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Abstract—The current Covid-19 worldwide outbreak has many
lessons to be learned for the future. One area is the need for
more powerful computational models that can support making
better decisions in controlling future possible outbreaks, partic-
ularly when being made under uncertainties and imperfections.
Motivated by the rich data being daily generated during the
pandemic, our focus is on developing a data-driven model, not
primarily relying on the mathematical epidemiology techniques.
By investigating the implications of the current pandemic data,
we propose a fuzzy-geospatial modelling approach, in which
uncertainties and linguistic descriptions of data, some of which
being geo-referenced, are handled by non-singleton fuzzy logic
systems. In this paper, we outlining a conceptual model designed
to be trained by the available pandemic worldwide data, and to be
used to simulate the effect of an enforced controlling measure on
the geographical extent of the infection. This can be considered
as an uncertain decision support systems (UDSS) in controlling
the pandemic in the future outbreaks.

Index Terms—Fuzzy Systems, GIS, Pandemic Models

future similar cases. In the data-driven approach, models are
developed and trained by relying on the collected data during
the outbreak, rather than on the epidemiological mechanics of
the outbreak. In this case, tuning the epidemiological attributes
for running a mathematical model is replaced by a reverse-
engineering approach, i.e., training the model by the big
data collected after the pandemic, not by the epidemiological
attribute known before it.

A challenge in such a data-driven approach lies in the
considerable amount of uncertainties naturally or artificially
embedded in the released pandemic data. A known example
to the world is the inaccuracies in the announced numbers
of Covid-19 cases due to the shortage of test kits in many
countries. The current data modelling approaches are rarely
able to systematically digest the uncertainties into the model.
Currently, the uncertainties are usually treated as noise data
that deviate the developed model results from close predic-
tions.

Here is where fuzzy systems may act better than the rigid
quantised analysis, as they have already shown their capabili-
ties in such scenarios. In fuzzy systems, the uncertainties are
naturally embedded in the “computing with words” paradigm.
For example, an area can be called “highly infected”, or an
individual can be classified as being in “low risk” of having the
infection, each with different membership grades. There are
some research works on fuzzy modelling of epidemiological
phenomena [3], [4], however to the best of our knowledge,
none of them are trained or tested against a worldwide data
collection similar to the Covid-19.

The other challenge is that most of the fuzzy logic sys-
tems are based on serialised or single-dimensional numeric
data. Pandemic data, on the other hand, are usually multi-
dimensional, based on 2-D or 3-D maps, and/or incorporating
temporal dimensions. It seems that a fuzzy-spatio-temporal
approach is required for developing future models to deal with
the full range of pandemic data types.

We aim at developing a data-driven fuzzy-geospatial pan-
demic models. Rather than relying on the classical epidemio-
logical modelling, our approach does not much care about the
mechanics of the infection spread. Instead, by taking advantage
of the Covid-19 data availability, it treats the pandemic as
a system with multiple inputs and outputs, governed by a
knowledge-base trained by the historical data. To fit the

I. INTRODUCTION

The world has just witnessed the huge impact of the 
local/national measures introduced in response to the Coro-
navirus spread, some of which could be made more wisely or 
at a better time in different countries. This highlights the need 
for developing advanced modelling techniques to simulate the 
patterns of the infection spread given the available data, even 
if not completely certain and trusted.

There are several approaches in modelling the epidemio-
logical information in order to provide close predictions of 
how infectious diseases spread in communities, as well as 
supporting the decision-makers. Mathematical epidemiology, 
backed by about 100 years of history and research, can 
provide predictive models of disease spread based on specific 
parameters of a disease such as the reproduction number 
(R) and population attributes. Examples are the classic SIR 
model (Susceptible, Infected and Removed) that is widely used 
in recent outbreaks [1], and recent Covid-19-specific models 
such as Bats-Hosts-Rseservoir-People (BHRP) and Reservoir-
People (RP) transmission network models [2].

The current Covid-19 pandemic, as being one of the greatest 
disease pandemics in recent years, has been the source of one 
of the richest data of its kind. Therefore, it is a highly moti-
vating case for developing data-driven pandemic models for
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model to its specific requirements, it should be able to handle
uncertain data, some of which having spatio-temporal nature.
That is why the contribution of this paper is proposing a fuzzy-
geospatial model of the pandemic.

After outlining a conceptual model for future developments,
we propose a simplified model as a proof of concept that can
deal with limited data taken from the recent Covid-19 spread
in an exemplar county in the UK.

II. BACKGROUND

In this section, some of the background concepts and
implications for the outlined pandemic model are reviewed.
Particularly, it is useful to explore the implications of two
specific aspects of the pandemic data, namely its embedded
uncertainties and its geospatial nature.

A. The Uncertain Nature of the Pandemic Data

The embedded uncertainties in pandemic data have already
shown the world, how important is incorporating the uncer-
tainties in modelling and to develop uncertain decision support
systems (UDSS). A very bold example of such uncertainties
is the fact that testing has not been always available for
Coronavirus infection. Different countries have struggled to
provide enough test kits, leaving the patients with the symp-
toms, the communities and the decision-makers under doubt
about the real number of the disease cases. The daily statistics
are normally the confirmed cases but no one knows what has
been the real number of the infected cases. The number of
tests per day per 1000 patients, if correct and if available,
can improve the model and enhance the prediction results by
telling the model how wide is the uncertainty.

Another uncertainty source can be the data non-
transparencies applied in different countries, at different times
and under different policies. Moreover, when a policy measure
is applied by governments, the extent of enforcing it and the
level in which people in different cultures obey the rules,
add uncertainties to the released data. Besides, the disease
maps provided by national or international agencies have to be
treated as fuzzy, since the viruses do not care about concepts
such as human-made rigid country borders.

A fuzzy logic system can translate these uncertainties into
the underlying fuzzy sets. Therefore, any model that predicts
the future spread based on the current statistics, has to account
for the invisible uncertainties. Namely, non-singleton and type-
2 fuzzy systems are the more specialised typed of the fuzzy
systems that can efficiently capture the uncertainties at their
source and digest them in producing the close predictions.

B. The Geospatial Nature of the Pandemic Data

The majority of fuzzy logic systems work with scalar
concepts. Recently, fuzzy Geographic Information System
(GIS) systems are developed as being rule-based fuzzy logic
systems specialised for spatial information in two or three-
dimensional environments. If positions can be treated as fuzzy
concepts, the uncertainties embedded in human understanding

of the positions or the position’s associated attributes can be
efficiently modelled by fuzzy sets [5].

The idea of fuzzy-GIS is not new and there is an ongoing
research on uncovering the range of possibilities and scenarios
of applying fuzzy positioning in different intelligent systems.
Fuzzy systems has been used for spatial decision support
systems, such as in [6]. Some of the current applications of
fuzzy-GIS are in agriculture [7], urban design [8], photogram-
metry [9] and particularly in healthcare [10], [11]. However,
the applications of fuzzy-GIS are still limited, partly due
to its more complex underlying mathematics compared to
the mainstream fuzzy systems. This is particularly the case
for fuzzy topological relations [12], [13], Region Connection
Calculus (RCC) [14] and multi-criteria fuzzy search [15].

It is noticeable that fuzzifying the geospatial values does not
stop precisely measuring them, nor working with a position
as values, however fuzzy-GIS opens a wide new area of
applications by including position to another type of variables
that can be treated both as values or as fuzzy terms. For
example, we may be interested to provide ambulance services
for a patient if the area is highly infected. This is, in fact, a
fuzzy rule that comes from a humanitarian understanding of
the environment, rather than a rule that comes from measured
numbers. However, to implement such a rule, we would
certainly need to measure the position of the individual as
precisely as possible since the numbers are ultimately used
by computers to make the decisions. In between, we will
convert the measured numbers to some membership grades in
some fuzzy sets, in which the linguistic terms such as ”highly
infected” are represented by numbers.

The main challenge towards designing fuzzy logic systems
for geospatial concepts is the transition from one-dimensional
variables to two or three dimensional geo-referenced variables
(such as fuzzy maps), in addition to temporal dimension. Some
classical fuzzy operations, such as intersection or negation,
need to be redefined, as well as Fuzzy rules and relations.
On the other hand, some classical spatial concepts, such
as topological relations, may not previously have a fuzzy
counterpart, thus need to be conceptually “fuzzified”.

Some possible fuzzy expression of spatial terms are:
• Fuzzy boundaries,
• Some uncertain words, such as close (as in close to

hospotal) or moderate (as in moderate infection).
• Combined boundaries and words (as close to moderately

infected area)
• Cardinal directions; and,
• spatio-temporal concepts.
Fuzzy boundaries have a major role in developing rule-

based fuzzy-GISs, since many rules are based on relative
positions of people or assets to some areas, whereas the
boundaries of those areas are not precisely defined. Imagine
the concept of “high-risk area” in a city, where there is no
real boundary between it and the low- or moderate-risk areas
of the same city.

The uncertainties about the boundaries of an area can come
from different sources [14]:
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• Continuousness occurs when the boundaries rely on a
continuous variable (e.g., the transition of infection rate
between country borders).

• Aggregation occurs when the boundaries are obtained
by aggregating the values of different variables (e.g.,
population per area unit may indicate a city’s boundary).

• Time Averaging occurs when the actual boundaries vary
in time (e.g., rivers, shorelines).

• Ambiguity occurs when linguistic terms are used to
define regions (e.g., the highly-infected area of a city).

Based on the above implications of pandemic data, we out-
line a conceptual fuzzy-geospatial model in the next section.

III. A CONCEPTUAL MODEL

A complete model that can predict the different epidemio-
logical scenarios based on all the various data collected in the
past sounds very complicated. Limiting the focus on modelling
the geographical and temporal patterns of the spread based
on some of their most influencing factors as observed during
the Coronavirus pandemic, such as the spatiotemporal pat-
terns, disease epicentres and local/national protection measures
can make the model more realistically possible to develop,
although still complex. We provide a conceptual outline of
such a model, having an outlook that if the developed model
showcases its prediction performance, it can be followed up by
further model extension incorporating some more influential
parameters such as socio-cultural, demographics, transport
system, virus types, etc.

A. Model Outline

This model is outlined in Fig. 1. The aim is to simulate and
predict the geographical pattern of the disease spread in the
presence of enforced quarantine measures. The knowledge-
base contains fuzzy sets for different uncertain pandemic
concepts such as quarantine level or patient severity (Fig. 2).
As far as spatiotemporal data concern, it is necessary to take
the uncertainties/imperfections into account when predicting
how the disease will spread geographically and temporarily
if a certain measure is enforced. The enforced measures, as
observed during the pandemic, were in a wide range from
limited self-isolation to home stay, from city quarantine to
travel ban to a total country lock-down. Not surprisingly, the
measures themselves are to be modelled with some levels of
uncertainties since they were differentiated with grey borders
and/or implemented imperfectly.

B. Data Sources

During (and possibly after the pandemic), different official
public and/or research-specific datasets are being developed,
some of which are:

• At the global level, WHO (World Health Organisation)
publishes detailed reports daily (called Situation Report)
including maps, spreadsheets and statistics about the
disease spread. WHO-Europe also publishes the daily

situation reports at some higher resolutions at European
country level 1.

• At the national level, the UK Government releases de-
tailed daily reports (map and statistics) at the UK’s cities
and county levels 2.

• Research centres around the world, for example, John
Hopkins University’s Coronavirus Resource Centre that
provides world-wide daily maps and statistics 3.

• Another required source of information is the measures
that the governments are taking in response to the Coro-
navirus spread. Besides news and media sources, the data
source is provided by the Oxford COVID-19 Government
Response Tracker (OxCGRT) project 4.

Moreover, a variety of data sources are expected to be available
either publicly or for research communities after the pandemic
settlement.

C. Model Training
Training fuzzy systems by example data is has known es-

tablished methods [16], however, applying them for geospatial
data and non-singleton systems is new and therefore needs
extra research works. Training leads to fuzzy sets for the sys-
tem’s fuzzifiers (i.e., knowledge-base) and inference engines
(i.e., rule-base), however for the geospatial data, the training
is partly based on map data, thus the resulted fuzzy sets can
be in spatiotemporal forms scattered in 2 or 3 dimensions.

D. Uncertainty Capturing
For achieving a higher level of uncertainty capture than

the classical fuzzy systems, the conceptual model is designed
as a non-singleton fuzzy logic system (NSFLS) [17]. The
NSFLSs are proven to outperform the classical fuzzy systems
in working with uncertain inputs since the non-singleton
fuzzifiers capture the input uncertainties at their source and
directly carry them to the inference engine. This will allow
to model the embedded uncertainties not only at the level of
linguistic uncertainties, but also at the level of data collection.
For example, the system will be capable of making inferences
based on fuzzy operations between the knowledge-bases fuzzy
maps and the fuzzified input maps (as opposed to the classical
rigid-border maps). This would not be possible in singleton
fuzzy systems. The difference between singleton and non-
singleton fuzzy logic systems is shown in Fig. 3.

Designing the system as NSFLS, makes it essentially similar
to noisy time series prediction. The difference is that unlike
the time series, the system works with a wide range of
non-scalar data. NSFLSs has already shown their relatively
high performance in noisy and chaotic time series prediction
[17]. In addition, we have already developed some improved
methods in employing NSFLSs for noisy time series prediction
problems [18], [19], which can be adapted for the pandemic
data.

1https://who.sprinklr.com/
2https://coronavirus.data.gov.uk/
3https://coronavirus.jhu.edu/
4https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-

government-response-tracker
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Fig. 1: The Fuzzy rule-based system outline incorporating spatio-temporal concepts.

Fig. 2: Exemplar fuzzy sets in the system’s knowledge-base.

IV. A SIMPLIFIED MODEL

In order to showcase how the described conceptual model
can be realised in a limited local extent, we consider a
simplified modelling scenario based on the available public
datasets in the UK and generate a non-singleton fuzzy rule-
based system to model the scenario.

The geographical extent of this scenario is Nottingham
city in the UK, and its surroundings. The county of Notting-

Fig. 3: The difference between singleton and non-singleton
fuzzy logic systems.

hamshire consists of 8 local authorities, 4 of which surround
the Nottingham city local authority, namely Ashfield, Brox-
towe, Rushcliffe and Gedling. The daily maps and statistics
of the spread in each local authority is publicly released by
the UK Government, together with maps at local authorities
level. The sample of these two daily maps are shown in Fig.
4 at the upper tier and Fig. 5 at the lower tier respectively.

The aim of this model is to predict the number of new cases
in Nottingham based on the available data as follows.

A. Inputs and Outputs

• The number of confirmed cases in the previous day in
Nottingham city (Fig. 7.a);

• The average number of the confirmed cases in the 4
neighbour local authorities (Fig. 7.a). The idea is to
consider the effect of the infection rates in the vicinity
of the city, thus for having a better estimation, we
calculate a weighted average of the reported cases in the 4
neighbouring areas, in which the weights are the ratios of
the border lengths between Nottingham city area and each
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Fig. 4: A sample outbreak map of the UK at the
upper tier level local authority (UTLA) level (from
https://coronavirus.data.gov.uk/).

Fig. 5: A sample outbreak map of the UK at the lower tier
level local authority (LTLA) level, showing Nottingham and
its surrounding local authorities. Darker shades have higher
rates. (from https://coronavirus.data.gov.uk/).

of the surrounding local authorities, so that the longer the
border, the higher the spread possibility.

• The cumulative number of cases per 1000 residents (Fig.
7.b). This is to account for epidemiology or immunology
factors since the possibility of the virus spread slows
down by increasing the number of already infected cases.

• The number of days passed since the start of the national
lock-down in the UK (23 March 2020) (Fig. 7.c). The
idea is that the longer the lock-down is enforced, the
lower the possibility of the spread.

• The number of tests per 1000 residents (Fig. 7.d). This
factor is not a direct input to the system, rather it changes

Fig. 6: The outline of the simplified model. The non-singleton
fuzzifier is governed by the daily test rate.

the non-singleton fuzzification attribute related to the first
two inputs. The idea is that if more tests are done, the
number of daily cases becomes more accurate, thus a
narrower membership function can be used to model the
uncertainty in the non-singleton fuzzification block.

Fig. 6 shows the architecture of this simplistic model. For
simplicity, we considered a single output variable for the
model. This is the prediction of the new daily cases in the
next day.

B. Fuzzy Sets

For each of the system inputs, we define three linguistic
labels namely Low, Medium and High. Three points including
the minimum, middle and the maximum values for the range of
each input/output variable is selected. Then for each variable,
three triangular membership functions are defined as illustrated
Fig. 7.a-c. The three defined membership functions represent
the three linguistic labels Low, Medium and High.

C. Non-Singleton Fuzzification

We consider a symmetrical normalised triangular member-
ship function for the fuzzification block, in which the triangle
base length is reversely proportional to the number of tests per
1000 residents. As illustrated in Fig. 7.d., when the daily tests
are low (high), the daily cases have high (low) uncertainty, thus
the input data is fuzzified with a wider (narrower) triangular
membership function.

V. CONCLUSION AND THE FUTURE WORKS

In this paper we outlined the research work towards a
novel pandemic model, motivated by the rich data sets being
created during the Covid-19 pandemic. A complete predictive
model that accounts for all the features found in the current
pandemic data, and for a large geographical extent could be
far too complex. We proposed the outline of a novel modelling
approach by limiting the number of features to some of the
most important ones, and by considering the following three
methodologies, collectively called data-driven fuzzy-geospatial
modelling:
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(a)

(b)

(c)

(d)

Fig. 7: Illustrations of the available pandemic data for Not-
tingham city and its surrounding areas at the time of writing
this paper (from https://coronavirus.data.gov.uk/), and their
associated fuzzy sets; (a) The daily lab-confirmed cases in
Nottingham city and its surrounding areas (the average of 4
local authorities around Nottingham city). The fluctuations are
due to reporting delays, however the graph can be statistically
smoothed before being fed into the model. Three fuzzy sets
(low, medium and high) are associated to different levels of the
reported cases, (b) The cumulative lab-confirmed cases rate in
Nottingham city together with the associated three fuzzy sets,
(c) The number of days passed after the UK’s national lock-
down (23/03/2020) and its associated three fuzzy sets, (d) The
daily test rates and two illustrative fuzzy sets for non-singleton
fuzzification of the data (here, the daily cases). The less the
tests, the more the uncertainty, the wider the fuzzy set.

• Taking the advantage of the rich data generated during
the pandemic: Unlike most of the epidemiological ap-
proaches, this model is data-driven not mathematical.

• Incorporating the range of uncertainties embedded in the
pandemic data into the model, by means of designing
non-singleton fuzzy logic systems.

• Extending the classical rule-based fuzzy systems to in-
clude geo-referenced data required by the pandemic data.

Based on the above ideas, a conceptual model is outlined
and a simplified model is designed in order to showcase how to
locally realise the model. The simplified model is driven by the
official data of a limited geographical area in Nottinghamshire,
UK. Further model development in the future has the potential
to act as an uncertain decision support systems (UDSS) in
controlling the pandemic in future outbreaks.
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