
HAL Id: hal-01954455
https://inria.hal.science/hal-01954455v1

Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ContAv: a Tool to Assess Availability of
Container-Based Systems

Stefano Sebastio, Rahul Ghosh, Avantika Gupta, Tridib Mukherjee

To cite this version:
Stefano Sebastio, Rahul Ghosh, Avantika Gupta, Tridib Mukherjee. ContAv: a Tool to Assess Avail-
ability of Container-Based Systems. SOCA 2018 - 11th IEEE International Conference on Service
Oriented Computing and Applications, Nov 2018, Paris, France. pp.1-8. �hal-01954455�

https://inria.hal.science/hal-01954455v1
https://hal.archives-ouvertes.fr

ContAv: a Tool to Assess Availability of
Container-Based Systems

Stefano Sebastio∗, Rahul Ghosh†, Avantika Gupta‡ and Tridib Mukherjee§
∗Inria Rennes, France 35042

Email: stefano.sebastio@inria.fr
†American Express Big Data Labs, Bangalore, India 560103

‡Conduent Labs India, Bangalore, India 560103
§Data Science, Play Games24x7, Bangalore, India 560103

Abstract—The momentum gained by the microservice-oriented
architecture is fostering the diffusion of operating system con-
tainers. Existing studies mainly focus on the performance of con-
tainerized services to demonstrate their low resource footprints.
However, availability analysis of densely deployed container-
based solutions is less visited due to difficulties in collecting
failure artifacts. This is especially true when the containers are
combined with virtual machines to achieve a higher security level.
Inspired by Google’s Kubernetes architecture, in this paper, we
propose ContAv, an open-source distributed statistical model
checker to assess availability of systems built on containers and
virtual machines. The availability analysis is based on novel state-
space and non-state-space models designed by us and that are
automatically built and customized by the tool. By means of
a graphical interface, ContAv allows domain experts to easily
parameterize the system, to compare different configurations and
to perform sensitivity analysis. Moreover, through a simple Java
API, system architects can design and characterize the system
behavior with a failure response and migration service.

Index Terms—software containers, virtualization, cloud com-
puting, distributed system availability, simulation tools

I. INTRODUCTION

Operating system (OS) containers (e.g., Docker) are widely
adopted by large providers such as Amazon [1], Google [5],
Microsoft [2], and Netflix [3] for building cloud-based solu-
tions. Containers are created by OS level virtualization [26]
through the UNIX-like kernel resources isolation and manage-
ment features. The lightweight and portable runtime environ-
ment built with containers enables the foundation for imple-
menting microservice-oriented architectures [29]. A container-
based system is composed by a container manager (or dae-
mon) supporting container instances (more simply referred as
containers) generated from images available in a repository.
Containers spawned in multiple copies, for load balancing,
scaling or availability purposes, are generated from the same
image (containing e.g., database management systems or web
servers) and thus belong to the same type.

Recent works [12], [19] have benchmarked and compared
OS containers versus Virtual Machines (VMs) with respect to
processing, storage, memory, and network aspects. While in
general containers have better performance and lower over-
head, the main drawbacks for container-based solutions are

The work was done when the authors were working at Xerox Research
Centre India (XRCI), Bangalore, Karnataka, 560103, India.

Fig. 1: Google Kubernetes architecture.

related to security issues. To this end, a common practice is
to deploy the containers inside VMs for creating a layer of
security by isolation [8].

Google Kubernetes, Apache Mesos, Docker Swarm and
Spotify Helios are examples of orchestration platforms for
container-based systems. Note that, Kubernetes has a High-
Availability version [6] with two components: pods and a
kubelet agent (see Figure 1). The pods are groups of contain-
ers, co-located, and co-scheduled, running in a single logical
host (i.e., a VM or a physical host). The kubelet manages
the pods through a health check monitor, and can spawn new
containers or restart existing containers when needed.

As more enterprises implement container-based systems,
the availability assessment and management aspects of these
solutions are becoming important. Availability studies can
be classified in two main categories: (i) data-driven analysis
and (ii) model-driven analysis. Datasets are populated with
failure artifacts collected through measurements of a deployed
system [15], [23], [27] or from a system undergoing stress
tests [14], [18]. In the first case, the data reflect characteristics
and phenomena of a real environment, whereas, in the latter,
stressful conditions can be generated in laboratory having a
controllable environment. Failure prediction and the evaluation
of mitigation techniques can be realized by modeling the
system behavior and by analyzing the associated availability.
Formalisms for studying the system availability can be classi-
fied in state-space (e.g., Markov chains and Petri nets - PN)
and non-state-space (e.g., Reliability Block Diagram and Fault
Trees Diagram - FTD) models [13], [17]. These models are
solved: analytically (even relying on the support of software

tools e.g., [10], [30]) or by simulation whenever the models
are highly complex.

In this paper, we take a model driven approach for avail-
ability analysis of container-based systems, primarily due
to the difficulties in collecting or finding publicly available
failure artifacts. However, we conduct laboratory experiments
to collect real data (as reported later in Section V) and to
parametrize our analytical models. In our recent work [22],
we proposed, designed, modeled and analyzed some container-
based solutions for studying system availability through FTD
and stochastic PN. The models in the aforementioned work
become too complex to be solved analytically or with the aid
of stochastic modeling software tools such as SPNP [10] due
to increasing number and type of containers which eventually
lead to state space explosion problem.

Contributions. This paper presents an open-source simula-
tor ContAv to support availability analysis of container-based
solutions. Striking a balance between the ease-of-use and
flexibility, ContAv provides two key features: (i) through its
GUI, the tool enables the domain experts to perform sensitivity
analysis and to compare different deployment configurations
(hiding the models complexity); (ii) system architects can
use a simple Java API to have the desired flexibility in
designing, testing and evaluating failure mitigation and mi-
gration strategies. ContAv is based on distributed statistical
model checking for performing quantitative analysis on the
system properties [25]. By using ContAv, a cloud practitioner
is relieved from the hurdles encountered in generating and
solving the analytical models of container-based deployment
environments. Other than automatically generating the models,
compared to the existing stochastic modeling tools (e.g.,
SPNP), ContAv provides model checking and distributed
simulation functionality, and a higher abstraction of the func-
tions for managing the containers behavior via a Java API.

Structure of the paper. The paper is structured as fol-
lows. In Section II the considered container-based configu-
rations are discussed. The ContAv architecture is presented
in Section III, whereas some implementation details and the
validation results are reported in Section IV. Section V shows
a case study in which a sensitivity analysis is performed and
some of the ContAv APIs are described. Finally, Section VI
concludes the work with some final remarks and outlines our
future efforts on improving the tool.

II. CONTAINER-BASED SYSTEMS

Containers can be deployed in multiple instances for load
balancing, scalability or availability purposes. To overcome the
well-known security risks, exacerbated in densely deployed
environments, a common practice contemplates the use of
VMs for creating sandboxes around group of containers [8].
From this observation and studying the Google’s Kubernetes
architecture [6], in our recent work [22], we discerned three
configurations named consolidated, homogeneous and
heterogeneous therein. A pictorial representation of these
three configurations is depicted in Figure 2.

Fig. 2: OS Containers configurations. CM is the container
manager (daemon), the lines represent the container instances
(e.g, spawn for replication), whereas each line style represent
a different container type (i.e., generated from a different
image).

The simpler setup is represented by the consolidated
configuration (Figure 2-a), in which all the containers are
grouped in a single environment. A single container daemon
is thus in charge to manage all the containers. This setup
has the benefit of requiring less computational resources than
the other configurations at the price of losing the security
isolation provided by the VM. It is thus recommended to
use the consolidated configuration in scenarios without
security concerns or with scarce hardware resources.

The other two setups envisage a security via VM isolation
approach. In the homogeneous configuration (see Figure 2-
b), containers are grouped within VMs according to their type.
This setup is thus suitable for a public cloud in which users
run several instances of the same container in their own VM,
for load balancing or availability, but are not willing to share
their VMs for security concerns or pricing issues. An isolation
by container type is achieved. Therefore, this setup is advised
for all the scenario in which security is a key feature and can
not be assured in the same way for all the container types.

Lastly, the heterogeneous configuration (see Figure 2-
c) groups the containers in VMs according to the instance
number. This setup can be adopted in a corporate cloud in
which all the containers comply with the same security policy.
With respect to the homogeneous configuration, in this case
a VM failure does not affect the service availability, and the
system can be kept working even if a VM reboot is required
(e.g., to apply security patches).

As any researcher with hands-on experience on cloud
containers could recognize, all the widely used container
based platforms [1]–[3], [5], [6], such as Google Kuber-
netes, from a deployment perspective are organized around
the heterogeneous or homogeneous configuration pre-
sented in the paper (others configurations are subcases of
these and can be easily obtained through the ContAv API
by selectively removing containers from the VMs).

Having multiple instances of the same container running,
it is possible to define the system available when at least
k out-of N instances are working for each container type
(where k and N could be different for each container type).
In this regard, it is worth noting that the container operation
is subjected to the functioning of its manager. Containers can

Fig. 3: Fault level diagram for the heterogeneous config-
uration (from [22]).

Fig. 4: Fault level diagram for the homogeneous configura-
tion (from [22]).

thus fail for an internal problem but also due to problems
affecting the environments that execute and control them i.e.,
manager, hypervisor and VM (if present), OS, or hardware.
In [22] we present the Fault Tree Diagrams for all the
three configurations, to highlight their substantial difference
from an availability point of view. E.g., the availability of
a given container type depends, in the heterogeneous
configuration on the status of all the VMs (see Figure 3),
whereas the homogeneous configuration has a single point-
of-failure represented by the VM running all the containers of
such a type (see Figure 4).

In case of container failures, it is possible to instruct the
manager to automatically restore the container e.g., through the
”autorestart” flag of the Docker implementation. Whereas, to

Fig. 5: Failure response and migration service.

recover the system in case of failures of any other component,
the only feasible approach is to resort to an external component
similarly to the Kubernetes in high availability configuration.
We thus envisage a kubelet-like agent running in a different
machine. Its action is limited to restart the manager, in case
of failure of such a component. Whereas, since the VM restart
is a moderately slow process, the kubelet-like agent has the
chance to carry out several failure response and migration
service strategies in the event of VM failures. In particular,
another VM can be selected to temporary spawn and host a
certain number of container instances to overcome the lack
of the failed VM. At a later time, when the original VM is
restored (together with its container manager), thanks to the
orchestration of the kubelet-like agent, those backup containers
can be migrated back resorting to the container live migration
functionality [4], [7], [11]. The supporting VM will manage
the backup containers as its own, thus restarting them in
case of failures. A pictorial representation of the failure and
migration support is presented in Figure 5.

Since several strategies can be exploited for the failure
response and migration service, our simulator allows to design
and test new approaches through a simple Java API, as
described in the following Section V.

III. CONTAV ARCHITECTURE

In this section the ContAv architecture is illustrated. First,
the tools underlying ContAv are presented, then the ContAv
functionalities are described through an Unified Modeling
Language (UML) use case diagram, and finally an UML activ-
ity diagrams make explicit the internal workflow of ContAv.
ContAv is built on top of DEUS [9], an open-source,

Java-based, general-purpose discrete event simulator (DES).
Among the different freely availably DES, our choice fell on
DEUS for its flexibility on supporting analysis of every kind
and size of complex systems. DEUS is constituted by three
basic elements (reflected in an equivalent number of founding
classes): (i) nodes, the entities interacting in the system; (ii)
events, defining the internal actions and interactions among
the nodes or with the environment; (iii) processes, determining
the occurrence of the either stochastic or deterministic events.
DEUS foresees a model described in Java and a scenario (i.e.,
the parametrization of the processes) in XML.

We enhanced DEUS with MultiVeStA [24] an efficient
distributed statistical model checker (SMC) which can be

easily integrated with any DES. System properties of interest
can be compactly asserted by means of the MultiQuaTEx
quantitative temporal expressions. MultiQuaTEx queries are
evaluated by the SMC running simulations distributed on
multiple cores or physical machines, and evaluated against
the significance level and the Confidence Interval (CI) size
computed with the Student’s t-test.

Through the SMC, it is possible to formally specify system
properties such as the total outage time in a year, the number of
container, container manager, VM, hypervisor and OS failures,
and the number of failure and migration requests. For all the
specified metrics, MultiVeStA runs independent simulations
until the first of the following conditions is attained: reaching
the required CI for all the MultiQuaTEx queries and achieving
the maximum number of runs. Whenever the system metrics
are gauged at different points in time, a comma-separated
value (CSV) file is also automatically produced. The ContAv
GUI allows to easily setup the analysis of interest and then
compare the results graphically (e.g., after a sensitivity analy-
sis). The analysis output can be exported as gnuplot, PNG or
CSV file.

All in all, we built a toolchain coinciding with the one
recently proposed for the volunteer cloud simulator AVo-
Cloudy [21].

A. ContAv use case diagram

The UML use case diagram in Figure 6 describes the
ContAv functionalities and how the different actors interact
with the tool. Despite the open-source nature of the tool, in
ContAv actors could interact with the core (the simulator
itself) simply through the abstraction provided by its services.
ContAv envisages three possible actors interacting with it.
Experts on distributed and container-based systems are in
charge of defining the OS containers configurations (Setup)
and parametrize the scenario (Configuration) according to
the properties of the system under study. Decision makers
will compare the system performance (Comparison) against
several configurations or after having performed a sensitivity
analysis. System architects can work at a lower level designing
and implementing the failure response and migration service
strategies (as described later in Section V) that will be sub-
sequently analyzed by the other actors. The Analysis use case
depends on the simulator model and in turn on the way it has
been designed and configured.

The interaction with all the functionalities shown in the use
case diagram can be abstracted at a higher level taking advan-
tage of the GUI provided by ContAv. The latter presents the
use cases: setup, configuration, analysis and comparison with
a tabbed interface (see Section IV). As already mentioned,
the only feature that could require code writing is the failure
response and migration service, if design and test of novel
solutions are deemed.

B. ContAv activity diagram

In this section the internal workflow of ContAv is ex-
plained by means of the UML activity diagram in Figure 7,

Fig. 6: ContAv UML Use Case diagram.

in case the tool is used through its GUI.
At first, the user must setup the configurations of interest

among the ones presented in Section II or user-specified
through the Java API. Then, the input parameters for configur-
ing the scenario and the SMC features must be provided. For
the scenario parameters such as Mean Time to Restart (MTTR)
and Mean Time to Failure (MTTF), ContAv provides default
values computed during experiments in our laboratory or from
literature, as later reported in Table I of Section V. The pa-
rameters required by the distributed SMC are instead: number
of simulations performed in parallel, batch size, maximum
number of simulation runs, significance level and confidence
interval size.

Once the setup is ready, the SMC can start the quantitative
statistical analysis loading the scenario and the system proper-
ties of interest. According to the specified degree of parallelism
MultiVeStA will start independent and distributed simulations
exploiting the cores parallelism or the available machines. In
the latter case, users need to fill in the serverlist file with
a list of IP address - TCP port pairs running the DES engines.
Simulations are performed until the first of the following
conditions is reached: the statistical analysis has an accuracy
less or equal to the requested CI, or the maximum number
of runs is obtained. Readers interested about the performance
scaling achievable integrating MutliVeStA with a DES can
refer to [20] in which a deeper analysis is presented.
ContAv users can perform sensitivity analysis by simply

choosing the parameter(s) of interest from a drop down menu
and specifying range, maximum and minimum values, whereas
the tool will be responsible for automatically generating all
the corresponding scenarios. Several sensitivity analyses can
be requested at a time.

Finally, it is possible to graphically compare results from
different configurations and sensitivity analyses through an
interactive plot widget. Results for each scenario are saved as
CSV, whereas any additional data and plot produced during
the comparison can be exported as PNG, gnuplot, SVG or
CSV file.

IV. CONTAV IMPLEMENTATION

ContAv models are based on the Stochastic Reward Nets
(SRNs) and FTDs designed in our recent work [22]. The
FTDs provide an overview on the interdependencies of the

BackendGUI

Plot(s), data

ExportLoad previous
analysis

Plot(s) generation

Scenario(s) generation

Comparison

Scenario(s)

Sensitivity Analysis

Show results

gnuplot
CSV

DEUS
engine Q

DEUS
engine 1

Start simulation batch

Load:
Scenario, MultiQuaTEx...

MultiVeStA
exec

Analysis

Paramters
configuration

Heterogeneous
w/ migrationHeterogeneousHomogeneous

w/ migrationHomogeneousConsolidated

Setup

[performing sensitivity analysis]

[scenario analysis missing]

[CI accuracy OR
runs limit reached]

Fig. 7: ContAv UML Activity diagram.

availability of the components and show how a component
failure affects the system availability. Instead, the SRNs model
the system behavior by means of stochastic processes.

For instance, in the FTD of the heterogeneous con-
figuration (see Figure 3 in Section II and [22]) it is possible
to identify three layers. In the bottom layer, availability of
container manager, VM and the one of all the containers of
the same type are OR-ed (i.e., in this configuration an OR
gate is required for each container type running in each VM).
The central layer is constituted by as many voting OR-gates
as the number of container types in the system (to obtain the
availability of a k out-of N configuration), in which the input

parameters are the gates of the lower layer. The topmost layer
considers instead the availability of containers (originated from
the aforementioned gates), hypervisor, OS and can be easily
extended to consider also hardware components.

An example of the SRN for a single VM in
heterogeneous configuration (without the failure
response and migration service) and constituted by only
two types of container, is reported in Figure 8. The SRN
places and transitions required for each container type are
identified by the dashed selection in Figure 8. As the number
of containers and/or their type increases, the model will
incur in a state space explosion and even tools such as

Fig. 8: SRN Model for a VM hosting two type of containers
in heterogeneous configuration. From the bottom, avail-
ability of: VM, daemon, and container type C1 and C2.

SPNP can not be of any help (since the reachability graph
needs to be built in memory). For the homogeneous
and heterogeneous configurations in which a failure
response and container migration service is implemented,
the underlying SRN models are very complex (see [22]), a
node-by-node (i.e., VM) decomposition can not be adopted
and thus the system turns out to be analytically intractable.
The only viable solution in these cases is resorting on the
Monte Carlo simulations on which the SMC is based on.
ContAv is the first tool tailored for studying availability of
container solutions extracting away all the hurdles faced by a
cloud practitioner in generating these models.

In Figure 9 a screenshot of the tabbed interface designed
around the use cases discussed in the previous Section III is
presented. The system availability and the number of tasks lost
are two fundamental availability metrics for a container-based
cloud (see Google’s Borg [31]) captured by ContAv. Other
measures e.g., downtime, charge-back for customers, loss of
productivity, and operational cost of re-running the tasks are
derived from the first. Noteworthy, ContAv users can easily
study and compare container-based configurations answering
to questions such as: ”Having a certain configuration, how
many container instances are required to achieve an avail-
ability of at least x%?” or ”Which configurations are the best
wishing to spawn a given number of containers?”.

To validate the simulator, we compare the ContAv so-
lutions with the analytical solution using SPNP [10] and
the SHARPE tool [30] for certain configurations. Figure 10
shows the relative error of ContAv with respect to the
analytical solution varying the number of containers for the
monolithic models in which a single container type is present
and no failure response and migration service is available.
The ContAv percent relative error is of about the 0.02%

Fig. 9: ContAv GUI: Analysis tab.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 50 100 150 200

R
e

la
ti
v
e

 e
rr

o
r

%

Number of containers

consolidated config.

w/ VM

Fig. 10: ContAv validation: Percent (relative) error on system
availability.

running only 100 simulations. Obviously, the time taken by
the simulator is greater as higher is the required accuracy. The
beforehand discussed model complexity prevents us to derive
the analytical solutions for more complex scenarios.

V. CASE STUDIES

To provide a starting point for the model parameterization,
we populate the configuration tab of the GUI with some default
values (see Table I). These parameters are either computed
from experiments on our enterprise private cloud system or ac-
quired from public data [16], [17]. In particular OS, hypervisor
and VM values have been extracted from [17]. The container
availability has been computed from the Google dataset [16]
considering how Google maps each task in a Linux cgroup-
based resource container [31] (on top of which the Docker
containers are built). Each value computed in our laboratory
is the average of 1000 experiments on a server equipped with

TABLE I: Default input parameters of ContAv

Parameter Value

OS steady state availability (os) 0.99977

Hypervisor steady state availability (hypervisor) 0.99989

mean time to container failure (1/λCi) 1258 hours

mean time to container restart (1/µCi) 0.238 secs

mean time to container manager failure (1/λd) 2516 hours

mean time to container manager restart (1/µd) 0.255 secs

mean time to VM failure (1/λv) 2880 hours

mean time to VM restart (1/µv) 5 mins

mean time to orchestrate the failure support for node i on node j (1/δiSendReqToj) 1 sec

mean time to load container of type i on node j (1/δloadiToj) 2 mins

mean time to run container of type i on node j (1/µruniToj) 0.275 secs

mean time to migrate back container of type i from node j (1/ωmigrateCiFromj) 0.140 secs

2 Intel Xeon CPU E5-2698 v3, 322 GB of RAM running
Ubuntu 14.04 LTS (Linux 3.13.0-24-generic x86 64) and
Docker 1.10.1 (API 1.22). The container restart corresponds
to the Docker START command, whereas the failure response
assumes the RUN of a new container once, if needed, an
estimated time of 2 mins to LOAD the Ubuntu container image
available on ”The Docker Hub” (e.g., downloading its 120
MB file size with an ADSL 8 Mbit/s) is elapsed. Being the
migration a feature currently under development for Docker,
we computed the sum of PAUSE, COMMIT (on the original
node) and UNPAUSE as the migration time.

Since in the aforementioned table the container manager
failure rate is due to an arbitrary estimation, in this section
we performed a sensitivity analysis on this parameter through
ContAv. The k out-of N availability is instantiated assuming
that the system is considered up if, for each of the two types
of container, at least the 80% of its initial 100 containers are
running. Seeing as how the Google’s Borg [31] runs tasks
in containers, in the following analysis we are interested on
knowing the dependency of the tasks lost (i.e., any OS process
wrapped under a container) from the container manager failure
rate. Results of the sensitivity analysis are shown in Figure 11.
From the plot it is possible observing that, increasing the
mean time to failure for the container manager, for each of the
three container-based configurations, the tasks lost are reduced.
Performance is stabilized when the container manger has a
mean time to failure of about 2000 hours. Over this values
the performance improvement is only marginal. For a mean-
time-to-daemon-failure of 5000 hours, the homogeneous
configuration has lost almost 1000 tasks more than the other
configurations. This is an example of how ContAv makes a
deployment decision failure-aware.

In the beforehand considered analysis, we assumed that
all the mean time to failures were referred to a Poisson
distribution. Exploiting the ContAv toolchain (as described
in Section III) we can easily modify the process defini-
tion just by calling a different handler. E.g., in Listing 1
is reported a snippet of the XML file defining the simu-
lated scenario, and particularly the process definition of the
container manager failure. The distribution can be changed

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1000 2000 3000 4000 5000 6000

T
a
s
k
s
 L

o
s
t

Mean Time to Daemon Failure [hours]

consolidated

homogeneous

heterogeneous

Fig. 11: Sensitivity analysis on container daemon failure rate.

Listing 1: Process definition of the container manager failure
1<aut:process id="processDaemonFailure" handler="Poisson">
2<aut:params>
3...
4<aut:param name="meanArrival" value="%MTTF_DAEMON%"/>
5</aut:params>
6<aut:nodes>
7<aut:reference id="containersAvailNodeModel" />
8</aut:nodes>
9<aut:events>
10<aut:reference id="failureDaemon" />
11</aut:events>
12</aut:process>

in the handler key choosing among: Exponential,
Lognormal, Uniform, Weibull, Periodic, Poisson,
Rectangular, and Pareto. Any change made on the XML
configuration file is automatically managed by ContAv.

In a densely deployed container-based system, VM nodes
can cooperate for realizing failure response and container
migration strategies. As described in Section III, system archi-
tects can design and test such strategies with ContAv thanks
to its Java API.

Failure response strategies can be designed implementing
the failureSupport() function. Such a function is called
by the kubelet-like agent on a VM failure. As a basic example,
the implementation for a uniform random selection is shown
in Listing 2. A list containing all the working nodes (i.e.,
with running VM and container manager) is created (see
line 3). Then, a working node is randomly selected calling
the selectNodeForSupport() function (see line 13). Fi-
nally, the request is forwarded to the support node through the
askFailureSupport() ContAv API function (line 8).
More complex strategies can be implemented following these
steps.

Similarly, migration back policies can be implemented
through the migrateBack() ContAv API. A Javadoc
attached to the tool provides a full description of all the
functions available in ContAv.

Listing 2: Failure mitigation with random selection startegy
1 public void failureSupport() {
2 ArrayList<Node> workingNodes = new ArrayList<Node>();
3 Model.nodes.parallelStream().filter(n -> (!n.vmOut &&
4 !n.daemonOut).forEach(n -> workingNodes.add(n));
5
6 if (workingNodes.size() > 0){ //start the failure resp.
7 Node node = selectNodeForSupport(workingNodes);
8 askFailureSupport(containerTypeToSpawn,
9 numOfContainersToSpawn, node);

10 }
11 }
12
13 public int Node selectNodeForSupport(ArrayList<ModelA>
14 workingNodes){
15 int nodeToAsk = Engine.getDefault().getSimRandom()
16 .nextInt(workingNodes.size());
17 return workingNodes.get(NodeToAsk);
18 }

VI. CONCLUSION AND FUTURE WORK

This paper introduced our distributed statistical model
checker ContAv. ContAv is a first-of-a-kind availability
analysis tool for containers capturing enterprise grade de-
ployment configurations and providing a scientific modeling
approach while hiding the details to users. The simulation
models have been designed by means of Stochastic Reward
Nets and Fault Tree Diagrams recently proposed by us in [22],
and validated against the analytical solution.
ContAv is publicly released as an open-source tool, en-

riched with a full set of default parameters computed from
experiments on our enterprise private cloud, and has a twofold
use. System architects can use the simple Java API to de-
sign new failure response and container migration strate-
gies, whereas domain experts can interact with the GUI and
parametrize the system to quantitatively compare system con-
figurations and perform sensitivity analysis. Through a what-
if analysis performed with ContAv, cloud administrators can
judiciously use costly resources (e.g., servers, VMs) that can
increase redundancy and create careful deployment strategies.

We plan to extend ContAv in many directions. The model
can be extended to systems consisting of many physical nodes
in the same network, and considering resource constraints in
the case in which containers have associated resource require-
ments. Moreover, performability aspects can be considered in
the model. We are also evaluating approaches to enhance the
ContAv statistical model checking capability: including the
steady-state analysis with the batch means method [28], and
managing rare events during simulation through importance
sampling or splitting.

ACKNOWLEDGMENT

The first author would like to thank Prof. Axel Legay of
Inria Rennes Bretagne Atalantique (France) for his support.

REFERENCES

[1] Amazon EC2 Container Service. https://aws.amazon.com/ecs/. Ac-
cessed: 2016-05-15.

[2] Azure container service. https://azure.microsoft.com/en-gb/services/
container-service/. Accessed: 2016-05-15.

[3] Containers at Netflix - an evolving story. https://qconsf.com/system/
files/presentation-slides/containersnetflix.pdf. Accessed: 2016-05-15.

[4] CRIU integration in Docker. https://criu.org/Docker. Accessed: 2016-
06-23.

[5] Google cloud platform - container engine. https://cloud.google.com/
container-engine/. Accessed: 2016-05-15.

[6] Kubernetes high-availability. http://kubernetes.io/docs/admin/
high-availability/. Accessed: 2016-06-21.

[7] P.Haul an engine for containers live migration. https://criu.org/P.Haul.
Accessed: 2016-06-23.

[8] Introduction to container security. Technical report, Docker, March 2015.
[9] M. Amoretti, M. Picone, F. Zanichelli, and G. Ferrari. Simulating Mobile

and Distributed Systems with DEUS and ns-3. In HPCS, 2013.
[10] G. Ciardo and K. S. Trivedi. Spnp: The stochastic petri net package

(version 3.1). In MASCOTS, 1993.
[11] P. Emelyanov. Live migrating a container: pros,

cons and gotchas. http://www.slideshare.net/Docker/
live-migrating-a-container-pros-cons-and-gotchas. Accessed: 2016-06-
23.

[12] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated
performance comparison of virtual machines and linux containers. In
ISPASS, 2015.

[13] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi. Scalable
analytics for iaas cloud availability. IEEE Trans. Cloud Comput., 2:57–
70, Jan 2014.

[14] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi. Analysis of
software aging in a web server. IEEE Trans. Rel., 55:411–420, Sept
2006.

[15] M. Grottke, A. P. Nikora, and K. S. Trivedi. An empirical investigation
of fault types in space mission system software. In DSN, 2010.

[16] J. L. Hellerstein. Google cluster data. Google research blog,
Jan. 2010. Posted at http://googleresearch.blogspot.com/2010/01/
google-cluster-data.html.

[17] D. S. Kim, F. Machida, and K. S. Trivedi. Availability modeling and
analysis of a virtualized system. In PRDC, 2009.

[18] R. Matias and P. J. F. Filho. An experimental study on software aging
and rejuvenation in web servers. In COMPSAC, 2006.

[19] R. Morabito, J. Kjllman, and M. Komu. Hypervisors vs. lightweight
virtualization: A performance comparison. In IC2E, 2015.

[20] D. Pianini, S. Sebastio, and A. Vandin. Distributed statistical analysis
of complex systems modeled through a chemical metaphor. In HPCS,
2014.

[21] S. Sebastio, M. Amoretti, and A. Lluch Lafuente. AVOCLOUDY: a
simulator of volunteer clouds. Softw.: Practice and Experience, 46(1):3–
30, 2016.

[22] S. Sebastio, R. Ghosh, and T. Mukherjee. An Availability Analysis
Approach for Deployment Configurations of Containers. IEEE Trans.
Services Comput., 2017.

[23] S. Sebastio, K. S. Trivedi, and J. Alonso. Characterizing machines
lifecycle in google data centers. Performance Evaluation, 2018.

[24] S. Sebastio and A. Vandin. MultiVeStA: Statistical model checking for
discrete event simulators. In ValueTools, 2013.

[25] K. Sen, M. Viswanathan, and G. Agha. On Statistical Model Checking
of Stochastic Systems. In CAV, 2005.

[26] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peter-
son. Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors. SIGOPS Oper. Syst. Rev.,
41:275–287, Mar 2007.

[27] I. Stefanovici, A. Hwang, and B. Schroeder. Battling borked bits. IEEE
Spectr., 52:34–53, December 2015.

[28] N. M. Steiger, E. K. Lada, J. R. Wilson, J. A. Joines, C. Alexopoulos,
and D. Goldsman. Asap3: A batch means procedure for steady-state
simulation analysis. ACM Trans. Model. Comput. Simul., 15(1):39–73,
Jan. 2005.

[29] J. Thnes. Microservices. IEEE Softw., 32:116–116, Jan 2015.
[30] K. S. Trivedi and R. Sahner. Sharpe at the age of twenty two.

SIGMETRICS Perform. Eval. Rev., 36:52–57, Mar 2009.
[31] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes. Large-scale cluster management at Google with Borg. In
EuroSys, 2015.

