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ABSTRACT

This paper investigates the effectiveness and implementa-
tion of modality-specific large-scale pre-trained encoders for
multimodal sentiment analysis (MSA). Although the effec-
tiveness of pre-trained encoders in various fields has been
reported, conventional MSA methods employ them for only
linguistic modality, and their application has not been inves-
tigated. This paper compares the features yielded by large-
scale pre-trained encoders with conventional heuristic fea-
tures. One each of the largest pre-trained encoders publicly
available for each modality are used; CLIP-ViT, WavLM,
and BERT for visual, acoustic, and linguistic modalities,
respectively. Experiments on two datasets reveal that meth-
ods with domain-specific pre-trained encoders attain better
performance than those with conventional features in both
unimodal and multimodal scenarios. We also find it better
to use the outputs of the intermediate layers of the encoders
than those of the output layer. The codes are available at
https://github.com/ando-hub/MSA_Pretrain.

Index Terms— Multimodal Sentiment Analysis, Large-
Scale Pre-trained Encoder

1. INTRODUCTION

Multimodal sentiment analysis (MSA) is the technology to
estimate the sentiment of a target speaker from multimodal
information such as visual, acoustic, and linguistic modali-
ties. Since sentimental cues appear in various aspects such
as facial expression, tone, and phrases, MSA performs better
than alternatives using a single modality such as facial ex-
pression recognition [1], speech emotion recognition [2], and
sentiment analysis from text [3].

Most conventional studies have focused on modeling the
interactions of multiple modalities and modality-specific in-
formation. Some aim to model the interactions of short-term
features of each modality [4, 5]. They can use local char-
acteristics across modalities, e.g., facial expression changes
or prosody during a particular word, for enhancing predic-
tion performance. Others extract sequence-level representa-
tions of the speaker’s sentiment in the individual modalities,

then estimate the sentiment level from all of the sequence-
level representations [6, 7]. These representations have been
evaluated against each other to learn modality-invariant and
modality-specific information, with the goal being to improve
robustness against missing information of specific modalities
such as facial occlusion [8,9]. The studies employ heuristic
features and/or the prediction results of the model such as
head pose, gaze, and facial landmarks.

Recently, several MSA studies have utilized large-scale
pre-trained encoders in addition to developing model struc-
tures [10-13]. The pre-trained encoder is a part of the model
trained in other tasks known as upstream tasks. The advan-
tage of the pre-trained encoder is that it enables the transfer
of common knowledge of upstream tasks, which yields better
cues for a target downstream task compared to training from
scratch. It has also been reported that a larger pre-trained en-
coder trained on a large amount of upstream data offers better
performance in downstream tasks [14, 15]. Large-scale pre-
training encoders have significantly enhanced various down-
stream tasks in visual, acoustic, and linguistic modalities [16—
18]. Though the introduction of the pre-trained encoder has
improved MSA performance, the conventional studies suffer
from two omissions. First, they employ the large-scale pre-
trained encoder only in linguistic modality, not in visual and
acoustic modalities. Second, how to apply the pre-trained
encoders has not been investigated. Some studies use the
weighted sum results of the hidden states extracted from each
layer of the pre-trained encoder for speech and speaker recog-
nition [17] since it is empirically known that different knowl-
edge is extracted in the different layers in the pre-trained en-
coder [19,20]. However, the previous work employed only
the output of the final layer of the pre-trained model, which
may be less effective for MSA than the use of the hidden
states of the intermediate layers.

This paper investigates the following two research ques-
tions: (i) Are the features based on the modality-specific pre-
trained encoder more effective than the conventional features
in multimodal, and even unimodal, scenarios? (ii) How to ap-
ply the modality-specific pre-trained encoders? Three large-
scale pre-trained encoders that are currently available for each
modality are examined; CLIP Vision Transformer (ViT) [16],
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WavLM [17], and BERT [18] for visual, acoustic, and lin-
guistic modalities, respectively. This paper introduces a sim-
ple sequence-level cross-modal model, Unimodal Encoders
and Gated Decoder (UEGD), which enables comparison of
multimodal and unimodal performances on the same model
structure. We evaluate three types of representations from
the pre-trained encoders that have been used in other down-
stream tasks; the output, each of the intermediate outputs,
and a weighted sum of the intermediate outputs. Experiments
on two public datasets, CMU-MOSI [21] and CMU-MOSEI
[22], reveal the answers to our research questions: (i) Large-
scale pre-trained encoders improve sentiment analysis per-
formance in both unimodal and multimodal scenarios. The
UEGD model with pre-trained encoders achieves state-of-the-
art performance in regression tasks on CMU-MOSEL It is
also found that the pre-trained encoder is particularly effec-
tive in the acoustic modality. (ii) Using one of the late middle
intermediate layers of the pre-trained encoder yield better per-
formance than the final layer output and the weighted sum of
the intermediate layer outputs.

2. RELATED WORK

2.1. Multimodal Sentiment Analysis

The conventional MSA methods can be categorized into two
approaches; early-fusion and late-fusion.

The early-fusion approach aims to capture interactive in-
formation from low-level features such as frame-level fea-
tures in visual and acoustic modalities and word-level features
in linguistic modality. Multimodal Transformer (MulT) em-
ploys multiple crossmodal transformers to capture bi-modal
interactions [5]. Multimodal Adaptation Gate (MAG) focuses
on integrating linguistic features with other modalities, visual
and acoustic factors, by using a gating structure in addition to
the cross-modal self-attention [10, 11]. The advantage of this
approach lies in capturing local characteristics across modal-
ities. However, it can only be used when two or more modal-
ities are available.

Late-fusion integrates utterance-level representations
of modalities to predict sentiment. Tensor Fusion Net-
work (TFN) explicitly models uni-, bi-, and tri-modal inter-
actions as outer products of utterance-level embeddings [6].
Modality-Invariant and -Specific Representations (MISA)
extract modality-invariant/-specific utterance-level repre-
sentations by introducing similarity and difference losses of
representations [12]. Self-Supervised Multi-task Multimodal
sentiment analysis (Self-MM) jointly learns multimodal and
unimodal subtasks from utterance-level representations to
supplement modality-specific information [13].

The MSA model in this paper uses a late-fusion approach
since it enables performance comparisons in unimodal and
multimodal scenarios on the same model structure.

2.2. Large-Scale Pre-Trained Encoders

Large-scale pre-trained encoders have received significant at-
tention in recent years. In this framework, an upstream model
is trained by a large amount of training data, then a small
amount of labeled data is used to adapt downstream tasks in
combination with a part of the upstream model. The tasks that
do not require human annotation, such as contrastive learn-
ing [23] or self-supervised learning [15], are used as the up-
stream task. It has been reported that larger models trained
by large amounts of upstream data show higher performance
in many downstream tasks. Pre-trained encoders comprising
a stack of multiple transformer encoders [24] are often used.
This approach was first used with great success in natural lan-
guage processing [18, 25] and is now widely used in com-
puter vision [16] and speech processing [17, 19]. It has been
empirically reported that low-level features are extracted in
the layers closer to the input, e.g., phrase-level information
in linguistic encoder, and high-level features are obtained in
the layers closer to the output like long-distance dependency
information [17,20].

This work employs the pre-trained models that are some
of the largest and publicly available ones; CLIP-ViT [16],
WavLM [17], and BERT [18] in visual, acoustic, and linguis-
tic modalities, respectively. CLIP-ViT extracts an image em-
bedding from a single image, while WavLM and BERT yield
sequence-level embeddings from a series of an audio wave-
form and word tokens.

3. MULTIMODAL SENTIMENT ANALYSIS BY
MODALITY-SPECIFIC PRE-TRAINED ENCODERS

3.1. Model Structure

Let S,, S,, S; be input data of visual, acoustic, and linguis-
tic modalities, respectively, and y be the corresponding sen-
timent value of the utterance. Multimodal sentiment analy-
sis is defined as the regression task of determining y from
S R Sa7 Sl’
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where § is the predicted sentiment value, f(-) is the regres-
sion function determined by the regression model, and © is a
parameter set of the regression model.

This paper uses Unimodal Encoders and Gated De-
coder (UEGD) as the regression model, see Fig. 1. The
inputs of the UEGD model are modal-dependent low-level
features X, X,, X; extracted from S,,S,,S; with pre-
trained encoders, see Section 3.2 for details. UEGD extracts
utterance-level embeddings of each modality z,, 24, 2,

zm = UnimodalEncoder (Xm;Q,(ﬁ)) , )

where m € {v,a,l} and UnimodalEncoder(-) is a projec-
tion function from low-level features to the utterance-level
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Fig. 1: Overview of the Unimodal Encoders and Gated De-
coder (UEGD) model.

embedding in each modality. 97(,2) is a set of parameters of

the unimodal encoder. z,, 24, z; € RF and F are dimensions
of the embeddings. The unimodal encoder consists of Fully-
Connected (FC) and Self-Attentive (SA) pooling layers. SA
pooling layer allows hidden vectors having specific intervals
in the utterance-level features to be strongly reflected, which
is desirable in sentiment analyses since sentiment cues will
appear in limited regions of input data.

The utterance-level embeddings are integrated and pro-
jected by the gated decoder to yield the predicted result,

) = GatedDecoder (zv, Zay 215 H(d)> , 3)

where GatedDecoder(-) is a function projecting the estimated
sentiment values from the embeddings. (% is a set of param-
eters of the gated decoder. The gated decoder has a gate layer
that integrates the embeddings by the weighted sum,

Qm =0 (Wm [zv; Za; zl] =+ bm) ) (€]
= Y awee ©
me{v,a,l}

where «, represents the gate weight of the specific modality
m calculated by the supervector concatenated by embeddings
of all modalities. {W,,,b,,} € 0¥ is the set of weight and
bias parameters. o(-) is a sigmoid function that constraints the
gate weight to lie between O to 1. The integrated embedding 2
is input to the FC layers to obtain . One of the advantages of
the gated decoder is that it allows quantifying the contribution
of each modality to the prediction result as the gate weight!.
The model parameters © = {91(,6), Ht(f), 91(6), 6@} are op-
timized by L1 loss of ground truth y and the predicted result

!In the preliminary experiments, the gate fusion performed the same as
the concatenation of the utterance-level embeddings.
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Fig. 2: The weighted sum of the pre-trained encoder outputs.

Table 1: The numbers of clips in the datasets.

# Train # Valid. # Test | # Total
CMU-MOSI 1284 229 686 2199
CMU-MOSEI | 16326 1871 4659 | 22856

7. Note that all the modality-specific pre-trained encoders are
frozen during training since they have so many parameters
that making them trainable would lead to overfitting.
Another advantage of the UEGD model is that it can be
used for unimodal as well as multimodal cases on the same
structure. In the case of unimodal input, the utterance-level
embeddings of the unused modalities z,, are set to 0 € R,
Experiments have confirmed that the gate weights of the
unused modalities approach zero, which means the UEGD
model evaluates sentiment from specific unimodal inputs.

3.2. Feature Extraction with the Pre-Trained Encoder

Three types of the extracted features X, yielded by each of
the modality-specific pre-trained encoders are investigated;
the output, any intermediate output, and a weighted sum of
the intermediate outputs. The first two represent the output
vectors of the final layer or the intermediate layers of the
pre-trained encoder, respectively. The weighted sum uses the
weighted sum of the hidden states extracted from each layer
of the pre-trained model as reported in the conventional work
of [17], see Fig. 2. The weights of the intermediate layers are
parameters that are optimized simultaneously with the param-
eters of the UEGD model by the labeled data.

4. EXPERIMENTS

4.1. Datasets

Two public multimodal datasets were used in the experiments;
CMU-MOSI [21] and CMU-MOSEI [22]. Both contain short
clips from YouTube videos with sentiment labels given by hu-
man annotators. Each clip contains only one person and an
utterance of a few seconds. The label takes values from -3 to



+3. The total numbers of videos are 98 and 3178 on CMU-
MOSI and CMU-MOSEI, respectively, which almost match
the numbers of speakers. The datasets were divided into train-
ing, validation, and test subsets as in the conventional studies
[12, 13]. The numbers of clips are shown in Table 1.

4.2. Setup

The pre-trained encoders of the individual modalities were
as follows. CLIP ViT-L/14*, WavLM LargeS, and BERT-
Large-uncased4 were used in visual, acoustic, and linguistic
modalities, respectively. The training data consisted of 400 M
image-text pairs collected from the Internet for CLIP ViT,
94k hours of speech from audiobooks, podcasts and meet-
ings for WavLM, 3.3 B words from Wikipedia and books.
The numbers of hidden layers and embedding sizes were, for
all encoders, 24 and 1024, respectively. Face detection by
MTCNN [26] was applied to get a 256 x256-pixel face image
before extracting visual embeddings. For visual modality, the
outputs of the [class] token position were used as the pre-
trained encoder outputs for each frame. Face detection and
visual feature extraction were applied at 3 fps as in conven-
tional visual feature extraction [6,22]. The frame shift length
of the audio features yielded by the encoders was originally
20 ms and subsampled to 1/10 to get 5 fps features.

Two sets of the conventional features were used: those
the same as [27]° and [13]%. The former is composed of
35-dimensional FACET facial expression analysis results as
visual, 74-dimensional COVEREP hand-crafted features as
acoustic, and 300-dimensional GloVe embeddings as linguis-
tic features. The latter have the same visual and acoustic fea-
tures and 768-dimensional BERT-Base output embeddings as
linguistic features. As in the previous work, only 20- and 5-
dimensional features were used as the visual and acoustic fea-
tures in CMU-MOSI.

The compared features from the domain-specific pre-
trained encoders were the output (Enc. output), the combina-
tions of the single best of the intermediate outputs (Enc. mid-
best), and the weighted sum of the intermediate outputs (Enc.
weighted). According to the correlation coefficient of the
validation set in the unimodal scenario described in Sec-
tion 4.3.2, we used the 15th, 21st, and 20th intermediate
layers of visual, acoustic, and linguistic encoders respectively
as Enc. mid-best in CMU-MOSI, while 19 th, 21 st, and 21 st
in CMU-MOSEI.

The hyper-parameters of the proposed UEGD model were
as follows. The uni-modal encoder is composed of a fully-
connected layer with 256 hidden units, self-attentive pooling
with 4 heads, and a fully-connected layer with 128 hidden
units, i.e., the size of the utterance-level embedding was 128.

Zhttps://github.com/openai/CLIP
3https://github.com/microsoft/unilm/tree/master/wavim
“https://pypi.org/project/pytorch-pretrained-bert/
Shttps://github.com/A2Zadeh/CMU-MultimodalSDK
Shttps://github.com/thuiar/MMS A/tree/master/src/MMSA

The gated decoder consisted of a gating layer and two fully-
connected layers with 128 and 1 hidden units, respectively.
We used the above hidden units in CMU-MOSEI and half
of them in CMU-MOSI because the amount of the labeled
training data was limited in CMU-MOSI. Layer normaliza-
tion and ReLU activation functions were applied after all
fully-connected layers except for the output of the uni-modal
encoder and the multimodal decoder. The dropout rate was
0.2. Batchsize was 16. We used the Adam optimizer, and
the learning rate was 0.0001 with warmup and cosine an-
nealing. Early stopping was applied via average loss of the
validation set. In the training step, masking was applied to a
maximum of 20% of the time and feature dimensions as in
SpecAugment [28] to prevent overfitting. We employed the
same evaluation metrics as the conventional studies: Mean
Absolute Error (MAE), pearson correlation coefficient (Corr),
Accuracy (Acc), and Weighted F1 score (F-score). The last
two were the results of two-class classification tasks that
predict negative/non-negative or negative/positive (exclude
zero). In all experiments, we ran trials five times; the average
performance is taken as the final result.

4.3. Results
4.3.1. Evaluations of the Multimodal Model

Prediction performances by the conventional methods and the
UEGD models with the conventional and pre-trained encoder
output-based features are shown in Table 2. Compared to
the UEGD models, the encoder-based features showed better
performances in MAE and Corr on both datasets. Further-
more, all the encoder-based results with the UEGD models
achieved better MAEs and correlation results than the con-
ventional methods on CMU-MOSEI, even though they were
based on a simple model and loss function. On the other
hand, the proposed method was inferior to several conven-
tional methods on CMU-MOSI. This indicates that the pro-
posed UEGD model may not be optimized for small training
data. For example, MAG [10] is explicitly designed to use the
linguistic features mainly for prediction, while the proposed
method has to learn such knowledge from the training data,
which is difficult if the training data is limited. From these
results, we consider that pre-trained encoders are more effec-
tive for multimodal sentiment analysis than the conventional
features, especially in the case of a large amount of labeled
training data.

The contributions of the individual modalities were also
compared for both the conventional and the encoder-based
features from the gate weights of the UEGD model. The dis-
tributions of the gate weights in CMU-MOSEI are shown in
Fig. 3. The gate weights of the acoustic modality using pre-
trained outputs were distributed at higher values than those
yielded by the conventional features. This indicates that there
was an improvement in the acoustic modality features, which
results in better MSA performance.



Table 2: Performance of the multimodal models. In the Feature column, Conv and Conv-BERT are sets of the conventional
features including GloVe and BERT-Base features from linguistic modality, respectively. In Acc-2 and F-Score, the left of /”
is “negative/non-negative” score and the right is “negative/positive” performance. Results of T, ¥ and ¢ are from [12], [10],

and [13], respectively.

CMU-MOSI CMU-MOSEI
Feature MAE| Corrt Acc-2tT F-Scoret | MAE| Corrt  Acc-21T  F-Score?
TEN [6]7 Conv 0.970  0.633 73.9/- 73.4/- - - -/- -/-
Conv-BERT 0.901  0.698 -/80.8 -/80.7 0.593  0.700 -/82.5 -/82.1
MulT [5]* Conv 0.871  0.698 -/83.0 -/82.8 0.580  0.703 -/82.5 -/82.3
Conv-BERT 0.861  0.711 81.5/84.1 80.6/83.9 - - -/83.5 -/82.9
MISA [12]° Conv-BERT 0.804 0.764 80.8/82.1 80.8/82.0 | 0.568 0.724 82.6/84.2 82.7/84.0
MAG [10]° Conv-BERT 0.731  0.789 82.5/84.3 82.6/84.3 | 0.539 0.753 83.8/85.2 83.7/85.1
Self-MM [13]° Conv-BERT 0.713  0.798 84.0/86.0 84.4/86.0 | 0.530 0.765 82.8/85.2 82.5/85.3
UEGD Conv 0953 0.663 76.3/77.4 76.3/77.4 | 0598 0.683 78.9/81.3 79.2/81.0
Conv-BERT 0.886  0.691 78.6/79.9 78.5/79.9 | 0.543 0.748 81.2/84.6 81.7/84.5
Enc. output 0.850  0.715 79.4/80.8 79.3/80.8 | 0.519 0.776 82.5/85.8 82.8/85.7
Enc. mid-best | 0.828  0.748 82.0/83.9 82.1/84.0 | 0.506 0.790 82.4/86.1 82.7/86.0
Enc. weighted | 0.818  0.749 80.4/82.3 80.4/82.3 | 0.510 0.785 82.3/85.7 82.7/85.6

Table 3: Performances with single modalities using the UEGD model. Bold means the best performances in each modality.

CMU-MOSI CMU-MOSEI
Modality = Feature MAE| CorrT Acc-2t F-Scoret | MAE| Corrt  Acc-21T  F-Score !
Visual Facet 1431 0.147 54.0/52.9 52.0/51.1 | 0.802 0.278 68.3/66.1 66.1/62.4
Enc. output 1.468  0.033 47.3/455 41.1/39.5 | 0.771 0403 69.6/70.6 69.5/69.4
Enc. mid-best | 1.650 -0.091 44.9/43.4 41.5/40.1 | 0.766  0.424 70.4/72.2 71.0/71.8
Enc. weighted | 1.630 0.074 51.2/50.2 49.7/48.8 | 0.762 0.435 70.7/71.9 71.0/71.3
Acoustic  COVEREP 1.381 0233  55.6/547 54.5/53.8 | 0.829 0.148 70.1/63.4 61.1/52.1
Enc. output 1.326 0326 63.4/629 63.4/63.0 | 0.664  0.587 74.9/76.1 75.0/75.5
Enc. mid-best | 1.098  0.521 70.0/70.9 70.0/71.0 | 0.605 0.666 77.4/80.4 77.9/80.3
Enc. weighted | 1.247  0.406 65.9/66.0 65.8/66.0 | 0.635 0.629 77.0/78.7 77.1/78.1
Linguistic  GloVe 0963  0.634 76.6/7777 76.6/77.77 | 0.616  0.661 78.4/80.1 78.6/79.6
BERT-Base 0913  0.679 78.3/79.6 78.2/79.6 | 0.551  0.742 81.5/84.6 81.9/84.5
Enc. output 0.854  0.715 80.6/82.1 80.6/82.1 | 0.544  0.751 81.5/84.9 81.9/84.9
Enc. mid-best | 0.821  0.746 81.8/83.6 81.8/83.6 | 0.540 0.760 81.7/85.4 82.2/85.3
Enc. weighted | 0.837  0.723 80.0/81.9 80.0/81.9 | 0.539 0.758 81.1/84.9 81.6/84.9
4.3.2. Evaluations of the Unimodal Model ) ;Z J ) :Z T
The prediction results of individual modalities were also com- goe 200
pared. The results are shown in Table 3. Except for visual Ezz Ezz
modality in CMU-MOSI, all the encoder-based features out- . .
performed the conventional features in MAE and corr, espe- Ny e e, et

cially acoustic modality in CMU-MOSEI. With regard to the
three encoder-based features, the output of the intermediate
layers offers the best performance. One possible reason for
the lower performances of the weighted sum is the limited
training data. The amounts of training data for the down-
stream tasks in this work are smaller than those in the previous
work [17], e.g., speech and speaker recognition, which may
lead to overfitting of the weights of the intermediate outputs.

We conducted further analyses of the encoder output
properties and found that the encoder outputs for visual

(a) Conv-BERT (b) Enc. mid-best

Fig. 3: Distributions of the gate weights of the UEGD models
on the CMU-MOSEI dataset.

modality may lead to extraction of speaker information rather
than sentiment. The prediction examples of the clips in the
same videos, i.e., in the same speaker, by the pre-trained en-
coders in visual and acoustic modalities are shown in Fig. 4
and 5, respectively. As shown in Fig. 4, the model with a
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Fig. 4: Prediction examples to the clips in the same video
(speaker) by the pre-trained visual encoder.
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Fig. 5: Prediction examples from the clips in the same video
(speaker) by the pre-trained acoustic encoder.

pre-trained visual encoder yielded similar prediction results
for the same speaker, unlike the pre-trained acoustic encoder.
These characteristics appeared in the objective evaluations,
total- and intra-video variances of the prediction results for
each modality. The results in Table 4 show that the visual
encoder yielded much smaller intra-video variances than ei-
ther the acoustic or linguistic encoder. However, similar
properties were observed in the conventional visual features.
Further investigation including evaluation of other datasets is
required to elucidate the properties of the visual pre-trained
encoder.

Finally, we discuss the characteristics of the intermediate
layer outputs of the pre-trained encoders. The correlation co-
efficients for each intermediate layer in the two datasets are
shown in Fig. 6. The difference in performance of each inter-
mediate layer was small for linguistic modality but significant
for the other two modalities. This may be because sentiment
information appears as word (low-level) features in linguistic
modality, while it appears as action units or speaking styles
which are high-level features in visual and acoustic modal-
ities. For the acoustic modality, the highest accuracy was
achieved when using around the 20th layer in both datasets.
It is considered that it is clearly better to use the middle layer
of the second half of the pre-trained encoder than the out-
put of the acoustic modality. For the visual modality, the
performances were almost flat after the 9 th layer of the en-
coder on CMU-MOSEI. This result suggests that there is no
intermediate layer strongly associated with sentiment, at least
for CLIP ViT-L. Based on these results, best performance is
likely to be achieved with the outputs of the second half of
the domain-specific pre-trained encoders, especially for the
acoustic modality.

Table 4: Total and intra-video variances of the predicted val-
ues. The conventional linguistic feature was BERT-Base.

CMU-MOSI | CMU-MOSEI

Modality | Total Intra | Total Intra

Conv. Visual 0.661 0.430 | 0.060 0.014
Acoustic | 0.351 0.239 | 0.006 0.004
Linguistic | 2.009 1.606 | 0.737 0.427

Enc.  Visual 0.984 0353 | 0.230 0.016
Acoustic 1412 1.178 | 0.677 0.361
Linguistic | 2.005 1.612 | 0.750 0.414

Ground Truth 2523 1.775 | 1.229 0.606
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Fig. 6: Performances of the individual intermediate layers of
the pre-trained encoders.

5. CONCLUSION

This paper investigated the effectiveness and implementa-
tion of domain-specific large-scale pre-trained encoders for
MSA. The regression model called UEGD was employed to
compare the features in unimodal and multimodal scenarios.
Three types of features from large-scale pre-trained encoders
were compared. The findings from the experiments are as
follows. First, the large-scale pre-trained encoder yielded
improved sentiment analysis performance in both unimodal
and multimodal prediction models when a large amount of
labeled training data was available. Second, the pre-trained
encoder is particularly effective for acoustic modality. Third,
the second half of any of the pre-trained encoders was most
effective for MSA, rather than the output. Future work in-
cludes further comparisons with other pre-trained encoders
on other MSA datasets and the development of a multimodal
decoder that can effectively utilize the pre-trained encoders.
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