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ABSTRACT
We consider the problem of recovering a single or multiple frequency-
sparse signals, which share the same frequency components, from
a subset of regularly spaced samples. The problem is referred to
as continuous compressed sensing (CCS) in which the frequencies
can take any values in the normalized domain [0, 1). In this pa-
per, a link between CCS and low rank matrix completion (LRMC)
is established based on an `0-pseudo-norm-like formulation, and
theoretical guarantees for exact recovery are analyzed. Practically
efficient algorithms are proposed based on the link and convex and
nonconvex relaxations, and validated via numerical simulations.

Index Terms— Continuous compressed sensing, multiple mea-
surement vectors (MMV), atomic norm, DOA estimation.

1. INTRODUCTION

Compressed sensing (CS) studies sparse signal recovery from far
fewer measurements and has brought significant impact on signal
processing and information theory in the past decade. Since its de-
velopment thus far has been focused on signals that can be sparsely
represented under a finite discrete dictionary, limitations are present
in applications such as array processing, radar and sonar, where
the dictionary is typically specified by one or more continuous pa-
rameters. In this paper, we consider the problem of recovering a
sinusoidal/frequency-sparse signal, which is a superposition of a few
complex sinusoids, from a subset of regularly spaced samples. The
problem is referred to as continuous CS as suggested in [1] in the
sense that the frequencies of the sinusoids can take any continuous
values. A systematic, convex approach is introduced in [1] which
works directly in the continuous domain and completely eliminates
parameter discretization/gridding of conventional CS methods that
causes basis mismatches. In the paper, it is shown that a frequency-
sparse signal can be exactly recovered in the noiseless case from far
fewer samples provided that the frequencies are appropriately sepa-
rate. Practical solutions are then provided in [2] in the noisy case.
An important, related application is direction of arrival (DOA) esti-
mation [3], in which improved performance is typically obtained by
receiving multiple frequency-sparse signals in a time interval which
share the same frequency components. Note that the method in [1]
specified for a single measurement vector (SMV) cannot process the
multiple measurement vectors (MMVs) at a single step while the
joint processing exploiting the so-called joint sparsity can usually
improve the performance [4]. Before this paper, the only known
continuous/gridless sparse method for MMVs was presented in [5]
in the context of DOA estimation based on statistical inference.

In this paper, we study the SMV and MMV continuous CS prob-
lems in a unified framework. Based on an `0-norm-like formulation

we establish a link between continuous CS and a well-studied area
of low rank matrix completion (LRMC) [6] and provide a sufficient
condition for exact recovery. We propose convex optimization meth-
ods for signal recovery based on the link and convex and nonconvex
relaxations and present computationally efficient algorithms using
alternating direction method of multipliers (ADMM) [7]. Numerical
simulations are provided to study their phase transition phenomena
and validate their usefulness in DOA estimation.

2. SIGNAL RECOVERY VIA ATOMIC `0 NORM
MINIMIZATION

2.1. Atomic `0 Norm Minimization

Suppose that we observe a number of L sinusoidal signals

yojt =

K∑
k=1

skte
i2π(j−1)fk , (j, t) ∈ [N ]× [L] , (1)

denoted by matrix Y o =
[
yojt
]
∈ CN×L, on the index set Ω× [L],

where Ω ⊂ [N ] , {1, · · · , N} with M , |Ω| ≤ N denoting the
sample size of each sinusoidal signal. Here (j, t) indexes the jth
entry of the tth measurement vector (or snapshot data), i =

√
−1,

fk ∈ [0, 1) denotes the kth normalized frequency, and skt ∈ C is the
(complex) amplitude of the kth component at snapshot t. The SMV
case where L = 1 corresponds to line spectral estimation in spectral
analysis and the MMV case is common in array processing. In this
paper, each column of Y o is called a frequency-sparse signal since
the number of sinusoidsK is typically small. We are interested in the
recovery of Y o (as well as the parameters f and s if possible) under
the sparse prior given its partial or compressive measurements on
Ω× [L], denoted by Y o

Ω. This problem is called the continuous CS
problem to distinguish with the common discrete frequency setting
as suggested in [1]. We mainly consider the noiseless case. The
general noisy case will be deferred to Subsection 3.4.

We exploit sparsity to solve the ill-posed problem of recover-
ing Y o from Y o

Ω. Following the literature of CS, we seek for the
maximally sparse candidate for its recovery. To state it formally,

we denote a (f) =
[
1, ei2πf , · · · , ei2π(N−1)f

]T
∈ CN and sk =

[sk1, · · · , skL] ∈ C1×L. Then (1) can be written as

Y o =

K∑
k=1

a (fk) sk =

K∑
k=1

cka (fk)φk, (2)

where ck = ‖sk‖2 > 0 and φk = c−1
k sk with ‖φk‖2 = 1.

Let S2L−1 =
{
φ : φ ∈ C1×L, ‖φ‖2 = 1

}
denote the unit 2L− 1-
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sphere. We define the continuous dictionary or the set of atoms

A ,
{
a (f,φ) = a (f)φ : f ∈ [0, 1) ,φ ∈ S2L−1

}
. (3)

It is clear that Y o is a linear combination of a number of atoms in
A. We define the atomic `0 (pseudo-)norm of some Y ∈ CN×L as
the smallest number of atoms that can express it:

‖Y ‖A,0 = inf

{
K : Y =

K∑
k=1

ckak,ak ∈ A, ck > 0

}
. (4)

So we propose the following problem for signal recovery:

min
Y
‖Y ‖A,0 , subject to Y Ω = Y o

Ω, (5)

where Y Ω takes the rows of Y indexed by Ω.

2.2. Spark of Continuous Dictionary

To analyze the atomic `0 norm minimization problem in (5), we gen-
eralize the concept of spark to the case of continuous dictionary. We
define the following continuous dictionary with respect to the index
set Ω: A1

Ω , {aΩ (f) : f ∈ [0, 1)}.

Definition 1 (Spark of continuous dictionary) Given the con-
tinuous dictionary A1

Ω, the quantity spark of A1
Ω, denoted by

spark
(
A1

Ω

)
, is the smallest number of atoms of A1

Ω which are
linearly dependent.

Theorem 1 We have the following results about spark
(
A1

Ω

)
:

1. 2 ≤ spark
(
A1

Ω

)
≤M + 1,

2. spark
(
A1

Ω

)
= 2 if and only if the elements of

D , {m1 −m2 : m1,m2 ∈ Ω,m1 ≥ m2} (6)

is not coprime, and

3. spark
(
A1

Ω

)
= M + 1 if Ω consists of M consecutive inte-

gers.

Theorem 1 presents the range of spark
(
A1

Ω

)
with respect to

the sampling index set Ω. Readers are referred to [8] for its proof
and those of the rest results due to the page limit. A sufficient and
necessary condition is provided under which spark

(
A1

Ω

)
achieves

the lower bound 2. Note, however, that such Ω is rare. For ex-
ample, when Ω is selected uniformly at random, the probability
that the condition holds is 0 whenever M > N

2
. It is less than

1.2 × 10−3, 1.8 × 10−7, 3.2 × 10−12 when N = 100 and M =
10, 20, 30 respectively. A sufficient (but unnecessary) condition is
also provided under which A1

Ω achieves the upper bound M + 1.

2.3. Sufficient Condition for Exact Recovery

We provide theoretical guarantees of the atomic `0 norm minimiza-
tion in (5) for frequency recovery in this subsection. In particular, we
have the following result, which can be considered as a continuous
version of [9, Theorem 2.4].

Theorem 2 Y o =
∑K
k=1 cka (fk,φk) is the unique optimizer to

(5) if

K <
spark

(
A1

Ω

)
− 1 + rank (Y o

Ω)

2
. (7)

Moreover, the atomic decomposition above is the unique one satisfy-
ing that K = ‖Y o‖A,0.

Theorem 2 shows that the proposed atomic `0 minimiza-
tion problem can recover a frequency-sparse signal with sparsity
K < 1

2
spark

(
A1

Ω

)
in the SMV case. As we take more measure-

ment vectors, we have a chance to recover more complex signals by
increasing rank (Y o

Ω), which is practically relevant in array process-
ing applications. In fact, the sparsity K can be as large as M − 1
with an approximate choice of Ω.

2.4. Finite Dimensional Characterization via Rank Minimiza-
tion

The optimization problem in (5) is computationally infeasible given
the infinite dimensional formulation of the atomic `0 norm in (4).
We provide a finite dimensional formulation in the following result.

Theorem 3 ‖Y ‖A,0 defined in (4) equals the optimal value of the
following rank minimization problem:

min
W∈CL×L,u∈CN ,U≥0

rank (U) , subject to U =

[
W Y H

Y T (u)

]
,

(8)
where T (u) denotes a (Hermitian) Toeplitz matrix with its first row
specified by uT , and U ≥ 0 means that U is positive semidefinite.

Theorem 3 presents a rank minimization problem to characterize
the atomic `0 norm. It follows that (5) is equivalent to the following
LRMC problem:

min
Y ,W ,u,U≥0

rank (U) ,

subject to U =

[
W Y H

Y T (u)

]
,Y Ω = Y o

Ω,
(9)

where we need to recover a (structured positive semidefinite) low
rank matrix U with partial access to its entries. As a result, we
establish a link between continuous CS and the well studied area
of LRMC, which enables us to study the continuous CS problem
by borrowing ideas in LRMC. Note that a similar rank minimization
problem is presented in [1] in the SMV case, where the rank is put on
the matrix T (u) rather than the full matrixU in (9). This difference
obscures the link between continuous CS and LRMC which, we will
see later, plays an important role in this paper.

3. SIGNAL RECOVERY VIA RELAXATIONS

3.1. Convex Relaxations

The atomic `0 norm exploits sparsity directly, however, it is non-
convex and the problem in (9) cannot be solved globally in practice.
To avoid the nonconvexity and at the same time exploit sparsity, we
utilize convex relaxation to relax the atomic `0 norm. In particular,
it can be relaxed in two ways from two different perspectives. One
is to relax the atomic `0 norm to the atomic `1 norm (or simply the
atomic norm) which is defined as the gauge function of conv (A),
the convex hull of A [10]:

‖Y ‖A , inf {t > 0 : Y ∈ tconv (A)}

= inf

{∑
k

ck : Y =
∑
k

ckak, ck ≥ 0,ak ∈ A

}
.

(10)

The atomic norm ‖·‖A is indeed a norm and convex by the property
of the gauge function. The other way of convex relaxation is based
on a perspective of rank minimization illustrated in (8) and to relax



the pseudo rank norm to the nuclear norm or equivalently the trace
norm for a positive semidefinite matrix, i.e., to replace rank (U) by
tr (U) in (8). Interestingly enough, the two convex relaxations are
equivalent, which is shown in the following result.

Theorem 4 ‖Y ‖A defined in (10) equals the optimal value of the
following semidefinite programming (SDP):

min
W ,u,U≥0

1

2
√
N

tr (U) , subject to U =

[
W Y H

Y T (u)

]
. (11)

Theorem 4 generalizes the results in [1, 11] on the SMV case.
Consequently, we propose the following atomic norm minimization
problem for signal recovery:

min
Y ,W ,u,U≥0

tr (U) ,

subject to U =

[
W Y H

Y T (u)

]
,Y Ω = Y o

Ω.
(12)

It is shown in [1] that Y o can be exactly recovered in the SMV case
with high probability if M ≥ O (K logK logN) and the frequen-
cies are separate by at least 4

N
. Note that the condition of frequency

separation is introduced by the convex relaxation while it is not re-
quired in the atomic `0 minimization problem as shown in Theorem
2. After submission of this paper, we have proven in [8] that Y o can
be recovered by (12) in the MMV case under similar conditions.

3.2. Iterative Reweighted Optimization via Nonconvex Relax-
ation

From the perspective of rank minimization, an iterative reweighted
trace norm minimization scheme can be implemented to further im-
prove the low-rankness by iteratively minimizing the objective func-
tion tr

[
(U j−1 + εI)−1U

]
subject to the same constraints, where

U j denotes the solution at the jth iteration starting with U0 = I ,
and ε > 0 is a small number. Obviously, the first iteration refers
exactly to the convex relaxation. This iterative reweighted optimiza-
tion scheme corresponds to relaxing rank (U) to the nonconvex ob-
jective ln |U + εI|, followed by a majorization-maximization (MM)
implementation of the nonconvex optimization which guarantees lo-
cal convergence of the objective function. We expect that a weaker
condition of frequency separation holds for this nonconvex relax-
ation compared to the convex one since intuitively ln |·| is a closer
approximation of the rank function. In the future, we can also con-
sider other relaxation methods based on the literature of LRMC.

3.3. Frequency and Amplitude Retrieval

Given the solution of Y , it is of great importance to retrieve the fre-
quency and amplitude solutions, or equivalently to obtain the atomic
decomposition as in (2), in applications such as line spectral estima-
tion or DOA estimation. In particular, we can firstly obtain the fre-
quency solution by the Vandermonde decomposition of T (u) given
the solution of u (see details in [2, 8]). Then the amplitude can be
easily obtained by solving the linear system of equations in (2).

3.4. The Noisy Case

Noise is always present in practical scenarios. In this paper we con-
sider only noise with bounded energy. Suppose the noise in the mea-
surements Y o

Ω is upper bounded by η > 0 in the Frobenius norm.
Then we can impose the inequality constraint ‖Y Ω − Y o

Ω‖F ≤ η
instead of the equality constraint Y Ω = Y o

Ω in the noiseless case.
Note that the latter is a special case with η = 0.

3.5. Computationally Efficient Algorithms via ADMM

We present a first-order algorithm based on ADMM to solve the trace
minimization problems min tr (BU) in Subsections 3.1 and 3.2, in
particular,

min
Y ,W ,u,U≥0

tr (B1W ) + tr (B3T (u)) + tr
(
BH

2 Y + Y HB2

)
,

subject to U =

[
W Y H

Y T (u)

]
and ‖Y Ω − Y o

Ω‖F ≤ η,

(13)

where B ,

[
B1 BH

2

B2 B3

]
≥ 0 is partitioned as U . (13) can be

solved within the framework of ADMM in [7], where (Y ,W ,u),
U and the Lagrangian multiplier are iteratively updated with closed-
form expressions and converge to the optimal solution (see, e.g., [2]).
An eigen-decomposition of a Hermitian matrix of orderN+L is re-
quired at each iteration. We omit the detailed update rules due to the
page limit. Note that the ADMM converges slowly to an extremely
accurate solution while moderate accuracy is typically sufficient in
practical applications [7].

4. NUMERICAL SIMULATIONS

We first consider the noiseless case and study the so-called phase
transition phenomenon in the (M,K) plane. In particular, we repeat
an experiment in [1] and consider our proposed atomic norm (or
trace norm) minimization (ANM) and reweighted trace minimiza-
tion (RWTM) methods. RWTM is terminated within maximally 3
iterations in our simulation. For achieving high accuracy we solve
the SDPs (in fact, their dual problems, see [8]) using a standard SDP
solver, SDPT3 [12]. We fix N = 128 and vary M = 8, 12, . . . , 120
and K = 2, 4, . . . ,M . We consider L = 1 and 5, where ANM
in the SMV case has been studied in [1]. The frequencies fk are
generated randomly with minimal separation ∆f ≥ 1/N which is
empirically found in [1] to be the minimal separation required for
exact recovery when L = 1. The amplitudes sk (t) are randomly
generated as 0.5+w2 with random phases, where w is standard nor-
mal distributed. The first column of Y o is used in the SMV case
in each problem generated. The recovery is considered successful if∥∥∥Ŷ − Y o

∥∥∥
F
/ ‖Y o‖F < 10−6, where Ŷ denotes the recovered sig-

nal.1 Simulation results are presented in Fig. 1, where a transition
from perfect recovery to complete failure can be observed in each
subfigure. By increasing the number of measurement vectors from
1 to 5, the phase of successful recovery is enlarged significantly for
both ANM and RWTM. Moreover, RWTM has an enlarged success
phase than ANM, especially in the MMV case, due to adoption of
nonconvex relaxation. We also notice that the transition boundary
of ANM with L = 1 is not very sharp and failures happen in the
area where complete success is expected. Further examination re-
veals that most of the failures happen when the minimal separation
marginally exceeds 1/N . The situation is better for RWTM with
L = 1. In contrast, sharp phase transitions exhibit for both ANM
and RWTM in the MMV case. This implies that the requirement of
frequency separation can be relaxed in our considered MMV case
where the measurement vectors are statistically independent.

1After submission of this paper, we find that this criterion is not strict
enough to guarantee exact recovery of the frequencies. See more simulation
results in [8].
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Fig. 1. Phase transition with minimal frequency separation ∆f ≥
1
N

. White means complete success while black means complete fail-
ure. The straight lines correspond to K = 1

2
(M + L).
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Fig. 2. DOA estimation using ANM and RWTM compared to MU-
SIC (shown only on the frequency interval [0, 0.35]).

We also plot the line K = 1
2

(M + L) in each subfigure which
acts as an upper bound of the sufficient condition in Theorem 2 for
exact recovery using the atomic `0 norm minimization. We see that
in the MMV case successful recoveries can be obtained even above
the line with ANM or RWTM, implying that the sufficient condition
is unnecessary.

We next consider an example of DOA estimation using a re-
dundancy sparse linear array (SLA) of size M = 10 with Ω =
[1, 2, 7, 11, 24, 27, 35, 42, 54, 56]T (see, e.g., [5]). By assuming nar-
rowband sources the DOA estimation problem is mathematically
equivalent to frequency recovery in continuous CS. We apply the
proposed ANM and RWTM methods with the ADMM implemen-
tations to the DOA estimation and compare with MUSIC. In the
simulation, we consider K = 3 sources impinging on the array
from directions corresponding to frequencies f = [0.1, 0.106, 0.3]T

with powers 1, 1, and 0.25. Suppose that L = 10 snapshots (or
measurement vectors) are observed with the signal to noise ratio
SNR = 14.2dB. The DOA estimation results of ANM and RWTM
are presented in Fig. 2 compared to MUSIC. It is shown that both
ANM and RWTM can separate the first two sources while MUSIC
cannot. Note also that ANM produces a few spurious sources with
very small powers while RWTM detects exactly 3 sources. Both
ANM and RWTM take about 2 seconds (loose convergence criteria
are adopted in the first few iterations of RWTM for speed accelera-
tion). Finally, it is worth noting that ANM and RWTM require the
knowledge of the noise level while MUSIC needs to know the source
number.

5. CONCLUSION

In this paper, the SMV and MMV continuous CS problems were
studied in a unified framework and linked to low rank matrix com-
pletion. We extended existing discrete CS results to the continuous
case, introduced computationally efficient algorithms and validated
their performances via simulations. We have recently analyzed the
proposed atomic norm minimization method in [8], which general-
izes [11] and [1].
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LAB software package for semidefinite programming, version
1.3,” Optimization Methods and Software, vol. 11, no. 1-4, pp.
545–581, 1999.

http://arxiv.org/abs/1312.7695

	1  Introduction
	2  Signal Recovery via Atomic 0 Norm Minimization
	2.1  Atomic 0 Norm Minimization
	2.2  Spark of Continuous Dictionary
	2.3  Sufficient Condition for Exact Recovery
	2.4  Finite Dimensional Characterization via Rank Minimization

	3  Signal Recovery via Relaxations
	3.1  Convex Relaxations
	3.2  Iterative Reweighted Optimization via Nonconvex Relaxation
	3.3  Frequency and Amplitude Retrieval
	3.4  The Noisy Case
	3.5  Computationally Efficient Algorithms via ADMM

	4  Numerical Simulations
	5  Conclusion
	6  References

