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Abstract—1 In the evolving field of Explainable AI (XAI),
interpreting the decisions of deep neural networks (DNNs) in
computer vision tasks is an important process. While pixel-
based XAI methods focus on identifying significant pixels, existing
concept-based XAI methods use pre-defined or human-annotated
concepts. The recently proposed Segment Anything Model (SAM)
achieved a significant step forward to prepare automatic concept
sets via comprehensive instance segmentation. Building upon this,
the Explain Any Concept (EAC) model emerged as a flexible
method for explaining DNN decisions. EAC model is based on
using a surrogate model which has one trainable linear layer
to simulate the target model. In this paper, by introducing an
additional nonlinear layer to the original surrogate model, we
show that we can improve the performance of the EAC model.
We compare our proposed approach to the original EAC model
and report improvements obtained on both ImageNet and MS
COCO datasets.
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I. INTRODUCTION

In the rapidly evolving domain of Deep Neural Networks
(DNNs) based computer vision applications such as image
classification [1], object detection [2], [3], autonomous systems
[4], semantic or instance segmentation [5], and infrared image
analysis [6], the interpretability of DNNs is a significant
concern. This is primarily due to the black-box nature of
DNNs. Explainable AI (XAI) emerges as a crucial field to
find methods that are explainable, and aims to make AI
systems more transparent and understandable for humans [7].
In the expanding domain of this field, interpretations vary in
quality and effectiveness, leading to inherent compromises.
To measure the interpretation, we rely on three principal
criteria: faithfulness, understandability, and efficiency [8]–[10].
Faithfulness measures how closely an explanation mirrors the
DNN’s internal decision-making stage. Understandability ga-
uges whether humans can easily comprehend the explanations.
Efficiency considers the computational resources required to
generate these explanations.

Unlike pixel-based explanation methods as in [11], [12],
concept-based explanations utilize higher-level features or
’concepts’ within images, such as identifiable objects or pat-
terns, with the aim of making explanations more comprehen-
sible. The Segment Anything Model (SAM) [13], a significant
recent innovation in this area, enabled automatic generation

1This work is accepted for oral presentation at IEEE, 32nd Signal Processing
and Communications Applications Conference (SIU), 2024.

of concept sets from given images, enhancing the scope of
concept-based explanations.

Recently, Explain Any Concept (EAC) [14] model is pro-
posed which uses SAM as its backbone. The EAC architecture
uses binary features as its inputs and those binary features
are then fed into a surrogate model which is connected to
the shared fully connected (FC) layer then Shapley values
[15] are calculated. The shared FC layer is the same last
FC layer (the output layer) of the original (target) network.
Therefore, there is only one linear layer (the surrogate layer)
that is trained in the EAC model [14]. That surrogate layer
acts as the feature extractor. However, referencing the universal
approximation theorem, we think that using only a single linear
layer may not well model the feature extraction properties of
the original deep architecture and this issue was also discussed
in [14]. Consequently, in this paper, we study to see if using
a nonlinear layer in front of the original layer, benefits the
explainability. Therefore, while Shapley value-based methods
in XAI frequently used, they involve complex calculations,
often necessitating using approximating methods including
Monte Carlo sampling [16], model-specific approximations
[17], [18], or (smaller) surrogate models [19], [20]. These
approaches, however, can suffer from low faithfulness due to
differences from the target model. This paper diverges from the
pursuit of computational gains, instead introduces architectural
improvements in the surrogate model to potentially enhance the
quality and fidelity of the final explanations, while introducing
as minimal number of computations as possible, additionally.
Our approach aims to look for an answer whether such
architectural modifications in the surrogate model can lead
to more accurate and meaningful explanations in the EAC
framework.
Our contributions in this paper include (i) introducing nonli-
nearity for the surrogate model in the EAC framework; (ii)
introducing further explainability for the EAC framework in
terms of the area under the curve (AUC) value as demonstrated
by our experimental results where our Enhanced EAC (EEAC)
approach yielded better AUC values for both ImageNet and
COCO datasets, when compared to the original EAC frame-
work.

II. RELATED WORK

XAI Methodologies: Among the DNN-based techni-
ques, the field can be broadly categorized into two: (i)
backpropagation-based and (ii) perturbation-based techniques.
(i) Backpropagation-based (or gradient-based methods), aim to
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Figure 1: An overview of the explainability process based on the Explain Any Concept (EAC) [14]. The top figure shows
applying a given classification network on an image and its output. The bottom figure shows the stages of the explainability
process including Segment Anything Model (SAM) [13], the surrogate model (our version) and the Shapley values.

determine the influence of different attributes of the input on
the final model decisions as in saliency maps [21], DeepLIFT
[22] and Grad-CAM [12]. (ii) Perturbation-based models,
on the other hand, introduce perturbations on the input and
observe changes on the output, sample methods are Local
Interpretable Model-agnostic Explanations (LIME) [23] and
SHAP SHapley Additive exPlanations (SHAP) [24].

Pixel-Based vs. Concept-Based XAI: Pixel-based metho-
dologies focus on techniques at the individual pixel level, often
employing techniques like saliency maps and attention mecha-
nisms. Though insightful, they are limited by their dependency
on model architecture. Concept-based XAI, utilizes Concept
Activation Vectors (CAVs) [25]. It distinguishes between ran-
dom images and the images containing user-specified concepts.
By doing so, it quantifies the influence of concepts on the
output. This method, while offering enhanced interpretability,
is constrained by the need for predefined human-specified
concepts.
The EAC pipeline [14] is a concept-based explanation met-
hod, where it utilizes the Segment Anything Model [13] for
automatically highlighting important concepts. The Segment
Anything Model (SAM) is designed to produce high-quality
object masks from input prompts such as points or boxes. It
is capable of generating masks for a large set of objects in
an image and has been trained on a very large dataset. SAM
demonstrates strong zero-shot performance across various seg-
mentation tasks.

III. ENHANCED EAC FRAMEWORK

Our approach builds upon the recently published "Explain
Any Concept: Segment Anything Meets Concept-Based Exp-
lanation" paper and we, essentially, focus on improving the
performance of the surrogate model as described in the EAC
framework. The EAC framework2 leverages SAM for auto-
matic visual concept extraction, a Per-Input Equivalence (PIE)
surrogate model for efficient target behavior approximation,
and utilizes Shapley values to quantify concept contributions
to model predictions. In particular, the EAC framework uses
only one trainable linear layer for the surrogate model. In the
original surrogate architecture, the authors freeze the shared
FC layer parameters when training the surrogate model. As
such, only one linear layer is being trained. However, a
trainable nonlinear network, by being more flexible in terms
of its mathematical modelling capacity, can help improve the
performance of the EAC framework. Therefore, we introduce
using a trainable nonlinear network within the surrogate model
in this paper. To keep the computational burdens minimal,
we add only one additional linear layer with an activation
function. That way, we introduce nonlinearity, within the
surrogate model, increasing its modeling capability where two
consecutive layers are trained while freezing the shared FC
layer parameters. The overview of our enhanced EAC approach
with nonlinear surrogate model is shown in Figure 1. In
the framework, the input is the image and the output is the
explained image where the highlighted area shows the most

2https://github.com/Jerry00917/samshap

https://github.com/Jerry00917/samshap


important part used in the network for decision making. The
input image is first fed into a segmentation model (such as
SAM [13]) and the corresponding concepts are obtained as
the output of that segmentation model. Next those concepts,
are first hot encoded and then fed into the surrogate model.
The output of the surrogate model is the softmax output with
confidence scores. Those confidence scores are given into an
Monte-Carlo sampling process to estimate the final Shapley
values for each concept. Figure 2 shows the original linear
surrogate model in (a) as used in the EAC framework [14]
and our introduced nonlinear surrogate model in (b).

The Enhanced EAC framework, similar to the original EAC
framework, contains three phases and our modifications are
done within the phase two. We kept phase one and three the
same as in the original EAC framework [14].

Phase One: Concept Discovery: In this first phase, the
objective is to delineate an input image into a collection
of visual concepts that are semantically meaningful. This is
achieved by employing the SAM model, which is, currently, a
state of the art instance segmentation algorithm. Unlike prece-
ding methods that utilized superpixel techniques, an instance
segmentation based technique better ensures that the resulting
concepts are not only derived from the image’s features but
are also meaningful to human observers. For a given image x,
SAM yields a set C = {c1, c2, . . . , cn}, where n is the total
number of concepts. Obtaining those n meaningful concepts
(as image masks) is the main goal in this phase.

Phase Two: Per-Input Equivalence (PIE): In this second
phase, the PIE method is used which introduces a surrogate
model designed to emulate the target network’s behaviour on
individual inputs, approximating the computation of Shapley
values. The surrogate model is trained and optimized by using
the cross-entropy loss, incorporating a shared FC layer (with
frozen weights) from the target model to facilitate accurate
predictions. This is formally defined as:

f ′(b) := fFC(h(b))

where f ′ is the PIE model, b is the one-hot encoding of n
concepts (binary features), h is the surrogate model which
mimics the feature extractor of the target model, and fFC is
the fully-connected (FC) layer of the original target model.
The training data for training the surrogate model is obtained
by sampling the concepts in C and the corresponding pro-
bability distribution of the original target model by masking
the concepts in C. Then, the surrogate model is trained by
plugging the FC layer (fFC) of the target model (see Figure
1) into f ′ and optimize h with the cross-entropy loss, where
the weights of fFC are frozen. Given that the surrogate model
is much smaller than the target model, the PIE scheme can
significantly reduce the cost of computing the Shapley values.

In this paper, we introduce using a non-linear model to
represent h. In the original EAC framework, the surrogate
model, h, is represented by training only one FC layer. In
our approach, we use one FC layer followed by an activation
function (such as tanh, ReLU, or sigmoid [26]), followed by
another FC layer to represent the surrogate model,h, therefore,
in total, we have two trainable FC layers in the surrogate
model. Figure 2 demonstrates the PIE architectures of the
original EAC framework and our enhanced EAC framework.

Phase Three: Concept-based Explanation: Once the set
of visual concepts C is identified as described in the first phase,
this phase (phase three) aims to predict the final Shapley values
of a given input image for explainability. The Shapley values
are estimated by applying a Monte Carlo sampling process on
the outputs of the PIE surrogate model. The explanation E is
a subset of C, i.e., E ⊆ C. The marginal contribution of the
ith concept ci can be represented by the difference between
the model’s prediction on the set S \ {ci} and S, where S ⊆
C \ {ci}. As such, the individual contribution of ci is defined
as [14]:

∆ci(S) = u(S ∪ {ci})− u(S)

where u(S) represents the prediction of the target model based
on only the concepts that are in S (the concepts that are
not in S are masked). Since the surrogate model aproximates
the original (target) model, we can re-write the above-given
equation in terms of the surrogate model f ′. The Shapley value
of the concept ci is then defined as [14]:

ϕci(x) =
1

n

n∑
k=1

1(
n−1
k−1

) ∑
S⊆Sk(i)

∆ci(S)

where Sk(i) is the set of all the coalitions that does not contain
ci, with size k. Since the size of all coalitions is prohibitively
large, the EAC framework approximates the Shapley value
by using Monte Carlo sampling. In particular, the framework
samples K coalitions for each concept and approximates the
Shapley value as ϕ̂ci(x) =

1
K

∑K
k=1 ∆ci(Sk), where Sk is the

kth sampled coalition. Selecting the subset of concepts maxi-
mizing the Shapley value determines the optimal explanation:

E = argmax
E⊆C

ϕE(x)

where ϕE(x) =
∑

ci∈E ϕ̂ci(x) is the Shapley value of E(x).
Finally, the masked image (where the concepts in C \ E
are masked) represents the visual explainability for the user
(further details can be found in [14]).

IV. EXPERIMENTS

Our experiments are conducted on two different datasets:
ImageNet [27] and COCO [28]. Faithfulness, Efficiency and
Understandability are important measures to consider for exp-
lainability. In this paper, we use area under the curve (AUC)
value for measuring faithfulness, and per-input equivalence
(PIE) time for measuring efficiency as described in [14]. In our
experiments, since we introduced an improvement on the EAC
model, we mainly compare our proposed solution (EEAC) to
the original EAC model. In all of our experiments, all the
models are trained for 50 epochs, individually; the learning rate
was set to 0.001 and Adam optimizer was used. We tested the
performance of EEAC by using different activation functions
including tanh, sigmoid and ReLU.

We assess the performance of both of the original and
enhanced EAC models on ImageNet and COCO datasets,
where we randomly sample 10,000 images from each dataset to
explain. Both models employ the ResNet-50 model [29] pre-
trained on these datasets as the target DNN. Our evaluation
metrics are based on insertion and deletion schemes, as also
used in [14]. Insertion and deletion experiments [30] are
leveraged to measure the faithfulness of the EAC explanations.



Figure 2: (a) shows the PIE for the original explain-any-concept (EAC) as described in [14]. (b) shows our proposed PIE which
includes a non-linear surrogate model.

These involve first altering the model’s input by progressively
adding (insertion) or removing (deletion) concept features from
the most important to the least important ones; then computing
the Area Under the Curve (AUC) value for each model.
Higher AUC value for insertion, and lower AUC value for
deletion indicate greater faithfulness. We run our experiments
for insertion and deletion separately three times and report
their average values in Table I and Table II where the best
results are shown in bold.

As our preliminary results indicate, the introduction of
an additional linear layer coupled with an activation layer,
which introduces non-linearity, has provided a more nuanced
approximation of the target DNN. This complexity in the
surrogate model has translated into more faithful explanations,
as evidenced by the improved AUC scores in Table I and
Table II. Tanh yielded the best results among the tested
activation functions. Notably, this increase in model fidelity
has not come at the cost of efficiency. However, computational
overhead due to the additional layers is minimal, preserving
the model’s practical applicability (as shown in Table I and
II). Our preliminary results affirm the hypothesis that using
a nonlinear model for the surrogate model can better capture
the target model’s behavior, thereby introducing room for more
accurate explanations.

V. CONCLUSION

In this paper, we studied the performance of using and
training a non-linear surrogate model within the recently
proposed explain any concept (EAC) framework where the
original EAC framework trained only one linear layer within

ImageNet / Insertion ImageNet / Deletion
Model AUC PIE time (sec.) AUC PIE time (sec.)
EEAC with Tanh 85.60 255 22.10 255
EEAC with Sigmoid 83.57 255 24.43 255
EEAC with ReLU 85.20 255 22.63 255
Original EAC 84.04 250 23.56 250

TABLE I: Experimental results on the ImageNet dataset for
insertion and deletion. The results are shown for Enhanced
EAC (ours) and the original EAC model [14] in terms of both
area under the curve (AUC) and PIE time (in seconds).

COCO / Insertion COCO / Deletion
Model AUC PIE time (sec.) AUC PIE time (sec.)
EEAC with Tanh 85.22 217 16.11 217
EEAC with Sigmoid 83.61 217 17.82 217
EEAC with ReLU 84.90 217 16.44 217
Original EAC 83.87 212 17.31 212

TABLE II: Experimental results on the COCO dataset for
insertion and deletion. The results are shown for Enhanced
EAC (ours) and the original EAC model [14] in terms of both
area under the curve (AUC) and PIE time (in seconds).

the surrogate model. Our preliminary results indicate that
training a nonlinear surrogate model within the EAC frame-
work yields more accurate explainability for classification.
Our proposed trainable nonlinear surrogate model has resulted
in explanations that are more faithful to the target DNN.
Nonlinearity can be obtained in various forms, and future work
may include studying the performance of different nonlinear
models within the surrogate model.
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