
ar
X

iv
:2

00
6.

14
94

1v
4

 [
ee

ss
.A

S]
 1

8
N

ov
 2

02
0

STREAMING TRANSFORMER ASR WITH BLOCKWISE SYNCHRONOUS BEAM SEARCH

Emiru Tsunoo1, Yosuke Kashiwagi1, Shinji Watanabe2

1Sony Corporation, Japan
2Johns Hopkins University, USA

ABSTRACT

The Transformer self-attention network has shown promising perfor-

mance as an alternative to recurrent neural networks in end-to-end

(E2E) automatic speech recognition (ASR) systems. However,

Transformer has a drawback in that the entire input sequence is re-

quired to compute both self-attention and source–target attention. In

this paper, we propose a novel blockwise synchronous beam search

algorithm based on blockwise processing of encoder to perform

streaming E2E Transformer ASR. In the beam search, encoded fea-

ture blocks are synchronously aligned using a block boundary detec-

tion technique, where a reliability score of each predicted hypothesis

is evaluated based on the end-of-sequence and repeated tokens in the

hypothesis. Evaluations of the HKUST and AISHELL-1 Mandarin,

LibriSpeech English, and CSJ Japanese tasks show that the proposed

streaming Transformer algorithm outperforms conventional online

approaches, including monotonic chunkwise attention (MoChA),

especially when using the knowledge distillation technique. An

ablation study indicates that our streaming approach contributes to

reducing the response time, and the repetition criterion contributes

significantly in certain tasks. Our streaming ASR models achieve

comparable or superior performance to batch models and other

streaming-based Transformer methods in all tasks considered.

Index Terms: speech recognition, end-to-end, Transformer, self-

attention network, knowledge distillation

1. INTRODUCTION

End-to-end (E2E) automatic speech recognition (ASR) has been at-

tracting attention as a method for directly integrating acoustic mod-

els and language models (LMs) because of its simple training and

efficient decoding procedures. In recent years, various models have

been studied, such as connectionist temporal classification (CTC)

[1–3], attention-based encoder–decoder models [4–6], their hybrid

models [7], and the RNN-transducer [8, 9]. Transformer [10] has

been successfully introduced into E2E ASR by replacing RNNs [11–

13], and it outperforms bidirectional RNN models in most tasks [14].

Transformer has multihead self-attention network (SAN) layers and

source–target attention (STA) layers, which can leverage a combina-

tion of information from completely different positions of the input.

However, similarly to bidirectional RNN models [15], Trans-

former has a drawback in that the entire utterance is required to com-

pute the attentions, making its use in streaming ASR systems diffi-

cult. In addition, the memory and computational requirements of

Transformer grow quadratically with input sequence length, which

makes it difficult to apply to long speech utterances. These prob-

lems generally appear when we use SAN, and various works have

been recently carried out to tackle these problems for SAN-based

acoustic modeling, CTC, and transformer toward streaming ASR

[11, 16–18]. These approaches simply introduce blockwise process-

ing for the SAN layers. Miao et al. [19] proposed using the previ-

ous chunk, inspired by Transformer XL [20]. Furthermore, context-

aware inheritance mechanism is also proposed [21]. In that ap-

proach, a context embedding vector handed over from the previously

processed block helps encode not only local acoustic information,

but also global linguistic, channel, and speaker attributes.

In addition to the aforementioned blockwise SAN processing,

to realize entire streaming ASR for attention-based models, block-

wise processing for STA networks is also required. In [16], a trig-

gered attention mechanism was introduced to realize this. How-

ever, it requires a complicated training procedure using CTC forced

alignment. Monotonic chunkwise attention (MoChA) [22] is a pop-

ular approach to achieve online processing [19, 23–26]. However,

MoChA degrades accuracy [24, 26], and it is also difficult to control

the latency within an acceptable range.

In this paper, we propose a novel blockwise synchronous beam

search algorithm for streaming Transformer to provide an alterna-

tive to the MoChA or triggered attention based approaches. The

main idea of this algorithm is based on our newly introduced block

boundary detection (BBD) technique for decoding after the con-

textual block encoder used in [21]. The decoder receives encoded

blocks one by one from the contextual block encoder. Then, each

block is decoded synchronously until an unreliable prediction oc-

curs. Predictions are evaluated on the fly using BBD, where a re-

liability score of each prediction is computed based on the end-of-

sequence token, “〈eos〉,” and a repetition of a token. Once an unreli-

able prediction occurs, the decoder waits for the encoder to finish the

next block. The main contributions of this paper are summarized as

follows. 1) A blockwise synchronous beam search algorithm using

BBD is proposed, which is incorporated with the contextual block

processing of the encoder in CTC/attention hybrid decoding scheme.

2) Knowledge distillation [27–29] is performed on the streaming

Transformer, guided by the original batch Transformer. 3) The pro-

posed streaming Transformer algorithm is compared with conven-

tional approaches including MoChA. The results indicate our ap-

proach outperforms them in the HKUST [30] and AISHELL-1 [31]

Mandarin, LibriSpeech [32] English, and CSJ [33] Japanese tasks.

4) The impact of each factor in the proposed blockwise synchronous

beam search on latency is evaluated through an ablation study.

2. RELATION WITH PRIOR WORK

Among the various available approaches for streaming processing

in Transformer, such as time-restricted Transformer [16, 17], Miao

et al. [19] adopted chunkwise self-attention encoder (Chunk SAE),

which was inspired by transformer XL [20], where not only the cur-

rent chunk but also the previous chunk are used for streaming en-

coding. Although this encoder is similar to that in [21, 25], in our

case, not only the previous chunk but also a long history of chunks

is efficiently referred to by introducing context embeddings.

http://arxiv.org/abs/2006.14941v4

Tian et al. [34] applied a neural transducer [35] to the syn-

chronous Transformer decoder, which decodes sequences in a sim-

ilar manner to the approach proposed in this paper. However, the

synchronous Transformer has to be trained using a special forward–

backward algorithm similarly to the training of a neural transducer

using dynamic programming alignment. In this paper, the proposed

beam search algorithm does not require any additional training con-

straints. Our general decoding algorithm is applied to the parameters

as they are. Whereas in [34] the authors only use a 〈eos〉 token to

synchronously shift the processing blocks, we also take into account

a repetition of a token, which significantly improves performance in

the LibriSpeech and CSJ tasks.

3. STREAMING TRANSFORMER ASR

3.1. Transformer ASR

Our baseline Transformer ASR follows that described in [14], which

is based on an encoder–decoder architecture. An encoder transforms

a T -length speech feature sequence x = (x1, . . . , xT) to an L-

length intermediate representation h = (h1, . . . , hL), where L ≤ T
owing to downsampling. Given h and previously emitted charac-

ter outputs y0:i−1 = (y0, . . . , yi−1), a decoder estimates the next

character yi.
The encoder consists of two convolutional layers with stride

2 for downsampling, a linear projection layer, and a positional

encoding layer, followed by Ne encoder layers and layer normal-

ization. Each encoder layer has a multihead SAN followed by

a position-wise feedforward network, both of which have resid-

ual connections. In each SAN, attention weights are formed from

queries (Q ∈ R
tq×d) and keys (K ∈ R

tk×d) and are applied to

values (V ∈ R
tv×d) as

Attention(Q,K,V) = softmax

(

QKT

√
d

)

V, (1)

where typically d = dmodel/M for the number of heads M . We use

multihead attention, denoted as the MHD(·) function, as follows:

MHD(Q,K,V) = Concat(head1, . . . , headM)Wn
O, (2)

headm = Attention(QW
n
Q,m,KW

n
K,m,VW

n
V,m). (3)

In (2) and (3), the nth layer is computed with projection matrices

Wn
Q,m ∈ R

dmodel×d, Wn
K,m ∈ R

dmodel×d, Wn
V,m ∈ R

dmodel×d,

and Wn
O ∈ R

Md×dmodel . For all the SANs in the encoder, Q, K,

and V are the same matrices, which are the inputs of each SAN. The

position-wise feedforward network is a stack of linear layers.

The decoder predicts the probability of the following character

from the previous output characters y0:i−1 and the encoder output

h, i.e., p(yi|y0:i−1,h). The character history sequence is converted

to character embeddings. Then, Nd decoder layers are applied, fol-

lowed by linear projection and the Softmax function. The decoder

layer consists of an SAN and an STA, followed by a position-wise

feedforward network. The first SAN in each decoder layer applies

attention weights to the input character sequence, where the input

sequence of the SAN is set as Q, K, and V. Then, the subsequent

STA attends to the entire encoder output sequence by setting K and

V to be h.

Transformer can leverage a combination of information from

completely different positions of the input. It requires the entire

speech utterance for both the encoder and the decoder; thus, they

are processed only after the end of the utterance, which causes a

huge delay. To realize a streaming ASR system, both the encoder

and decoder have to be processed online synchronously.

Encoder
Layer

Encoder
Layer

Encoder
Layer

Encoder
Layer

Encoder
Layer

Encoder
Layer

Encoder
Layer

Encoder
Layer

Encoder
Layer

…

…

…

…

…Downsampled

inputs

Context

embedding

Encoder

layers (�� �)

Outputs (�)

��

�� �	
�

�
 ��

�� �� ��

Fig. 1. Context inheritance mechanism of the encoder

3.2. Contextual Block Processing of the Encoder

A simple way to process the encoder online is through blockwise

computation, as in [11, 16–19, 35]. However, the global channel,

speaker, and linguistic context are also important for local phoneme

classification. A context inheritance mechanism for block process-

ing was proposed in [21] by introducing an additional context em-

bedding vector. As shown by the tilted arrows in Fig. 1, the con-

text embedding vector is computed in each layer of each block and

handed over to the upper layer of the following block. Thus, the SAN

in each layer is applied to the block input sequence using the context

embedding vector. A similar idea was also proposed in image and

natural language processing around the same time in [36].

Note that the blocks can overlap. In [21], the authors originally

proposed a half-overlapping approach, where the central frames of

block b, hb, are computed using the blocked input ub, which in-

cludes past frames as well as looking ahead for future frames. Typ-

ically the numbers of frames used for left/center/right in [21] are

{Nl, Nc, Nr} = {4, 8, 4}, where the frames are already downsam-

pled by a factor of 4. This can be easily extended to use more frames,

such as {Nl, Nc, Nr} = {16, 16, 8}, which are equivalent to the pa-

rameters in [19].

3.3. Blockwise Synchronous Beam Search of the Decoder

The original Transformer decoder requires the entire output of the

encoder h. Thus, it is not suitable for streaming processing as is.

In [25], the authors proposed using MoChA [22], which was tai-

lored for STA. However, accuracy significantly drops when MoChA

is applied to decoder layers; this was also observed in other stud-

ies [24, 26]. In addition, there is no guarantee that latency stays

within established bounds. To avoid these problems, we propose a

novel blockwise synchronous beam search algorithm.

3.3.1. Conventional Beam Search of Attention-based ASR

The ordinary beam search with label synchronous decoding of

attention-based ASR can be formulated as a problem to find the

most probable output sequence ŷ given all the encoded features

h1:B = (h1, . . . ,hB) = h:

ŷ = arg max
y∈V∗

log p(y|h1:B), (4)

where p(y|h1:B) is computed by the decoder, V∗ represents all pos-

sible output sequences, and ŷ is found via a beam search technique.

Let Ωi be a set of partial hypotheses of length i, and Ω0 be ini-

tialized with one hypothesis with the start-of-sequence token, y0 =
〈sos〉, at the beginning of the beam search. Until i = Imax, each

partial hypothesis in Ωi−1 is expanded by appending possible to-

kens, i.e., y0:i = (y0:i−1, yi) where y0:i−1 is a partial hypothesis

in Ωi−1. Then, new hypotheses are stored in Ωi and pruned with

beam width K, so that only the top-K scored hypotheses survive

(|Ωi| = K).

Ωi = SearchK(Ωi−1,h1:B) (5)

The score of partial hypothesis y0:i ∈ Ωi is accumulated in the log

domain as

α(y0:i,h1:B) =
i

∑

j=1

log p(yj |y0:j−1,h1:B). (6)

In a conventional beam search in attention-based ASR, if yi is 〈eos〉,
the hypothesis y0:i is added to Ω̂, which denotes a set of completed

hypotheses. Finally, ŷ is obtained by

ŷ = arg max
y∈Ω̂

α(y,h1:B). (7)

3.3.2. Blockwise Synchronous Beam Search

Since the decoding problem for ASR does not depend on far-future

context information, with a sufficiently high number of blocks b(<
B), we assume it can ignore future encoded blocks hb+1:B and the

following approximation is satisfied.

log p(yi|y0:i−1,h1:B) ≈ log p(yi|y0:i−1,h1:b) (8)

The approximation is more valid when the decoder states attend to

the encoded features more locally within b blocks. Thus, the beam

search is approximately carried out with the limited features encoded

so far (h1:b). While (6) is synchronous to output index i, it can be

rewritten to be also synchronous to encoded block b, as

α(y0:i,h1:B) ≈
B
∑

b=1

Ib
∑

j=Ib−1+1

log p(yj |y0:j−1,h1:b), (9)

where Ib is an index boundary, which is the last output index for the

number of blocks b that satisfies the approximation (8), and I0 = 0.

The main idea of this paper is to find appropriate index boundary Ib
during beam search.

3.3.3. Block Boundary Detection

When a hypothesis is longer than can be supported by the current

encoded data, such a hypothesis is unreliable, because the approx-

imation (8) no longer holds. In such cases, the decoder tends to

struggle with two common errors in attention-based ASR described

in [7]:

1. It prematurely predicts 〈eos〉 as the attentions reach the end

of insufficient encoder blocks.

2. It predicts a repeated token because it attends to a position

that has already been attended.

he
<sos>

his
�

clasp

clapp

grasp
climb
�

ed

ed
ed

his

his
his

ed his

hands

hand
arms

hands
hands

� � �

he
<sos>

his
�

clasp

clapp

grasp
climb
�

ed

ed
ed

his

his
his

ed his

hands
hand
arms

hands
hands

� � �

(a)

(b) his

he

hands
<eos>

<eos>

he
<sos>

his

clasp

clapp

grasp
climb
!

ed

ed
ed

his

his
his

ed his

hands

hand
arms

hands
hands

" # $(c) in

upon

on

on

on

% & '

(32 encoder frames)
() *

(48 encoder frames)

Fig. 2. Example of the blockwise synchronous beam search of ”He

clasped his hands on the desk and said” with a beam width of 5

Therefore, we consider a hypothesis that contains 〈eos〉 or a repe-

tition as unreliable with insufficient b encoded blocks. Further, a

hypothesis that has lower score than that of the unreliable hypoth-

esis can also be considered as unreliable. We propose a detection

technique called BBD, where the index boundaries Ib is found by

comparing those scores on the fly.

For convenience, we share the 〈sos〉 token with 〈eos〉 (〈eos〉 =
〈sos〉), so that 〈eos〉 is also regarded as a repeat of the 〈sos〉(= y0)
token. When token yj ∈ y0:i−1 is repeatedly predicted from y0:i−1,

the score is accumulated as log p(yj |y0:i−1,h1:b)+α(y0:i−1,h1:b).
Thus, the highest score among unreliable hypotheses with a repeti-

tion is described as

r(y0:i−1,h1:b) = max
0≤j≤i−1

log p(yj |y0:i−1,h1:b) + α(y0:i−1,h1:b).

(10)

As mentioned above, all the hypothesis with a lower score than

r(y0:i−1,h1:b) is considered to be unreliable. We define a reliabil-

ity score for hypothesis y0:i as follows.

s(y0:i,h1:b) = α(y0:i,h1:b)− r(y0:i−1,h1:b) (11)

Only when s(y0:i,h1:b) > 0, the hypothesis is considered to be

reliable.

As long as the encoder does not reach the end of the input

utterance (b < B), each predicted hypothesis is evaluated using

the reliability score (11). If it finds an unreliable hypothesis with

s(y0:i,h1:b) < 0, we assume that this unreliable hypothesis y0:i

is already longer than current index boundary Ib. Our preliminary

experiments showed that, when one hypothesis y0:i contains such

〈eos〉 or a repetition, most of the other hypotheses within the same

output index i also have the same tendency. Therefore, we can

empirically regard that all the hypotheses in i are not considered to

satisfy (8) if at least one of the top-K hypotheses is unreliable, i.e.,

s(y0:i,h1:b) < 0. In this way, the index boundary Ib is assigned

as the previous output index, i.e., Ib = i − 1, and the decoder

waits for the next block, hb+1, to be encoded. The beam search for

output index i resumes using hypothesis set Ωi−1, given encoded

features h1:b+1. BBD is general so that it is applicable not only to

Transformer but also other architectures such as RNNs.

3.3.4. Example of Blockwise Synchronous Beam Search

Figure 2 is an example of a blockwise synchronous beam search

of the decoder with beam width K = 5. First, the decoder starts

with the first encoded block h1 (length is 32 when {Nl, Nc, Nr} =
{16, 16, 8}). As in Fig. 2-(a), hypotheses are predicted from Ω4 with

the limited encoded block and appended. They are then stored in Ω5

after being pruned.

In Fig. 2-(b), 〈eos〉 appears in the hypotheses, as well as repe-

titions (“hands,” “his,” and “he”). In all cases, the reliability scores

(11) are not greater than 0, because all the hypotheses in top-5 score

contain repetition and the highest one is r(y0:4,h1). Therefore, the

decoder does not store those hypotheses in Ω6. Instead, the decoder

waits for the encoder to output the next block h2 and resumes de-

coding from Ω5 using 48 encoded features h1:2 (Fig. 2-(c)). In this

example, the index boundary is assigned as I1 = 5.

3.3.5. Additional Heuristics

Note that the same repetition will not be evaluated again with b + 1
blocks because the repetition of a token is most likely correct when

it still occurs when sufficient encoder blocks are given. For instance,

“〈sos〉 - he - clasp - ed - his - hands - he” might be correct if it

still occurs with h1:2. Therefore, the hypothesis already evaluated

is stored in a set, ΩR, to prevent it from being reevaluated. In the

example in Fig. 2, all hypotheses in (b) are stored in ΩR. Then, (10)

is rewritten by excluding hypotheses in ΩR as

rΩR
(y0:i−1,h1:b) = max

0≤j≤i−1

(y0:i−1,yj)∈ΩR

log p(yj |y0:i−1,h1:b)

+ α(y0:i−1,h1:b). (12)

The proposed beam search is carried out synchronously as the

encoder finishes each block, and thus streaming decoding in Trans-

former is realized. After the encoder finishes the last block hB , the

beam search continues with all the encoded features h1:B as usual

until the ending criterion is met as described in [7]. The proposed

beam search algorithm is summarized in Algorithm 1.

More conservatively, not only Ωi but also Ωi−1 might be con-

sidered to contain unreliable hypotheses when s(y0:i,h1:b) < 0. In

this conservative case, two steps before the output index is assigned

to the index boundary, i.e., Ib = i−2 instead of Ib = i−1, as in line

14 of Algorithm 1. In the example shown in Figure 2, the algorithm

resumes from hypothesis set Ω4 instead of Ω5. This can reduce er-

rors caused by the insufficient encoded features. However, it leads

to more overlaps in the decoding process, which reduces compu-

tationally efficiency. The effectiveness of conservative decoding is

evaluated in our ablation study in Sec. 4.3.

3.3.6. On-the-fly CTC Prefix Scoring

Decoding is carried out jointly with CTC as in [7]. Originally, for

each hypothesis, the CTC prefix score is computed as

pctc(y0:i|h) = γ
(N)
T (y0:i−1) + γ

(B)
T (y0:i−1), (13)

where the superscripts (N) and (B) denote CTC paths ending with

a nonblank or blank symbol, respectively. Thus, the entire encoded

Algorithm 1 Blockwise synchronous beam search of the decoder

Input: encoder feature blocks hb, total block number B, beam

width K
Output: Ω̂: complete hypotheses

1: Initialize: y0 ← 〈sos〉, Ω0 ← {y0}, ΩR ← {}, b ← 1, I∗ ←
Imax, I0 ← 0

2: while b < B do

3: NextBlock← false
4: for i← Ib−1 + 1 to Ib unless NextBlock do

5: Ωi ← SearchK(Ωi−1,h1:b)
6: for y0:i ∈ Ωi do

7: if s(y0:i,h1:b) ≤ 0 then

8: NextBlock← true
9: ΩR ← ΩR ∪ y0:i // store the hypothesis already

evaluated

10: end if

11: end for

12: if NextBlock then

13: if i ≥ 2 then

14: Ib ← i− 2 // for conservative decoding

15: else

16: Ib ← i− 1
17: end if

18: b← b+ 1 // wait for the next block

19: end if

20: end for

21: end while

22: // ordinary decoding follows to obtain Ω̂ after b = B
23: for i← IB−1 + 1 to Imax unless EndingCriterion(Ωi−1) do

24: Ωi ← SearchK(Ωi−1,h1:B)
25: for y0:i ∈ Ωi do

26: if yi = 〈eos〉 then

27: Ω̂← Ω̂ ∪ y0:i

28: end if

29: end for

30: end for

31: return Ω̂

features h is required for accurate computation. However, in the case

of a blockwise synchronous beam search, computations are carried

out with a limited input length. Therefore, the CTC prefix score is

computed from the blocks that are already encoded as follows:

pctc(y0:i|h1:b) = γ
(N)
Tb

(y0:i−1) + γ
(B)
Tb

(y0:i−1), (14)

where Tb is the last frame of the currently processed block b. When

a new block output hb+1 is emitted by the encoder, the decoder re-

sumes the CTC prefix score computation according to Algorithm 2

in [7]. Equation (14) incurs a higher computational cost as the in-

put sequence becomes long. However, it can be efficiently computed

using a technique described in [37].

3.4. Knowledge Distillation Training

Our preliminary experiments show that parameters trained for the

ordinary batch decoder perform well without significant degrada-

tion when they are directly used in the blockwise synchronous beam

search of the decoder. Therefore, instead of using special dynamic

programming or a forward–backward training method as in [34,35],

we propose applying knowledge distillation [27–29] to the stream-

ing Transformer, guided by the ordinary batch Transformer model

for further improvement.

Table 1. CERs in the HKUST task
Dev Test

Batch processing

Transformer [14] (reprod.) 24.0 23.5

+ SpecAugment 21.2 21.4

Chunk SAE + Batch Dec. [19] (reprod.) 25.8 25.0

CBP-ENC + Batch Dec. [21] 25.3 24.6

+ SpecAugment 22.3 22.1

Streaming processing

CIF + Chunk-hopping [38] – 23.6

CBP-ENC + MoChA Dec. [25]

+ SpecAugment 28.1 26.1

CBP-ENC + BBD (proposed)

+ SpecAugment 22.6 22.6

+ Knowledge Distillation 22.2 22.4

Table 2. CERs in the AISHELL-1 task
Dev Test

Batch processing

Transformer (Ne = 6) [14] (reprod.) 7.4 8.1

CBP-ENC + Batch Dec. (Ne = 6) [21] 7.6 8.4

CBP-ENC + Batch Dec. (Ne = 12) [21] 6.4 7.2

Streaming processing

RNN-T [39] 10.1 11.8

Sync-Transformer (Ne = 6) [34] 7.9 8.9

CBP-ENC + MoChA Dec. [25] 9.7 9.7

CBP-ENC + BBD (Ne = 6, proposed) 7.6 8.5

+ Knowledge Distillation 7.6 8.4

CBP-ENC + BBD (Ne = 12, proposed) 6.4 7.3

Let qtchr(yi|y0:i−1,h) be a probability distribution computed

by a teacher batch model trained with the same dataset, and

p(yi|y0:i−1,h) be a distribution predicted by the student streaming

Transformer model. The latter is forced to mimic the former dis-

tribution by minimizing the cross-entropy, which can be written as

LKD = −
∑

yi∈V

qtchr(yi|y0:i−1,h) log p(yi|y0:i−1,h), (15)

where V is a set of vocabulary. The aggregated loss function for the

attention encoder and decoder is calculated as

Latt,KD = (1− λKD)Latt + λKDLKD, (16)

where λKD is a controllable parameter; typically λKD = 0.5. Then,

this loss is combined with CTC loss as in [7].

Note that the knowledge distillation is only applied to the

encoder–decoder, i.e., the CTC part for the student is trained by

its own. Incorporating with training of the CTC student model

would requires a complicated dynamic-programming-like matching

algorithm, which is beyond the scope of this paper and left for future

work.

4. EXPERIMENTS

4.1. Experimental Setup

We carried out experiments using the HKUST [30] and AISHELL-

1 [31] Mandarin tasks, the English LibriSpeech dataset [32], and

the Japanese CSJ dataset [33]. The input acoustic features were 80-

dimensional filter bank features and the pitch.

For the training process, we used multitask learning with CTC

loss as in [7, 14] with a weight of 0.3. A linear layer was added

to the encoder to project h onto the character probability for CTC.

The Transformer models were trained using the Adam optimizer

Table 3. WERs in the LibriSpeech task (Beam width is 30)
Dev Test

clean other clean other

Batch processing

ContextNet [42] (SOTA) 2.1 4.6 1.9 4.1

Transformer [14] 2.2 5.6 2.6 5.7

Transformer [14] (reprod.) 2.5 6.3 2.8 6.4

w/ Transforemr LM 2.4 5.9 2.7 6.1

CBP-ENC + Batch Dec. [21] 2.7 7.2 2.9 7.3

Streaming processing

CBP-ENC + CTC [21] 3.2 9.0 3.3 9.1

CIF + Chunk-hopping [38] – – 3.3 9.6

Triggered Attention [16] (large, SOTA) 2.6 7.2 2.8 7.3

CBP-ENC + BBD (proposed) 2.5 6.8 2.7 7.1

w/ Transformer LM 2.3 6.5 2.6 6.7

Table 4. CERs in the CSJ task
eval 1 eval 2 eval 3

Batch processing

Transformer [14] (reprod.) 5.0 3.7 4.1

CBP-ENC + Batch Dec [21] 5.3 4.0 4.5

Streaming processing

CBP-ENC + CTC [21] 6.2 4.5 5.2

CBP-ENC + BBD (proposed) 5.3 4.1 4.5

and Noam learning rate decay as in [10]. Decoding was performed

alongside CTC, using the proposed beam search algorithm under the

conservative condition described in Sec. 3.3.5.

The encoder had Ne = 12 layers with 2048 units and the de-

coder had Nd = 6 layers with 2048 units.We set dmodel = 256 and

M = 4 for the multihead attentions. The input block was overlapped

with parameters {Nl, Nc, Nr} = {16, 16, 8} to enable a compari-

son with [19], as explained in Sec. 3.2. We trained the contextual

block processing encoder (CBP-ENC) with the batch decoder. The

parameters for the batch decoder were directly used in the proposed

blockwise synchronous beam search algorithm of the decoder using

BBD for inference.

Training was carried out using ESPNet 1 [40] with the PyTorch

backend.

4.2. ASR Results

4.2.1. HKUST

We used 3655 character classes with a CTC weight of 0.3 and a beam

width of 10. Shallow fusion of a two-layer LSTM LM with 650 units

was applied with a weight of 0.3. For comparison, we implemented

Chunk SAE [19], which is similar to our CBP-ENC approach except

that it does not use the contextual embedding procedure introduced

in Section 3.2. Though we were unable to reproduce the original

score in [19], the implemented model performed reasonably well.

The results are listed in Table 1. By comparing CBP-ENC

with Chunk SAE, we can confirm that our contextual embedding

approach performed better, in both cases where the batch decoder

was used. SpecAugment [41] resulted in further improvement. For

streaming processing, we obtained better performance by combin-

ing CBP-ENC and BBD rather than CBP-ENC and the MoChA

decoder [25]. The knowledge distillation training in Sec. 3.4 fur-

ther improved its performance. The proposed method achieved

state-of-the-art performance as a streaming E2E approach.

1The training and inference implementations are publicly available at
https://github.com/espnet/espnet.

https://github.com/espnet/espnet

Table 5. Ablation study and computational speed comparison with C++ CPU implementation (Beam width is 10)
HKUST CSJ Librispeech (large LM)

CER RTF Response CER (eval1/eval2/eval3) RTF Response WER (clean/other) RTF Response

Average utterance length 4.9s 4.9s 9.1s

Batch Transformer [14] (reprod.) 21.4 0.07 0.31s 5.0% / 3.7% / 4.1% 0.16 0.74s 2.9% / 6.7% 0.36 3.49s

CBP-ENC + Batch Dec [21] 22.1 0.08 0.31s 5.3% / 4.0% / 4.5% 0.17 0.71s 2.8% / 7.4% 0.33 2.81s

CBP-ENC + BBD (proposed) 22.4% 0.09 0.23s 5.3% / 4.1% / 4.5% 0.17 0.52s 3.0% / 7.8% 0.35 1.19s

- conservative decoding 22.8% 0.09 0.19s 5.5% / 4.2% / 4.8% 0.17 0.50s 5.3% / 10.6% 0.35 1.08s

- repetition 25.4% 0.08 0.15s 28.6% / 29.5% / 24.8% 0.17 0.32s 32.3% / 39.8% 0.35 0.71s

4.2.2. AISHELL-1

For this task, 4231 character classes were used with parameters

{CTC weight, beam width, LM weight} = {0.5, 10, 0.7}. To make

a comparison with Sync-Transformer [34] possible, we trained a

smaller Transformer with Ne = 6. The results are shown in Table 2.

Additionally, the results for RNN-T evaluated in [39] are listed.

As can be seen in the results, our approach outperformed both the

MoChA decoder and Sync-Transformer [34], especially when we

applied the knowledge distillation.

4.2.3. LibriSpeech

For LibriSpeech, we adopted byte-pair encoding (BPE) subword to-

kenization [43], which had 5000 token classes. In addition to a large

LM (four-layer LSTM with 2048 units), we evaluated the use of a

Transformer LM (16-layer transformer LM with 2048 units and 8

heads); both were fused with a weight of 0.6. CTC weight and beam

width were set as 0.4 and 30. SpecAugment [41] was also applied

when it was trained.

The results are shown in Table 3. Though we did not use a large

model as in [14, 16], we obtained similar results. The proposed

method achieved better performance than CTC decoding [21] and

continuous integer-and-fire (CIF) online E2E ASR [38], which in-

dicats that our blockwise synchronous beam search also works with

BPE tokenization. Even with the LSTM LM, we also achieved com-

parable performance to state-of-the-art streaming E2E ASR using

triggered attention [16], which was a model twice as large as ours.

Note that there is still room to improve accuracy, since our reproduc-

tion of [14] was not as well tuned as the original paper.

4.2.4. CSJ

CSJ data had 3260 character classes. The parameters were set as

{CTC weight, beam width, LM weight} = {0.3, 10, 0.3}, and a two-

layer LSTM LM with 650 units was fused. SpecAugment [41] was

used for data augmentation. The results are shown in Table 4. The

proposed method outperformed a CTC-based streaming approach

[21], and also did not degrade significantly from the batch Trans-

former.

4.3. Ablation Study and Computational Speed Comparison

We carried out an ablation study to evaluate how each factor con-

tribute to both accuracy and computational efficiency. HKUST, Lib-

riSpeech, and CSJ were used. To evaluate error rates, beam widths

were fixed at 10. To evaluate computational speed, we implemented

the proposed beam search algorithm in C++, and subset of each task

was used. We used Intel Math Kernel Library to perform matrix op-

erations with CPUs. To avoid redundant computation in the decoder,

we applied caching techniques similarly to [44, 45], which reduce

the real-time factor (RTF) of RNN-T computations from 0.89 to 0.61

in [45]. For LibriSpeech, a large LM (four-layer LSTM with 2048

units) was used as described in Sec. 4.2.3. The latency during the

utterance was not evaluated in this study because the alignment be-

tween the input and the output sequence was not provided. The the-

oretical delay was 0.64 seconds because the encoder block shifted

every 16 frames with 4-factor downsampling. Instead, we measured

the response time, which was the time required to finish decoding af-

ter the end of each utterance. RTF and response time were measured

with an 8 core 3.60 GHz Intel i9-9900K processor.

The results are shown in Table 5. The RTFs of the batch Trans-

former were smaller than those of the streaming Transformer for

HKUST and CSJ, because the proposed streaming Transformer pro-

cessed with overlaps. As for LibriSpeech, the RTF of the batch

Transformer was greater than streaming because utterance length

were longer (9.1 s on average), which had a quadratic-order effect.

In addition, only LibriSpeech was used with a larger LM. Therefore,

its response time was greater than that for other tasks. The response

times of the streaming Transformer were shorter for all task owing

to its efficient blockwise beam search. Whereas the differences in

performance were small for the HKUST and CSJ tasks, in which the

utterances were generally short, the relative improvement observed

for the LibriSpeech task was significant due to the longer utterances.

When the decoding process was carried out without the conservative

approach described in Sec. 3.3.5, the error rates slightly increased

for the LibriSpeech because BBD failed to detect the block bound-

ary, while the response times improved. We also performed an ab-

lation study to evaluate the repetition criterion by modifying (10) as

r′(y0:i−1,h1:b) = log p(〈eos〉|yi−1,h1:b) + α(y0:i−1,h1:b),
(17)

which only evaluated 〈eos〉 as in [34, 35]. The results indicate that

the repetition of tokens is an important criterion for the blockwise

synchronous beam search, because the error rates significantly in-

creased without them, dramatically in the CSJ and LibriSpeech

tasks.

5. CONCLUSIONS

We proposed a new blockwise synchronous beam search algorithm

based on a blockwise processing of encoder to achieve streaming

E2E Transformer ASR. A block boundary detection technique was

proposed, where a reliability score is computed based on 〈eos〉 and

repeated tokens in the hypotheses. Using this technique, each pre-

diction is judged as either reliable or unreliable using the current

limited number of blocks from the encoder. If a prediction is deemed

unreliable, the decoder waits for the encoder to finish the next block.

Evaluations of the HKUST and AISHELL-1 Mandarin, LibriSpeech

English, and CSJ Japanese tasks showed that the proposed streaming

Transformer outperforms conventional online approaches including

MoChA, especially when using the knowledge distillation tech-

nique. The algorithm is general so that future work is to apply it also

to the latest architecture such as Conformer [46].

6. REFERENCES

[1] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen

Schmidhuber, “Connectionist temporal classification: la-

belling unsegmented sequence data with recurrent neural net-

works,” in Proc. of 23rd International Conference on Machine

Learning, 2006, pp. 369–376.

[2] Yajie Miao, Mohammad Gowayyed, and Florian Metze,

“EESEN: End-to-end speech recognition using deep RNN

models and WFST-based decoding,” in Proc. of ASRU Work-

shop, 2015, pp. 167–174.

[3] Dario Amodei et al., “Deep Speech 2: End-to-end speech

recognition in English and Mandarin,” in Proc. of 33rd In-

ternational Conference on Machine Learning, 2016, vol. 48,

pp. 173–182.

[4] Jan K. Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,

Kyunghyun Cho, and Yoshua Bengio, “Attention-based mod-

els for speech recognition,” in Proc. of NIPS, 2015, pp. 577–

585.

[5] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals,

“Listen, attend and spell: A neural network for large vocabu-

lary conversational speech recognition,” in Proc. of ICASSP,

2016, pp. 4960–4964.

[6] Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Rohit

Prabhavalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kannan,

Ron J. Weiss, Kanishka Rao, Ekaterina Gonina, et al., “State-

of-the-art speech recognition with sequence-to-sequence mod-

els,” in Proc. of ICASSP, 2018, pp. 4774–4778.

[7] Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R. Hershey,

and Tomoki Hayashi, “Hybrid CTC/attention architecture for

end-to-end speech recognition,” Journal of Selected Topics in

Signal Processing, vol. 11, no. 8, pp. 1240–1253, 2017.

[8] Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton,

“Speech recognition with deep recurrent neural networks,” in

Proc. of ICASSP, 2013, pp. 6645–6649.

[9] Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar, “Exploring

architectures, data and units for streaming end-to-end speech

recognition with RNN-transducer,” in Proc. of ASRU Work-

shop, 2017, pp. 193–199.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polo-

sukhin, “Attention is all you need,” in Proc. of NeurIPS, 2017,

pp. 5998–6008.

[11] Matthias Sperber, Jan Niehues, Graham Neubig, Sebastian

Stüker, and Alex Waibel, “Self-attentional acoustic models,”

in Proc. of Interspeech, 2018, pp. 3723–3727.

[12] Julian Salazar, Katrin Kirchhoff, and Zhiheng Huang, “Self-

attention networks for connectionist temporal classification in

speech recognition,” in Proc. of ICASSP, 2019, pp. 7115–7119.

[13] Yuanyuan Zhao, Jie Li, Xiaorui Wang, and Yan Li, “The

SpeechTransformer for large-scale Mandarin Chinese speech

recognition,” in Proc. of ICASSP, 2019, pp. 7095–7099.

[14] Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori,

Hirofumi Inaguma, Ziyan Jiang, Masao Someki, Nelson En-

rique Yalta Soplin, Ryuichi Yamamoto, Xiaofei Wang, et al.,

“A comparative study on transformer vs RNN in speech appli-

cations,” in Proc. of ASRU Workshop, 2019, pp. 449–456.

[15] Mike Schuster and Kuldip K. Paliwal, “Bidirectional recurrent

neural networks,” Transactions on Signal Processing, vol. 45,

no. 11, pp. 2673–2681, 1997.

[16] Niko Moritz, Takaaki Hori, and Jonathan Le Roux, “Streaming

automatic speech recognition with the transformer model,” in

Proc. of ICASSP, 2020, pp. 6074–6078.

[17] Daniel Povey, Hossein Hadian, Pegah Ghahremani, Ke Li, and

Sanjeev Khudanpur, “A time-restricted self-attention layer for

ASR,” in Proc. of ICASSP, 2018, pp. 5874–5878.

[18] Linhao Dong, Feng Wang, and Bo Xu, “Self-attention

aligner: A latency-control end-to-end model for ASR us-

ing self-attention network and chunk-hopping,” in Proc. of

ICASSP, 2019, pp. 5656–5660.

[19] Haoran Miao, Gaofeng Cheng, Zhang Pengyuan, and

Yonghong Yan, “Transformer online CTC/attention end-to-end

speech recognition architecture,” in Proc. of ICASSP, 2020, pp.

6084–6088.

[20] Zihang Dai, Zhilin Yang, Yiming Yang, William W Co-

hen, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov,

“Transformer-XL: Attentive language models beyond a fixed-

length context,” arXiv preprint arXiv:1901.02860, 2019.

[21] Emiru Tsunoo, Yosuke Kashiwagi, Toshiyuki Kumakura, and

Shinji Watanabe, “Transformer ASR with contextual block

processing,” in Proc. of ASRU Workshop, 2019, pp. 427–433.

[22] Chung-Cheng Chiu and Colin Raffel, “Monotonic chunkwise

attention,” arXiv preprint arXiv:1712.05382, 2017.

[23] Ruchao Fan, Pan Zhou, Wei Chen, Jia Jia, and Gang Liu, “An

online attention-based model for speech recognition,” Proc. of

Interspeech, pp. 4390–4394, 2019.

[24] Kwangyoun Kim, Kyungmin Lee, Dhananjaya Gowda, Junmo

Park, Sungsoo Kim, Sichen Jin, Young-Yoon Lee, Jinsu Yeo,

Daehyun Kim, Seokyeong Jung, et al., “Attention based on-

device streaming speech recognition with large speech corpus,”

in Proc. of ASRU Workshop, 2019, pp. 956–963.

[25] Emiru Tsunoo, Yosuke Kashiwagi, Toshiyuki Kumakura, and

Shinji Watanabe, “Towards online end-to-end transformer au-

tomatic speech recognition,” arXiv preprint arXiv:1910.11871,

2019.

[26] Hirofumi Inaguma, Yashesh Gaur, Liang Lu, Jinyu Li, and Yi-

fan Gong, “Minimum latency training strategies for streaming

sequence-to-sequence ASR,” in Proc. of ICASSP, 2020, pp.

6064–6068.

[27] Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong, “Learn-

ing small-size DNN with output-distribution-based criteria,” in

Proc of 15th Annual Conference of the International Speech

Communication Association, 2014.

[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distill-

ing the knowledge in a neural network,” arXiv preprint

arXiv:1503.02531, 2015.

[29] Liang Lu, Michelle Guo, and Steve Renals, “Knowledge dis-

tillation for small-footprint highway networks,” in Proc. of

ICASSP, 2017, pp. 4820–4824.

[30] Yi Liu, Pascale Fung, Yongsheng Yang, Christopher Cieri,

Shudong Huang, and David Graff, “HKUST/MTS: A very

large scale Mandarin telephone speech corpus,” in Interna-

tional Symposium on Chinese Spoken Language Processing.

Springer, 2006, pp. 724–735.

[31] Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao Zheng,

“AIShell-1: An open-source Mandarin speech corpus and a

speech recognition baseline,” in Oriental COCOSDA, 2017,

pp. 1–5.

[32] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev

Khudanpur, “LibriSpeech: an ASR corpus based on public

domain audio books,” in Proc. of ICASSP, 2015, pp. 5206–

5210.

[33] Kikuo Maekawa, Hanae Koiso, Sadaoki Furui, and Hitoshi Isa-

hara, “Spontaneous speech corpus of Japanese,” in Proc. of the

International Conference on Language Resources and Evalua-

tion (LREC), 2000, pp. 947–9520.

[34] Zhengkun Tian, Jiangyan Yi, Ye Bai, Jianhua Tao, Shuai

Zhang, and Zhengqi Wen, “Synchronous transformers for end-

to-end speech recognition,” in Proc. of ICASSP, 2020, pp.

7884–7888.

[35] Navdeep Jaitly, Quoc V Le, Oriol Vinyals, Ilya Sutskever,

David Sussillo, and Samy Bengio, “An online sequence-to-

sequence model using partial conditioning,” in Proc. of NIPS,

2016, pp. 5067–5075.

[36] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever,

“Generating long sequences with sparse transformers,” arXiv

preprint arXiv:1904.10509, 2019.

[37] Hiroshi Seki, Takaaki Hori, Shinji Watanabe, Niko Moritz, and

Jonathan Le Roux, “Vectorized beam search for ctc-attention-

based speech recognition,” in Proc. of Interspeech, 2019, pp.

3825–3829.

[38] Linhao Dong and Bo Xu, “CIF: Continuous integrate-and-fire

fore end-to-end speech recognition,” in Proc. of ICASSP, 2020,

pp. 6079–6083.

[39] Zhengkun Tian, Jiangyan Yi, Jianhua Tao, Ye Bai, and Zhengqi

Wen, “Self-attention transducers for end-to-end speech recog-

nition,” in Proc. of Interspeech, 2019, pp. 4395–4399.

[40] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki

Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique Yalta So-

plin, Jahn Heymann, Matthew Wiesner, Nanxin Chen, et al.,

“ESPnet: End-to-end speech processing toolkit,” in Proc. of

Interspeech, 2019, pp. 2207–2211.

[41] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu,

Barret Zoph, Ekin D Cubuk, and Quoc V Le, “SpecAugment:

A simple data augmentation method for automatic speech

recognition,” in Proc. of Interspeech, 2019.

[42] Wei Han, Zhengdong Zhang, Yu Zhang, Jiahui Yu, Chung-

Cheng Chiu, James Qin, Anmol Gulati, Ruoming Pang, and

Yonghui Wu, “Contextnet: Improving convolutional neural

networks for automatic speech recognition with global con-

text,” arXiv preprint arXiv:2005.03191, 2020.

[43] Rico Sennrich, Barry Haddow, and Alexandra Birch, “Neural

machine translation of rare words with subword units,” in Proc.

of the Association for Computational Linguistics, 2016, vol. 1,

pp. 1715–1725.

[44] Yanzhang He, Tara N Sainath, Rohit Prabhavalkar, Ian Mc-

Graw, Raziel Alvarez, Ding Zhao, David Rybach, Anjuli Kan-

nan, Yonghui Wu, Ruoming Pang, et al., “Streaming end-

to-end speech recognition for mobile devices,” in Proc. of

ICASSP, 2019, pp. 6381–6385.

[45] George Saon, Zoltán Tüske, and Kartik Audhkhasi,

“Alignment-length synchronous decoding for RNN trans-

ducer,” in Proc. of ICASSP, 2020, pp. 7804–7808.

[46] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Par-

mar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zheng-

dong Zhang, Yonghui Wu, et al., “Conformer: Convolution-

augmented transformer for speech recognition,” arXiv preprint

arXiv:2005.08100, 2020.

	1 Introduction
	2 Relation with Prior Work
	3 Streaming Transformer ASR
	3.1 Transformer ASR
	3.2 Contextual Block Processing of the Encoder
	3.3 Blockwise Synchronous Beam Search of the Decoder
	3.3.1 Conventional Beam Search of Attention-based ASR
	3.3.2 Blockwise Synchronous Beam Search
	3.3.3 Block Boundary Detection
	3.3.4 Example of Blockwise Synchronous Beam Search
	3.3.5 Additional Heuristics
	3.3.6 On-the-fly CTC Prefix Scoring

	3.4 Knowledge Distillation Training

	4 Experiments
	4.1 Experimental Setup
	4.2 ASR Results
	4.2.1 HKUST
	4.2.2 AISHELL-1
	4.2.3 LibriSpeech
	4.2.4 CSJ

	4.3 Ablation Study and Computational Speed Comparison

	5 Conclusions
	6 References

