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ABSTRACT

A problem of classification of local field potentials (LFPs), recorded
from the prefrontal cortex of a macaque monkey, is considered. An
adult macaque monkey is trained to perform a memory-based sac-
cade. The objective is to decode the eye movement goals from the
LFP collected during a memory period. The LFP classification prob-
lem is modeled as that of classification of smooth functions embed-
ded in Gaussian noise. It is then argued that using minimax function
estimators as features would lead to consistent LFP classifiers. The
theory of Gaussian sequence models allows us to represent minimax
estimators as finite dimensional objects. The LFP classifier result-
ing from this mathematical endeavor is a spectrum based technique,
where Fourier series coefficients of the LFP data, followed by ap-
propriate shrinkage and thresholding, are used as features in a linear
discriminant classifier. The classifier is then applied to the LFP data
to achieve high decoding accuracy. The function classification ap-
proach taken in the paper also provides a systematic justification for
using Fourier series, with shrinkage and thresholding, as features for
the problem, as opposed to using the power spectrum. It also sug-
gests that phase information is crucial to the decision making.

Index Terms— Brain-machine interface (BMI), brain signal
processing, local field potentials, function classification, minimax
estimators, Gaussian sequence model, Pinsker’s theorem, blockwise
James-Stein estimator, dimensionality reduction, linear discriminant
analysis.

1. INTRODUCTION

One of the most important challenges in the development of effective
brain-computer interfaces is the decoding of brain signals. Although
we are still very far from obtaining a complete understanding of the
brain, yet important contributions have been made. For example,
results are reported in the literature where local field potential (LFP)
data or spike data are collected from animal species, while the animal
is performing a task. The LFP or spike data are then used to make
various inferences regarding the task. See for example [1]] and [2].

Spectrum-based techniques are popular in the literature. Fourier
series, wavelet transform or power spectrum of the recorded signals
are often used as features in the machine learning algorithms used for
inference. However, the choice for such spectrum based techniques
is either ad-hoc or is not well motivated.

In this paper, we propose a mathematical framework for classi-
fication of LFP signals into one of many classes or categories. The
framework is of Gaussian sequence model for nonparametric esti-
mation; see [3|] and [4]. The LFP data is collected from the pre-
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frontal cortex of a macaque monkey, while the monkey is perform-
ing a memory-based task. In this task the monkey saccades to one of
eight possible target locations. The goal is to predict the target loca-
tion using the LFP signal. More details about the task are provided
in Section 2lbelow.

The LFP signal is modeled as a smooth function corrupted by
Gaussian noise. The smooth signal is part of the LFP relevant to
the classification problem. The classification problem is then for-
mulated as the problem of classifying the smooth functions into one
of finitely many classes (Section [3). We provide mathematical ar-
guments to justify that using minimax function estimator for the
smooth signal as a feature leads to a consistent classifier (Section[d).
The theory of Gaussian sequence models allows us to obtain mini-
max estimators and also to represent them as finite dimensional vec-
tors (Section[B). We propose two classification algorithms based on
the Gaussian sequence model framework (Section[6). The classifi-
cation algorithms involve computing the Fourier series coefficients
of the LFP data and then using them as features after appropriate
shrinking and thresholding. The classifiers are then applied to the
LFP data collected from the monkey and provide high decoding ac-
curacy of up to 88% (Section[7).

The Gaussian sequence model approach used in this paper leads
to the following insights:

1. A systematic modeling of the classification problem leads to
Fourier series coefficients, with shrinkage and thresholding,
to be used as features for the problem (as opposed to the use
of power spectrum for example).

2. Numerical results in Section [/| show that using the absolute
value of the Fourier series coefficients as features results in
a drop of 15% in accuracy. This suggests that phase infor-
mation is crucial to the classification problem studied in this

paper.

2. A MEMORY-BASED SACCADE EXPERIMENT

An adult macaque monkey is trained to perform a memory-based
saccade. A single trial starts with the monkey looking at the center
of a square target board; see Fig.[T] The center is illuminated with an
LED light, and the monkey is trained to fixate at the center light at
the beginning of the trial. After a small delay, a target light at one of
eight corners of the target board (four vertices and four side centers)
is switched on. The location of the target is randomly chosen across
trials. After another short delay, the target light is switched off. The
switching off of the target light marks the beginning of a memory
period. After some time the center light is switched off. The latter
provides a cue to the monkey to saccade to the location of the target
light, the location where the target was switched on before switch-
ing off. The cue also marks the end of the memory period. If the
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Fig. 1: Memory task and target locations from [_2].

monkey correctly saccades to the target chosen for the trial, i.e., if
the monkey saccades to within a small area around the target, then
the trial is declared a success. Only data collected from successful
trials is utilized in this paper.

LFP and spike data are collected from electrodes embedded in
the cortex of the monkey throughout the experiment. The data is
collected using a 32 electrode array resulting in 32 parallel streams
of LFP data. The data used in this paper has been first collected
and analyzed in [2]. Further details about sampling rates, timing
information and the post-processing done on the data, can be found
in [2].

It is hypothesized that different target locations would corre-
spond to different LFP and spike rate patterns. The objective is thus
to detect or predict one of eight target locations based on the LFP
data after the target is switched off and before the cue, i.e., the LFP
data collected during the memory period.

3. ANONPARAMETRIC REGRESSION FRAMEWORK
FOR LFP DATA

Let Yy, for ¢ € {0,1,---, N — 1}, represent the sampled version
of the LFP waveform collected from one of the 32 channels during
the memory period. We model the LFP data in a non-parametric
regression framework:

Y, = f(¢/N)+ Z,, £€{0,---,N—1}. )

Here, f : [0,1] — R is a smooth function, and represent the part
of the LFP waveform that is relevant to the classification problem.
Thus, f(t) is the signal that contains information about where the
monkey will saccade, out of eight possible target locations, after the
cue. Also, Z, ESy N(0,1), and correspond to neural firing data
either not pertinent to the memory experiment itself, or corresponds
to the experiment, but not relevant to the classification task. We
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Fig. 2: Sample LFP waveform and its reconstruction using the first
10 Fourier series coefficients.

model this impertinent data as noise, and treat f(t) as the signal.
We assume that f € F, where F is a class of smooth functions
in L[0,1]. Precise assumptions about F will be made later; see
Section [f]below. In Fig. 2] we show a sample LFP waveform and its
reconstruction using first 10 Fourier coefficients. The figure shows
that a nonparametric regression framework to model the LFP data is
appropriate.

We hypothesize that the signal f will be different for all the eight
different target locations. In fact, even if the monkey saccades to the
same location over different trials, the signal f cannot be expected
to be exactly the same. Thus, we assume that for target location k,
ke {l1,2,---,8}, f € F, where Fy is a subset of F, FrNF; = (),
for j # k. Thus, our classification problem can be stated as

Hy : fej:ka k€{172,"',8},
Fr CF, FrNF;=0, forj#k.

Our objective is to find a classifier that maps the observed time series
{Y:} into one of the eight possible target locations.

(@3]

4. CLASSIFICATION USING MINIMAX FUNCTION
ESTIMATORS

Let fN be an estimator for function f based on (Yo, - ,Yn—_1)
such that its maximum estimation error over the function class F
goes to zero:

sup Ef[|fx — fII3] = 0, as N — oo. 3)
feF

Here E; is the expectation with respect to the law of
(Yo,---,Yn—1) when f is the true function, and ||f — g2 =
fol(f(t) — g(t))?dt is the L function norm.

Let dma be the minimum distance decoder:

Omd(f) = argmin ||f — Fi||2 := argmin inf [|f —gll2. 4)
k<8 k<8 9E€Fk

Of course, to implement this decoder we need to know the function
classes {Fi }5—1.

We now show that if the function classes {F%}%_; are known,
then 6md(fN), the minimum distance decoder using fN, is consis-
tent. In the rest of this section, we use & to denote dma(fn) for
brevity.



Let P. be the worst case classification error defined by

P.= max sup P;(6#k).

ke{1,--,8} reF,

Also, let for s > 0, the classes are separated by a distance of at least
2s,1.e.,

rknégl || F; — Fill2 := min inf If—gll2 > 2s. (5)

k#j fE€F;, g€Fk
Then, for f € Fj, and 5= 5md(fN),

Pr(lfn — Fll2 > s)
Pr(lfn — fll2 > s)
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sup Eqfllfx —gll3] =0, as N — oo,
geF
(6)

where the limit to zero follows from (@). In fact, since the right most
term of @ is not a function of k and f, we have

P.= max sup P;(6#k)<

ke{1,---,8} FEF

1 N

— sup Egfl|fn *9||§] — 0, asN — oo.
8% geF

2
)

Thus, the worst case classification error goes to zero if we use
a function estimator with property (@). If we choose the minimax
estimator fy,i.e., fx satisfies

inf sup Eg[||f — fII3] ~ sup Ef[[lf5 — fI2], as N — oo, (8)
f orer fer

then we will have the fastest rate of convergence to zero (fastest
among all classifiers of this type) for the misclassification error in
{@. Note further that the above consistency result is valid for any
choice of function classes {Fy }, as long as the classes are well sep-
arated, as in (3). This fact demonstrates a robust nature of the mini-
max estimator based classifier dma(fx)

In practice, the function classes {F} are not known, and one
has to learn them from samples of data. In machine learning, a fea-
ture is often extracted from the observations, and the feature is then
used to train a classifier. The above discussion on minimax esti-
mators suggests that if the class boundaries can be reliably learned,
then a classifier based on the minimax estimator and the minimum
distance decoder is consistent and robust. This motivates the use of
the minimax estimator itself as a feature. That is, given the data, use
the minimax estimators to learn the class boundaries.

A typical function estimator is an infinite-dimensional object,
and hence it is a complicated object to choose as a feature. How-
ever, the theory of Gaussian sequence models, to be discussed next,
allows us to map the minimax estimator to a finite-dimensional vec-
tor (under certain assumptions on F). We use the finite-dimensional
representation of the minimax estimator to learn the class boundaries
and train a classifier.

5. GAUSSIAN SEQUENCE MODEL

In this section, we provide a brief review of nonparametric or func-
tion estimation (Section and its connection with the Gaussian
sequence model (Section[5.2). We also state the Pinsker’s theorem,
that is the fundamental result on minimax estimation on compact el-
lipsoids (Section[5.3). Finally, we discuss the blockwise James-Stein
estimator, that has adaptive minimaxity properties (Section[5.3). In
Section [f] we discuss the applications of these results to classifica-
tion in neural data.

5.1. Nonparametric Estimation

Consider the problem of estimating a function f : [0,1] — R from
its noisy observation Y : [0,1] — R, where Y (¢) now does not
necessarily represent an LFP signal, but is a more abstract object.
The precise observation model(s) will be provided below. Let f :
[0,1] — R be our estimate. If the function and its estimate are in
L5([0,1]), then one can use fol (f(t) — f(t))%dt as an estimate of
the error. This error estimate is random due to the randomness of the
noise. Thus, a more appropriate error criterion is

MSE(f) = E [ / () - F(vs)? dt], ©

where the dependence of estimate f on the observation Y is made
explicit, and also we assume that the expectation is well defined for
the noise model in question.

Two popular models for the observation Y are as follows.

White Noise Model: Here the observation Y is given by the
stochastic differential equation [5]]

Y (t) :/Otf(s) ds +eWs, telo,1], (10)

where W is a standard Brownian motion, and € > 0.

Regression Model: Here the observation Y is a discrete stochas-
tic process corresponding to samples of the function f at discrete
points,
where Zj, N (0,1), and N is the number of observations. Al-
though we only use the regression model for classification of LFP in
this paper, the discussion of white noise model is important as it pro-

vided an exact map to a Gaussian sequence model (see Section [5.2]
below for precise statements).

In the theory of nonparametric estimation [4]], minimax optimal-
ity of estimators like kernel estimators, local polynomial estimators,
projection estimators, etc. is investigated. It is shown that if the func-
tion f is smooth enough, then carefully designed versions of these
type of estimators are asymptotitcally optimal in a minimax sense,
with N — oo in the regression model (I1), and € — 0 in the white
noise model (T0).

5.2. Gaussian Sequence Model

One of the most remarkable observations in nonparametric estima-
tion theory is that the estimation in the above two models, the white
noise model (I0) and the regression model (II)), are fundamen-
tally equivalent. Moreover, these two are also equivalent to many



other popular estimation problems, including density estimation and
power spectrum estimation. The common thread that ties them to-
gether is the Gaussian sequence model [3].

A Gaussian sequence model is described by an observation se-
quence {yx }:

yp =0 +ezi, keN. (12)

The sequence {0 } is the unknown to be estimated using the obser-
vations {yx } corrupted by white Gaussian noise sequence {zx }, i.e.,
2 R N(0,1).
To see the connection between the Gaussian sequence model and
say the white noise model, consider an orthonormal basis {¢x } (e.g.,
Fourier Series or wavelet series) in L2 ([0, 1]), and define
1
) dt + e / Gu(t) AW (D).
0

/m ) dy (i /m
(13

where the integrals with respect to Y and W are stochastic integrals

[15]]. Define
0, = t) f(t) dt

Zk 2/0 ¢k(t) dW(t)

to get the Gaussian sequence model (12).

Lety = (y1,ya, - - - ) be the observation sequence, and d(y) be
an estimator of = (01,02,---). If we are interested in squared
error loss as in (9), and 6 is in £2(N), then

_E [/ol(f(t) - fvs)® dt] (14)

= Eo |10 - 0113] = MSE(d),

and

MSE(f)

provided 0 is the transform of f ,i.e.,

= [ Lo f (at
0

Thus, function estimation in the white noise model is equivalent to
sequence estimation in Gaussian sequence model.

For the regression problem (TT), mapping to a finite Gaussian
sequence model

yr = O + € z, kE{O,l,"',N—l}. (15)

can be similarly defined using discrete Fourier transform. Another
option is to consider discrete approximation to Fourier series. In
both the cases, we need to take N — oo to recover the exact infinite
Gaussian sequence model (T2).

The other problems, e.g., density estimation and spectrum esti-
mation, can also be mapped to Gaussian sequence model by appro-
priate mappings. See [3|] and [4] for details.

5.3. Pinsker’s Theorem

The discussion in the above two sections motivates us to restrict at-
tention to the Gaussian sequence model

yp =0 +ez1, keN. (16)

One of the most important results in Gaussian sequence models
is the famous Pinsker’s theorem. Let © be an ellipsoid in 2 (N) such
that

0 =06(a,C) = {9 = (61,02, - Zakﬁk < c}

with {ax} positive, nondecreasing sequence and ar — oo. Con-
sider the following diagonal linear shrinkage estimator of 6, 0* =

(07,63, ---):
N* ag
0, = (1 — —) Yk 17)
K7+

Here, 1 > 0 is a constant that is a function of the noise level € and
the ellipsoid parameters {ax } and C; see [3] This estimator shrinks

the observations yx by an amount (1 — =& ) if ak < 1, otherwise

resets the observation to zero. It is hnear because the amount of
shrinkage used is not a function of the observations, and is defined
beforehand. It is called diagonal, because the estimate of 65 depends
only on yi, and not on other y;, j # k.

Theorem 5.1 (Pinsker’s Theorem, [3]) For the Gaugsian se-
quence model (12), the linear diagonal estimator 6* (I7) is
consistent, i.e.,

sup Eg [H@ — 9A*||§] —0
0€0(a,C)

as e — 0.

Also, 0 is optimal among all linear estimators for each e. Moreover,
it is asymptotically minimax over the ellipsoid ©(a, C), i.e.,

sup Eo [HG 03 ] ase— 0,

sup Eg [||0 — GA*HE] ~ ir;f
0 0€6(a,0)

0€0(a,C)

provided condition (5.17) in [3|] is satisfied.

‘We make the following remarks on the implications of the theo-
rem.

1. The Pinsker’s theorem states that a linear diagonal estimator
of the form .
Or = cryr, keN, (18)
is as good as any estimator, non-diagonal or nonlinear.
2. Define a Sobolev class of functions

(e, C) = {f € L,[0,1] : (7Y is absolutely

1
continuous and / [ 1)]2dt < C2} .
0
19)

It can be shown that a function is in the Sobolev function class
Y (c, #*C') if and only if its Fourier series coefficients {6}
are in an ellipsoid O(a, C) with

azk = azk+1 = (2k)°. (20)

Thus, finding the minimax function estimator over
3(a, mC) is equivalent to finding the minimax estimator
over ©(a,C) in the Gaussian sequence model. Thus, to
obtain the minimax function estimator, one can take the
Fourier series of the observation Y, shrink the coefficients as
in Pinsker’s theorem, and then reconstruct a signal using the
modified Fourier series coefficients. See Lemma 3.3 in [3]
and the discussion surrounding it for further details.

a1:0,



3. Since {ax} is an increasing sequence, the optimal estimator
has only a finite number of non-zero components. This
is the key to the LFP classification problem we are interested
in this paper.

5.4. Discussion on Minimax Estimators: Shrinkage and Thresh-
olding

The parameters 6 need not be the Fourier coefficients of the func-
tion to be estimated. One can also take wavelet coefficients, and
the Pinsker’s theorem is valid for them as well. The shrinkage and
reconstruction procedure has to be appropriately adjusted.

The optimal estimator is linear only because the risk is maxi-
mized over ellipsoids. For other families of ©s, the resulting optimal
estimators can be nonlinear. The most significant alternatives are the
nonlinear thresholding based estimators. The basic idea is that we
compute the Fourier or wavelet coefficients and set the coefficient
below a threshold to zero. Thresholding based estimators are opti-
mal when the elements of © are sparse. Threshold-based estimators
and its applications to LFP classification will be discussed in detail
in a future version of this paper.

5.5. Adaptive Minimaxity: Blockwise James-Stein Estimator

A major drawback of the Pinsker estimator is that the opti-
mal estimator depends on the ellipsoid parameters. In practice, the
smoothness parameter «, constant C, noise level ¢, and hence the
parameter p, are not known. Thus, one does not know how many
Fourier coefficients to compute, and the amount of shrinkage to use.
Motivated by our discussion in Section |4} if we use Pinsker’s esti-
mator as a feature for learning a classifier, then one has to optimize
over these choices of parameters using some error estimation tech-
niques like cross-validation (see Section[§). If the number of training
samples is small, such an optimization can lead to overfitting. We
now discuss another estimator that does not need the information on
ellipsoid parameters, and that is also adaptively minimax over any
possible choice of ellipsoid parameters.

Let y = (y1,y2, - ,¥n) ~ Nn(0,¢ I), where 0 =
(61, ,05), be a multivariate diagonal Gaussian random vector.
The James-Stein estimator of 0, defined for n > 2, is given by

R _ 2
675 (y) = (1— (-2 ) . @1
W/,

Note that this estimator is non-linear, as the amount of shrinkage
used depends on the norm of the observation. Also note that here
#75 is the estimate of the entire vector 0, and is a n dimensional
(n—2) €2
lyli3
to each observation in the vector. It is well known that the James-
Stein estimator is uniformly better than the maximum likelihood es-
timator y for this problem.

Now consider the infinite Gaussian sequence model (I2). A
blockwise James-Stein estimator for the Gaussian sequence model is
defined by dividing the infinite observation sequence {ys } in blocks,
and by applying James-Stein estimator to each block. To define
things more precisely, we need some notations.

Consider the partition of positive integers

N = UJO.;O B]‘,

vector. The shrinkage (1 - ) is applied coordinate wise
+

where Bj are disjoint dyadic blocks

Bj={27,... 27" —1}.

Thus, size of block j is |B;| = 27. Now define the observation for
the jth block as

y ={y; i€ B;}.
Also, fix integers L and J. The blockwise James-Stein (BJS) esti-
mator is defined as (j is used as a block index)

A (J')7 if j<L
077° =8675(y)), ifL<j<J (22)
0 ifj >,
where, as in 1),
N ; 27 —2) & ;
QJS(y(J)) — (1 _ ( i ) y(J). (23)
ly3 /.,

Thus, the BJS estimator leaves the first L blocks untouched, applies
James-Stein shrinkage to the next J — L blocks, and shrinks the rest
of the observations to zero. The integer J is typically chosen to be
of the order of log e 2. Also, for regression problems € ~ LN; see
(TI). Thus, the only free parameter is L. See Section [6] for more
details.

Consider the dyadic Sobolev ellipsoid

OB(C)=0=(01,00,---): 3 272 S 62 <C?*},

>0 ¢€B;

and let

Tp2={05(C): o,C >0}
be the class of all such dyadic ellipsoids. The following theorem
states the adaptive minimaxity of BJS estimator over Tp 2.

Theorem 5.2 ([3])) For the Gaussian sequence model (12), with any
fixed L and J = log €2, the BJS estimator satisfies for each © €
Tp,2

sup Eg [HH — éBJS|\§] ~ inf sup Eg [HH - 9||§] ase— 0.
0€© 0 0co
(24)

Thus, the BJS estimator adapts to the rate of the minimax estimator
for each class in Tp,2 without using the parameters of the classes in
its design.

6. CLASSIFICATION ALGORITHMS BASED ON
GAUSSIAN SEQUENCE MODEL

In this section, we propose classification procedures based on the
ideas discussed in previous sections. We propose two classifiers:
the Pinsker’s classifier (Section[6.1)), and the Blockwise James-Stein
Classifier (Section [6.2). Numerical results are reported in the next
section.

Recall from Section3that the sampled LFP waveform was mod-
eled by a regression model

where Z, ‘% N(0,1), and f € F, where F is a class of smooth
functions. Also, recall our classification problem

Hki fe}-lw k‘E{l,Z,"',S},

26
Fr CF, FeNF; =0, forj+#k. (26)



6.1. Pinsker Classifier

We assume that the function class is a Sololev class defined in
F =3Y(a, O),

with @ and C unknown. The classification subclasses {F}} are to
be learned from multiple samples of LFP waveforms. As was moti-
vated in Section[d] we use minimax estimator as a feature. Pinsker’s
theorem allows us to choose a finite dimensional representation for
the minimax estimator: use the Fourier series estimates

1 N—-1
mzﬁgnmwm,mu&mfh @7

where {¢, } are the trigonometric series

o1(z) =1
Par(x) = \/§COS(27TI€32) (28)
Por+1(z) = \/§Sin(27rkx)7 E={1,2,---},

and T is a design parameter. Further, let {cx} be a sequence of
shrinkage values to be selected with ¢; € [0, 1]. Then our represen-
tation for the minimax estimator is
ék:Ckylm k:{17277T}

Note that we need not select 7" and {cx} as in Pinsker’s theorem
because we do not have precise knowledge of 7 = X(«, L). More-
over, since the classes {F%} and how they are separated are also
not known, it is not clear if the shrinkage mandated by the Pinsker’s
theorem is optimal for classification. We thus search over all pos-
sible shrinkage values (allowing for a low pass as well as a band
pass filtering) in order to design a classifier. Thus, given a sam-
pled LFP waveform (Yo, Y1,---,Yny—1) we map it to the vector
(c1y1,c2yz, -+ ,cryr), where {ck}F_; and T are now design pa-
rameters.

Once T and {ckx}f_,; has been chosen, the vector
(c1y1,c2y2, -+ ,cryr) is multivariate normal random vector.
Since a multivariate normal population is completely specified by
its mean and covariance, one can use the training data to learn
means and covariances of samples from different classes, and train a
classifier using these learned means and covariances. For example,
if we make the following assumptions:

1. We assume that the function classes {Fi} are
such that the means of the 7-length random vector
(c1y1, c2y2, - -+ , cryr) above is approximately the same for
all functions within each class and differ significantly across
classes.

2. We also assume that the covariance of

(c1y1,c2y2,- -+ ,cryr) is approximately the same for
all functions in all the classes.

Then it is clear that using linear discriminant analysis (LDA) for
classification would be optimal. For the LFP data we study in this
paper, LDA indeed provides the best classification performance.

The Pinsker classifier is summarized below:
1. Fix parameters: Fix T'and c1,--- ,cT.

2. Compute FS coefficients: Use the LFP time-series to compute
T Fourier series coefficients yx as in (27).

3. Use Shrinkage: Shrink the FS coefficients by {cx } to get fea-
ture vector (c1y1, C2y2, -+ , CTYT)-

4. Dimensionality Reduction (optional): If LFP data is collected
using multiple channels, then use principal component anal-
ysis to project the FS coefficients from all the channels (vec-
torized into a single high-dimensional vector) into a low di-
mensional subspace.

5. Train LDA: Train an LDA classifier.

6. Cross-validation:
cross-validation.

Estimate the generalization error using

7. Optimize free parameters: Optimize over the choice of L and
c1,- -+ ,cr fixed in step 1.

6.2. Blockwise James-Stein Classifier

The BIJS classifier can be similarly defined.

1. Fix parameters: Fix L to say L = 2. Fix J = loge 2 =

log N. Thus, ¢ = 1/+/N. This relationship between ¢ and
N comes from an equivalence map between the white noise
model and the regression model (see [3]] and [4]] for
more details).

2. Compute FS coefficients: Use the LFP time-series to compute
N Fourier series coefficients yy, as in (27). Thus, the number
of FS coefficients computed is equal to the sample size V.

3. Use Shrinkage: Use BIS shrinkage to get the feature vector
GBIS

) Y9, if 7 <2
0777 = 0075w, if2<j<logN  (29)
0 if j > log N,

where, as in 1)),

éJS(y(j)) _ (1 (2J — 2) ) y(j)' (30)
+

vy N

4. Dimensionality Reduction (optional): If LFP data is collected
using multiple channels, then use principal component anal-
ysis to project the FS coefficients from all the channels (vec-
torized into a single high-dimensional vector) into a low di-
mensional subspace.

5. Train LDA: Train an LDA classifier.

6. Cross-validation:
cross-validation.

Estimate the generalization error using
Note that in this classifier no optimization step is needed.

7. CLASSIFICATION ALGORITHMS APPLIED TO LFP
DATA

We collected 736 samples of LFP data from 32 channels (each chan-
nel corresponds to a different electrode) across 9 recording sessions.
All the samples had the same depth profile. This means that the
32 electrodes were at different depths. But, those 32-length vectors
were the same for all the 736 samples. Each sample is a data matrix
of 32 rows (corresponding to 32 channels) and N columns. The in-
teger IV is smaller than the length of the memory period, and was a
design parameter for us.

For Pinsker classifier (see Section[6.1), we mapped each row (N
length data from each channel) to a 7" length Fourier series coeffi-
cients vector, and used shrinkage on the Fourier coefficients by cx



to get 6. The 32 sets of Fourier coefficients were then appended to
form a single vector of length 32 x (27" + 1) (7" sines and T cosines,
and one mean coefficient). A linear discriminant analysis was per-
formed on the data after projecting the data onto P principal modes.
All the free parameters were optimized using leave-one-session-out
cross-validation. The optimal choice of parameters was found to be:

N =500, T =25,
ce =1, k <5, and ¢, = 0, otherwise, and P = 165.
3D

Thus, for the LFP data we analyzed, the best classification perfor-
mance, of 88%, was obtained by low pass filtering the signal. In gen-
eral, these choices of the free parameters would depend on the data,
and may not always correspond to low pass filtering. In Fig. EL we
have plotted a sample LFP waveform and its reconstructions using 5
and 10 Fourier coefficients. Clearly, using 10 Fourier coefficients is
good for estimation, but the optimal performance for classification
was found using 5 coefficients.
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Fig. 3: Sample LFP waveform and its reconstruction using first 5
and 10 Fourier coefficients. Estimation is better with 10 coefficients,
but classification performance was better with 5 coefficients.

For the BJS classifier (see Section @, the process was similar
to the Pinsker classifier, except the shrinkage was different and fixed.
The parameter [NV was fixed to 500, and optimal P was found to be
P = 190. The BJS classifier achieved a performance of 85% but
had few free parameters. Due to the adaptive minimaxity properties
of the BJS estimator and few free parameters, we can expect robust
performance, and hence better generalization performance, of the
BIS classifier.

In Fig. @] we have plotted target wise decoding performances
of the Pinsker classifier and the BJS classifier. The horizontal axis

labels from 0 to 7 correspond to eight different target locations, also
shown in Fig.[@ Both the classifiers have better decoding accuracy
for the targets on the left. This phenomenon was also reported in [2].
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Fig. 4: Classification accuracy (conditional probability of correct
decoding) per target. The average accuracy is 88% for the Pinsker
classifier and is 85% for the BJS classifier.

Also shown in the figure is the performance of another classi-
fier, where the absolute values of the Fourier series coefficients were
used in the Pinsker’s classifier. This causes a drop in performance to
71%. The decoding accuracy of the targets on the right also drops by
a significant margin. This suggests that phase information is crucial
to this decoding task, at least for the targets on the right. We note that
power spectrum based techniques, popular in the literature, use ab-
solute values of the Fourier coefficients to compute power spectrum
estimates.

8. CONCLUSIONS AND FUTURE WORK

We proposed a new framework for robust classification of local field
potentials and used it to obtain Pinsker’s and blockwise James-Stein
classifiers. These classifiers were then used to obtain high decoding
performance on the LFP data. For future work, we will consider the
following directions:

1. Testing with more data: The data chosen for the above numer-
ical results were for a particular electrode depths and were
collected from a single monkey. Also, the data we used were
a sub-sampled version of the broadband data collected in the
experiment. We plan to test the performance of the proposed
algorithm on different data sets. We expect that the optimal
choice of {cx} and T, the number of Fourier coefficients to



(1]

(2]

(3]

(4]

(3]

choose and the amount of shrinkage to use, could be different.

2. Apply similar techniques to Spike Rate data: A spike rate data
can also be modeled as a nonparametric function, provided
the window for calculating the rate is sufficiently large, and
the window is slid by a small amount. We plan to test classifi-
cation performance based on spike data. Alternative ways to
accommodate spike data for decoding will also be explored.

3. Apply Wavelet thresholding techniques: 1f the function
classes are not modeled using an ellipsoid, then the minimax
estimator for the class might have a different structure than
suggested by Pinsker’s theorem. For example, if the func-
tion class F has a sparse representation in an orthogonal ba-
sis (like wavelets), then under certain conditions, a nonlinear
thresholding based estimator is minimax. In another article,
we will study wavelet transform based classifiers that are ro-
bust over a larger class of functions than the Sobolev classes.

9. REFERENCES

R. P. Rao, Brain-computer interfacing: an introduction. Cam-
bridge University Press, 2013.

D. A. Markowitz, Y. T. Wong, C. M. Gray, and B. Pesaran, “Op-
timizing the decoding of movement goals from local field po-
tentials in macaque cortex,” Journal of Neuroscience, vol. 31,
no. 50, pp. 18412-18422, 2011.

I. M. Johnstone, Gaussian estimation: Sequence and wavelet
models. Book Draft, 2017. Available for download from
http://statweb.stanford.edu/~imj/GE_08_09_
17 .pdfl

A. B. Tsybakov, Introduction to nonparametric estimation.
Springer Series in Statistics. Springer, New York, 20009.

L. C. G. Rogers and D. Williams, Diffusions, Markov processes
and martingales: Volumes I and 2. Cambridge university press,
2000.


http://statweb.stanford.edu/~imj/GE_08_09_17.pdf
http://statweb.stanford.edu/~imj/GE_08_09_17.pdf

	1  Introduction
	2  A Memory-Based Saccade Experiment
	3  A Nonparametric Regression Framework for LFP Data
	4  Classification Using Minimax Function Estimators
	5  Gaussian Sequence Model
	5.1  Nonparametric Estimation
	5.2  Gaussian Sequence Model
	5.3  Pinsker's Theorem
	5.4  Discussion on Minimax Estimators: Shrinkage and Thresholding
	5.5  Adaptive Minimaxity: Blockwise James-Stein Estimator

	6  Classification Algorithms based on Gaussian Sequence Model
	6.1  Pinsker Classifier
	6.2  Blockwise James-Stein Classifier

	7  Classification Algorithms Applied to LFP Data
	8  Conclusions and Future Work
	9  References

