoiding the defender, and the defender aims to
defend the target while trying to capture the attacker.
Other work [3] allows the point particle players move in
three dimensions and solves the differential games with
three defenders and one intruder with equal speeds.

Researchers also have focused on solving the PEGs
with real robots [4], [5], [6]. Vidal et al. [4] propose
a hierarchical hybrid system to implement the pursuit-
evasion game scenario on real UAVs and UGVs. The PEG
between two pursuing and one evading unmanned aerial
vehicles is solved in [5]. Deep learning based approach for
vision-based UAV pursuit-evasion is implemented in [6].

This work formulates a variant of pursuit-evasion game
known as the target-guarding problem [7]. In this problem,
intruders aim to reach the target without being captured
by defenders, while defenders try to capture intruders [2],
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Fig. 1. Hemisphere perimeter defense game in theory and practice
shows the discrepancy in executing optimal strategies.

[8], [9]. When defenders are constrained to move along
the perimeter of the target region, we call this problem
as perimeter defense game, which we refer to [10] for
detailed survey. Previous works consider the players as
point particles with first-order assumptions [2], [7], [8],
[9], [10]. The optimal strategies are theoretically proved
for multiplayer game on two-dimensional convex shapes
[8] and for three-dimensional game on hemisphere [9].

There are many challenges in realizing the perimeter
defense system with real robots, and the major challenges
lie in coping with discrepancy between first-order as-
sumptions of point particles and dynamics of real robots,
as shown in Fig. 1. This work simulates the perimeter
defense based on Unmanned Aerial Vehicles (UAVs). UAVs
are deployed in various space such as power plant [11],
penstock [12], forest [13], or disaster sites[14], which are
good perimeter defense applications.

This paper extends the previous work [9] on hemisphere
defense to apply the derived theory from point particles
to real robots. We observe any performance discrepancy
in relaxing first-order assumptions and discuss how to
reduce such discrepancy. The contributions of the paper
are (i) realizing perimeter defense between aerial defender
and ground intruder from theory to practice; and (ii)
performing parametric analysis of system scales and com-
parative study of strategies to evaluate the performance
discrepancy in relaxing first-order assumptions.

Section II formulates the problem. Section III addresses
the transition from point particle to real robot. To evaluate
the discrepancy, two metrics are proposed in Section IV.
Section V provides experimental results, and Section VI
concludes the paper.
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II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a hemisphere perimeter O with radius of R as
shown in Fig. 2. The defender D is constrained to move
on the hemisphere while the intruder A is constrained to
move on the ground plane. The positions of the players
in spherical coordinates are: zD = [ψD ,φD ,R] and zA =
[ψA ,0,r ], where ψ and φ are the azimuth and elevation
angles, which gives the relative position as: z , [ψ,φ,r ],
where ψ,ψA −ψD and φ,φD (see Fig. 2). Without loss
of generality, we assume the defender’s maximum speed
is 1. The intruder is assumed to have a maximum speed
ν≤ 1 (otherwise, intruder always has a strategy to win the
game). We denote that the velocities of defender and in-
truder are vD and v A , respectively. The game ends at time
t f with intruder’s win if r (t f ) = R and |ψ(t f )|+|φD (t f )| > 0,
whereas it ends with defender’s win if φD (t f ) =ψ(t f ) = 0
and r (t f ) > R. We call t f as the terminal time.

A. Optimal breaching point for point particle

Given zD , zA , we call breaching point as a point on the
perimeter at which the intruder tries to reach the target,
as shown B in Fig. 2. We call the azimuth angle that forms
the breaching point as breaching angle, denoted by θ, and
call the angle between (zA −zB ) and the tangent line at B
as approach angle, denoted by β.

It is proved in [9] that given the current positions of
defender zD and intruder zA as point particles, there exists
a unique breaching point such that the optimal strategy
for both defender and intruder is to move towards it,
known as optimal breaching point. The breaching angle
and approach angle corresponding to the optimal breach-
ing point are known as optimal breaching angle, denoted
by θ∗, and optimal approach angle, denoted by β∗.

As stated in [9], although there exists no closed form
solution for θ∗ and β∗, they can be computed at any time
by solving two governing equations:

β∗ = cos−1

(
ν

cosφD sinθ∗√
1−cos2φD cos2θ∗

)
(1)

and

θ∗ =ψ−β∗+cos−1
(

cosβ∗

r

)
(2)

B. Target time and payoff function

We call the target time as the time to reach B and define
τD (zD ,zB ) as the defender target time, τA(zA ,zB ) as the
intruder target time, and the following as payoff function:

p(zD ,zA ,zB ) = τD (zD ,zB )−τA(zA ,zB ) (3)

The defender reaches B faster if p < 0 and the intruder
reaches B faster if p > 0. Thus, the defender aims to
minimize p while the intruder aims to maximize it.
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Fig. 2. The coordinate system and relevant variables.

C. Optimal strategies and Nash equilibrium

It is proven in [9] that the optimal strategies for both
defender and intruder are to move towards the optimal
breaching point at their maximum speed at any time.

Let Ω and Γ be the continuous vD and v A that lead to
B so that τD (zD ,Ω), τD (zD ,zB ) and τA(zA ,Γ), τA(zA ,zB ),
and let Ω∗ and Γ∗ be the optimal strategies that minimize
τD (zD ,Ω) and τA(zA ,Γ), respectively, then the optimality
in the game is given as a Nash equilibrium:

p(zD ,zA ,Ω∗,Γ) ≤ p(zD ,zA ,Ω∗,Γ∗) ≤ p(zD ,zA ,Ω,Γ∗) (4)

III. FROM THEORY TO PRACTICE

This section discusses the transition from theory to
practice in executing the optimal strategies for hemisphere
perimeter defense game.

A. From point particle to three-dimensional robot

The major challenge in bringing the theory closer
to practice lies in representing the agents as three-
dimensional robot. Previous works in perimeter defense
focused on the point particle [2], [7], [8], [9], [10] to
represent the defender and intruder, and the following
are the assumptions made for the point particle, which
may not hold true in working with the three-dimensional
robot:

• It has no volume and thus it is scale invariant
• It moves with desired velocity instantly and precisely
• If it moves at its maximum speed, the speed is

consistent along the trajectory
• It can accurately detect other agent’s positions and

react to it simultaneously
• Optimal trajectory obeys first-order assumptions

This work aims to simulate robots using the optimal
strategies derived from theory, observe any discrepancy
between the performances from theory and practice, and
discuss how relaxing aforementioned assumptions would
lead to the discrepancy. The employed robot is an UAV in
Fig. 3. It has a dimension of 735mm × 735mm × 200mm
and the mass of 1.8kg. This UAV well represents a three-
dimensional robot relaxing the point particle assumptions.



Fig. 3. An UAV carrying stereo cameras and Ouster lidar

B. Optimal breaching point in practice

In practice, we relax the assumption of scale invariance.
The radius of hemisphere becomes a relevant variable R,
as denoted in Fig. 2. Accordingly, (2) in practice becomes

θ∗ =ψ−β∗+cos−1
(

R cosβ∗

r

)
(5)

although (1) stays the same in practice since all the
parameters are scale invariant. We can solve for β∗ and θ∗
by solving two governing equations (1) and (5), and obtain
the corresponding optimal breaching point in practice.

C. Controller

As mentioned in the previous assumptions [9], the con-
troller used for theoretical approach was simply perfect.
Both defender and intruder reacted to each other without
any delay, and desired dynamics were enforced precisely
and instantly to result in continuous optimal trajectories
as shown in Fig. 1. The agents also identify each other’s
states without any error at any time (e.g. perfect state
estimation).

The overall controller for practical approach is illus-
trated in Fig. 4. All modules represent the nodes in ROS
and are connected by rostopics for real-time implemen-
tation. For each agent, the strategy module subscribes to
the ground truth odometry that are published by both
UAVs to calculate position command. In this way, state
estimation is based on ground truth and becomes highly
accurate. Then, the position command is fed into the SO3-
based controller based on [15] to generate SO3 command.
The SO3 commands consist of thrust and moment that
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Fig. 4. Overall controller for cross feedback system

control the robot in low level. Finally, the simulated robot
publishes the ground truth odometry to be fed into the
SO3-based controller for closed loop control. Note that
the defender and intruder strategy modules take in both
agents’ odometry. For this cross feedback system, the
two odometry data are stored into queues and used for
synchronized computation of the optimal strategy.

D. Executing optimal strategies

As stated in Sec.II-C, both defender and intruder move
at their maximum speeds in executing optimal strategies
in theory. It is also worth noting that the optimal trajecto-
ries are continuously changing based on the configuration
of agents at given time because the optimal breaching
point is newly calculated at any time to reflect the change
in positions of the defender and intruder.

For this reactive and adversarial environment, we en-
force the players to follow an infinitesimal segment of
computed optimal trajectory at any time to maintain
consistent maximum speeds. In Fig. 2, given the optimal
breaching point B and current configurations of defender
and intruder zD = [ψD ,φD ,R] and zA[ψA ,0,r ], their cur-
rent optimal trajectories are ÙDB and AB , respectively.
Based on the movements of defender and intruder, the
optimal trajectories as well as the optimal breaching point
may change over time, so we set the goal trajectory ÚDD ′
and A A′ as segments of original trajectories by taking
the length of dl and dl ′ for defender and intruder,
respectively. We give position command towards the end
point of the infinitesimal segment, which can be viewed
as controlling an instantaneous velocity of agents.

First, we aim to compute the position of D ′[xD , yD , zD ]
after infinitesimal defender movement dl . For simplicity,
assume D is on the zx-plane (i.e. ψD = 0) by rotating the
hemisphere by −ψD about the z-axis, and we will rotate
the coordinates by ψD back to the original orientation
at the end. Given the radius R, azimuth angle φD , and
dl , we know the following: (i) D is on the hemisphere O
with a center on the origin and a radius of R; (ii) The arc
distance between D and D ′ is dl ; (iii) D ′ is on the plane
OBD . The conditions (i) and (ii) give

x2
D + y2

D + z2
D = R2 and (6)

(xD −R cosφD )2 + y2
D + (zD −R sinφD )2 = dl 2 (7)

We know the equation of a plane is given by

ax +by + cz = d (8)

Therefore, the plane OBD is uniquely determined by three
points O(0,0,0), B(R cosθ,R sinθ,0), and D(R cosφD , 0,
R sinφD ). With the condition (iii), (8) becomes

(sinφD sinθ)xD −(sinφD cosθ)yD −(cosφD sinθ)zD = 0 (9)

Together with (6), (7) and (9), we get

xD = R cosφD − dl 2 cosφD
2R + dl sin2φD cosθ

2R ·T

yD = dl sinθ
2R ·T

zD = R sinφD − dl 2 sinφD
2R − dl sinφD cosθcosφD

2R ·T (10)



where

T =
√

4R2 −dl 2

1−cos2φD cos2θ

The final computation of the position xD , yD , zD is
summarized in Algorithm 1. Notice that line 4 and 5 rotate
the system back to the original configuration. Similarly,
the position of A′[xA , y A , zA] after infinitesimal intruder
movement dl ′ is computed in Algorithm 2, and overall
agents’ strategies are summarized in Algorithm 3.

IV. DISCREPANCY ANALYSIS

In this section, we propose two metrics to evaluate
the discrepancy between the performances from theory
and practice. One metric measures the discrepancy from
relaxing the scale invariant assumption made for point
particle. This metric is crucial since the discrepancy be-
tween small and large scales would not allow scalability,
which is essential for real-world applications. The other
metric investigates if the traversed trajectory is the same
as the optimal trajectory derived from theory by com-
paring its performances with the performance of other

Algorithm 1 [xD , yD , zD ] = MoveDefender(ψD ,φD ,θ∗)

Input: ψD ,φD ,θ∗
Output: Updated defender positions xD , yD , zD

1: Set defender’s small movement dl
2: θ = θ∗−ψD

3: Evaluate xD , yD , zD using (10)
4: xD = xD cosψD − yD sinψD

5: yD = xD sinψD + yD cosψD

Algorithm 2 [xA , y A , zA] = MoveIntruder(xA , y A , zA ,θ∗)

Input: xA , y A , zA ,θ∗
Output: Updated intruder positions xA , y A , zA

1: Set intruder’s small movement dl ′
2: xB = R cosθ∗
3: yB = R sinθ∗
4: l =

√
(xB −xA)2 + (yB − y A)2

5: xA = xA + (xB −xA)dl ′/l
6: y A = y A + (yB − y A)dl ′/l

Algorithm 3 Defender/Intruder Strategy

Input: Agent odometry xD , yD , zD , xA , y A , zA

Output: Position command (updated xD , yD , zD for de-
fender and updated xA , y A , zA for intruder)

1: Initialize r,ψA ,ψD ,φD using odometry
2: if φD > 0 or |ψA −ψD | > 0 then
3: Compute optimal breaching angle θ∗
4: if Defender Strategy then
5: [xD , yD , zD ] = MoveDefender(ψD ,φD ,θ∗)
6: else if Intruder Strategy then
7: [xA , y A , zA] = MoveIntruder(xA , y A , zA ,θ∗)
8: end if
9: end if

baseline strategy. We chose these metrics to evaluate
the discrepancy because other point particle assumptions
(e.g. instant velocity change, simultaneous detection and
reaction, and no fluctuation in maximum speed) highly
depend on the hardware. A robot with better computing
power will be closer to meet these assumptions, so we
focus on the discrepancy in system scales and strategies.

A. Discrepancy in system scales

Fig. 5 shows different scales of environment (e.g. hemi-
sphere) for perimeter defense game. Since the robot size is
fixed, this variance may impact the dynamics of the UAV.
For instance, if the robot traverses along the surface of
small hemisphere, it may enforce the controller to execute
abrupt turns and the resulting trajectory may not exactly
follow the hemisphere surface.

To account for such performance discrepancy, we pro-
pose a metric ld as shown in Fig. 6. This metric computes
the geodesic between D ′ and A′, which represent the
positions of defender and intruder at terminal time t f ,
respectively. We purposely set the game for the intruder
to win (e.g. intruder reaches to perimeter before defender
does) because more interesting dynamics are happening
for defender so we fix the behavior of intruder and
evaluate ld that is normalized by radius for different set
of system scales. We also compare ld with the outcome
derived from first-order assumptions and observe how the
relaxed point particle assumptions impact ld , which would
be closer to the theoretical outcome in ideal conditions.

Fig. 5. Different system scales of environment and UAVs with a fixed
scale. Left: Radius of 3. Middle: Radius of 10. Right: Radius of 100.
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Fig. 6. Game setting for computing ld . Left: Initial configuration when
the game begins. Right: Final configuration at terminal time t f .
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Fig. 7. Game setting for computing ls . Left: Initial configuration when
the game begins. Right: Final configuration at terminal time t f .

B. Discrepancy in strategies

We define a metric ls , shown as ls in Fig. 7, to un-
derstand the discrepancy in different defender strategies.
This metric measures the distance between D ′ and A′ at
terminal time t f , which represents the distance between
the agents at the end of the game. To obtain this metric,
we intentionally set the game for the defender to win so
that D ′ lies on the base of the hemisphere. In this manner,
any plausible defender strategy can be evaluated because
the game ends only if the defender finishes executing its
strategy. If ld is to be used as the metric, the game would
end before defender fully executes the strategy, which
makes it challenging to compare the performance.

In comparing strategies, we run two defender strategies:
(1) optimal strategy that moves defender towards the
breaching point B at its maximum speed at any time; and
(2) baseline strategy that moves defender at its maximum
speed at any time towards the azimuth angle of intruder,
which is towards B ′ that is an intersection of O A and the
base of hemisphere as shown in Fig. 2. A strategy with
larger ls outperforms the other since it secures more time
to defend the intruder.

V. EXPERIMENTS

This section evaluates the performance discrepancy
between theory and practice based on system scales and
strategies. We run all experiments using Gazebo with ROS.

A. Parametric analysis of system scales

In the parametric analysis, we vary the system scales
by changing the radius of the hemisphere. A total of
22 different radii from 3 to 300 are used, and multiple
experiments are run for each radius to compute ld . Given
radius R, the experiments are run with an initial configu-
ration z = [ψ,φ,r ] = [0.9,0.3π,2R], infinitesimal movement
dl = dl ′ = 0.72 (lead to vD = v A = 0.8), and ν= 1.

Fig. 8 shows the change in ld as a function of radius.
ld is normalized by radius so it should be consistent in
theory regardless of system scales. It can be seen that ld

stays relatively small in the regime of small radius (e.g.
3 ≤ R ≤ 50) and converges to the value derived from first-
order assumptions as R increases. The error bar indicates
that the standard deviation decreases as R increases. Fig.

9 confirms that small radius regime may result in non-
smooth trajectories and the UAV trajectories converge to
first-order assumptions as R increases. We infer that in the
small radius regime, UAV dynamics is sensitive to control
inputs since the scale of robot is comparable to the scale
of environment. The UAV may accelerate well to get up to
the maximum speed so ld is lower and inconsistent with
the outcome from the first-order assumptions.

In this way, the point particle assumption that agents
move with desired velocity instantly is much relaxed.
Accordingly, to reduce the discrepancy between theory
and practice, a larger scale of environment relative to
that of robot is preferred, and sensitivity analysis for
the system would help the robot better obey the scale
invariant assumptions.

B. Comparative study of strategies

For this study, we compute ls for optimal and baseline
strategies. Seven trials with different configuration are
conducted to observe the performance discrepancy. An
infinitesimal defender movement dl = 1.36 (lead to vD =
1.0), an infinitesimal intruder movement dl ′ = 0.36 (lead
to v A = 0.6), and ν = 1 are used to guarantee that the
defender reaches to the base of hemisphere earlier than
the intruder does.

Fig. 10 shows the variations of ls normalized by radius
for the two strategies in different trials. Although the dis-
crepancy is very small, it is worth noting that the baseline
strategy sometimes outperforms the optimal strategy. This
tendency supports the claim that there exists discrepancy
between theory and practice and that the optimal strategy
derived from first-order assumptions could perform worse
than other strategies in high-order dynamics. This discrep-
ancy is due to the delay in executing the optimal strategy
because computing the optimal breaching point takes
some time. As a reference, one cycle of the cross feedback
system in Fig. 4 takes about 70 msec, and the optimal
breaching point calculation takes the major portion of it,
which is about 10 msec. To compensate for the delay,
robots with higher computing power can be employed.

Fig. 8. Parametric analysis. Magnified view shows small radius regime.
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Fig. 9. The xyz positions of the defender and intruder with three set of radii. UAV trajectories converge to first-order assumptions as R increases.
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Fig. 10. Comparative study of baseline and optimal strategy.

VI. CONCLUSION

This paper aims to apply the theory with first-order
assumptions derived from the hemisphere perimeter de-
fense game to robots with realistic models, and observe
performance discrepancy in relaxing point particle as-
sumptions. We study the transition from theoretical point
particles to practical three-dimensional robots using UAV
models in Gazebo. To evaluate the performance dis-
crepancy, two analyses are conducted. In the parametric
analysis, it is found that UAV trajectories converge to
first-order assumptions as the radius of the hemisphere
increases. The comparative study shows that the optimal
strategy derived from first-order assumptions can perform
worse than other strategies in high-order dynamics due
to the delay in executing the strategy. To cope with this
discrepancy, the future work will focus on changing the
first-order model to better capture the high dynamics of
the UAVs and design pursuit strategies for the new model.
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