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Abstract—Segmentation of three-dimensional (3D) point clo-
uds is an important task for autonomous systems. However,
success of segmentation algorithms depends greatly on the quality
of the underlying point clouds (resolution, completeness etc.). In
particular, incomplete point clouds might reduce a downstream
model’s performance. GRNet is proposed as a novel and recent
deep learning solution to complete point clouds, but it is not
capable of part segmentation. On the other hand, our proposed
solution, GRJointNet, is an architecture that can perform joint
completion and segmentation on point clouds as a successor of
GRNet. Features extracted for the two tasks are also utilized by
each other to increase the overall performance. We evaluated our
proposed network on the ShapeNet-Part dataset and compared its
performance to GRNet. Our results demonstrate GRJointNet can
outperform GRNet on point completion. It should also be noted
that GRNet is not capable of segmentation while GRJointNet is.
This study', therefore, holds a promise to enhance practicality
and utility of point clouds in 3D vision for autonomous systems.
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I. INTRODUCTION

With the new developments in image acquisition techno-
logies and the widespread use of 3D sensors, the demand for
3D object processing algorithms has also increased. Various
algorithms have been developed recently for this purpose as
in [1], [2], [3], [4], as well as [5], which forms the basis of our
method. A particular relevant application is the processing of
3D point clouds which are often obtained with sensors such as
Lidar [6]. 3D objects are commonly represented by 3D point
clouds, as point clouds can effectively represent and describe
the same scene with significantly lower data size [7] compared
to voxel based methods. However, 3D point clouds obtained
with sensors tend to be incomplete due to various factors
such as light reflection, occlusion, low sensor resolution and
limited viewing angles [5], [7], [8]. Hence, the performance of
algorithms that use the data as it is suffer [9]. For this reason, a
pre-processing step that implements some form of completion
and resolution enhancement is often included [10]. GRNet [5]
is one of the recently proposed deep learning- based algorithms
for this 3D point cloud completion.

Part-segmentation is another type of vision task used in
various domains, such as [1 1], [12] and [13], where each point
is assigned one of the predefined labels to segment the whole
object into smaller meaningful parts. However, segmenting an
incomplete object where some parts may be wholly missing
can be unproductive. In this context, completion algorithms
can be used as an intermediary step before segmentation to
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obtain better results [10]. However, such multi-step processes
typically require more resources and can not be parallelised,
leading to longer run-times. Therefore, a preferable alternative
is to perform point cloud completion and segmentation jointly.
In this study, we present a new architecture that aims to
simultaneously complete and segment 3D incomplete point
clouds, and we call this architecture GRJointNET.

GRJointNET makes use of 3D convolutional layers, three
differentiable gridding layers (gridding, gridding reverse, and
cubic feature sampling) from [5], a novel segmentation reverse
gridding layer and a novel synergistic feature sampling method
(see Figure 1). In this method, the incomplete regions in the
input point clouds are completed and the points in the created
point clouds are and segmented simultaneously.

Our main contributions can be summarized as follows:

e  While GRNet cannot perform segmentation together
with completion, GRJointNet can perform both seg-
mentation and completion synergistically.

e  Unlike the GRNet architecture, our GRJointNet archi-
tecture uses segmentation estimates while performing
incomplete point completion in the last layer.

e  Comparative experimental results on the Shape-Net
Part dataset are presented.

II. RELATED WORKS

Several recent studies have presented various deep neural
network models to segment and complete 3D objects [14],
[15], [16], [17]. One of the studies that pioneered point cloud-
based research in this field is PointNet [16]. Although this
type of 3D point space-based models have demonstrated some
success in the segmentation task, their performance depends on
the completeness of the points in the point cloud [7]. However,
as mentioned previously, 3D point clouds tend to be incomplete
for many reasons [5], [7], [8]. In other words, when working
on 3D point clouds, during applications such as segmentation,
completing the incomplete point clouds first is considered a
separate task.

Many recent and independent studies have successfully
demonstrated that incomplete point clouds can be completed
using deep neural architectures [5], [7], [18], [19]. Some of
these studies perform the completion process using multi-layer
perceptrons (MLP) on raw point clouds [7]. However, such
MLP-based methods have difficulty in exploiting spatial corre-
lations between points due to the context-unaware architecture
of MLPs. For this reason, newer studies have aimed to utilize
3D CNN’s (convolutional neural networks) by voxelizing the
point clouds. Even so, in such studies, performance decreases
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Figure 1: a) a) The architecture of the base method (GRNet [5]) and b) the architecture of our proposed method are shown.
GRlJointNet takes an incomplete point cloud as input and processes this cloud data through two different branches (completion
and segmentation) to output a completed and segmented point cloud.

may be observed due to loss of geometric information during
the voxelization process [20]-[22]. A recent approach, GRNet
[5], proposes a model that represents point clouds with 3D
grids with the aim of preserving geometric and structural
information. Although GRNet is relatively successful at its
purpose, it does not have segmentation capabilities.

In this study, we enhance the GRNet structure and present
an end-to-end architecture that performs both completion and
segmentation simultaneously. We call our architecture GRJo-
intNET. GRJointNET, using GRNet as its base structure, is
designed to improve the capabilities of GRNet by incorpora-
ting point cloud completion into its framework.

III. THE PROPOSED ARCHITECTURE

The architecture of our proposed method (GRJointNet) is
given in Figure 1. In the GRJointNet architecture, there are five
fundamental components including (i) gridding, (ii) gridding
reverse, (iii) cubic feature sampling, (iv) the 3D convolutional
neural network, (v) the multilayer perceptron, (vi) the mapping
algorithm and (vii) the loss functions.

Below, we explain each of those components.

1) Gridding: Tt is not defined how to apply 2D and 3D
convolutions directly on irregular point clouds, which is why
placing the data on a 3D grid structure is a preferred method.
Such methods are referred as voxelization. After voxelization,
we can apply 2D and 3D convolution operations directly.
However, since this process is not reversible, voxelization
methods inherently lead to loss of geometric or semantic
information. Therefore, in this study, we include a differen-
tiable gridding layer to transform irregular 3D point clouds
into regular 3D grids. The targeted 3D grid consists of N3
individual vertices (where IV denotes the number of vertices
on one dimension of the grid), covering the entire point cloud
given as input and taking the shape of a regular cube. Each cell

in this grid contains 8 different vertices, each with a weight
value. The total number of vertices is N3 with
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Here, W holds the cell values whereas the set V' holds the
vertex coordinates of the corresponding cells. v; defines the
3D point at the i‘h index. If a point from the point cloud
object lays within a cell with 8 vertices, the weights of these
vertices for that point is determined as follows:
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Here, x represents the projection of a sample coming from the
point cloud onto the x-axis, y represents its projection onto
the y-axis and z onto the z-axis. z}, y; and 2 define a vertex
neighbouring the point in question. The final weight w; opf the

. Wi
vertex is then calculated as follows: w; =3~ n(,.) NGO

where N (v;) is the set of points neighbouring the vertex
v;. The condition that a point p neighbors v; can be written
as [z} — x| <1 lyf —yl <1,[2 — 2 < 1.

2) Gridding Reverse: Gridding reverse is the operation that
creates the sparse point cloud from the given 3D grid. The
points p; are calculated as follows:

pi=) ) wi)/( Y wy), 3)
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Here, N(v;) denotes the set of vertices neighboring pf, w;
denotes the weight of the jth vertex in N(v;), and v; denotes
the spatial position of that vertex.

3) Cubic Feature Sampling: Classical MLP-based met-
hods [16] working on 3D point clouds suffer from global
and local information loss between neighboring points because
they do not take into account local spatial features. To solve
this problem, we use the cubic feature sampling technique in
our proposed method. This method collects relevant features
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Figure 2: Comparison of the 3D CNN structures of GRJointNet and GRNet. The figure on the left shows the 3D CNN structure used in
GRJointNet, and the figure on the right shows the 3D CNN structure used in GRNet.

from the grid for each point in the sparse point cloud. In short,
the features of the eight neighboring vertices surrounding the
point p; are combined and the input of the MLP (oi ) relative to
that point is created as follows: o), = [p;, i f2,. ., f&]. Here,
op denotes the input of the MLP due to the point p;, whereas f;
denotes the feature map of the vertices surrounding p; from the
3D CNN. Note that the cubic feature sampling takes feature
maps from the first three transposed convolutional layers in
the 3D CNN, and it randomly samples 8 features from each
channel per each point.

4) 3D Convolutional Neural Network: Both GRNet and
GRJointNet each contain a 3D CNN structure. The difference
between these two 3D CNN structures can be seen compa-
ratively on Figure 2. The 3D CNN in the proposed approach
contains an encoder-decoder structure. The encoder consists of
four 3D convolutional layers, each of which includes a padding
of 2, batch normalization, max pooling layers of kernel size 4,
and a leaky ReLU activation. It is followed by fully connected
layers of dimensions 1024 and 2048. Meanwhile, the decoder
contains four transposed convolutional layers, each of which
includes a padding of 2, stride of 1, a batch normalization, and
a leaky ReLU activation. The general formulation of the 3D
CNN is defined as follows: W' = 3DCNN(W); where W
is the output of the incomplete point cloud from the gridding
process, and W' is its completed version. Thus, the 3D CNN
recovers the missing points in the given incomplete point
cloud.

5) Multilayer Perceptron (MLP): The MLP architecture in
the proposed method aims to recover fine details from the

sparse point cloud by using the deviation between the final
completed/segmented point cloud and the sparse point cloud.
The MLP architecture encompasses four fully connected (FC)
layers with sizes 12, 1000, 2000, and 3584, respectively.

6) Mapping Algorithm: The performance of GRJointNet
depends on the efficient use of the deconvolutional layers that
form the segmentation grid to learn well. For this purpose, we
segmented the sparse point cloud and used this segmentation
in back-propagation with cross entropy loss. The mapping
algorithm works as follows:

& =[Nps+1)], ¢ =[N(py+1)],¢& = [N(p. +1)],
and b? = argmax,, BI,[c? @ 2.
4)
Here c?, cP and cb

x) Yy Yz
bych indicate the indices of the cell that point
p will fall into in a segmentation grid of size N3. BI,, denotes
the n'* of the resulting n segmentation grids and contains the
spatial probabilities of the segmentation category numbered 7.
b? indicates the segmentation category assigned to point p at
the end of the mapping algorithm.

7) Loss Functions: The Chamfer distance between the
actual ground truth and the completed/segmented objects is
defined as:

1 . 2 1 . 2
L = — — — _
cp == min lg—mlls+ .~ > min|lg—ml3 )
geG meM
For each point in G, the closest point in M is calculated based
on the distance Ls. This Lo distance is included in the loss.
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Figure 3: The results of incomplete point cloud completion performed by the proposed GRJointNet model are shown on
incomplete, sparse and dense point clouds. Two samples were used for each of the following categories: plane, car, chair

and pistol.

The same process is repeated for each point in M. For the
segmentation loss, cross entropy loss was used.
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Given that complete point clouds do not have ground truths
for segmentation when they are first created; the ground truths
are calculated using the original complete point cloud which
has segmentation labels available. Each point in the generated
clouds is assigned to the segmentation label of the point closest
to it in the complete cloud. Afterwards, the segmentation pre-
dictions on both sparse and dense point clouds are compared
to the ground truths we generated using cross entropy. Using
only the Chamfer distance as a loss function to train GRNet
is insufficient to check whether the predicted points match the
geometry of the object. For this reason, networks that use only
Chamfer distance tend to give an average shape that minimizes
the distance of input and output points. This in turn causes
a loss of information regarding the details of the object in
question. Since point clouds are unsorted, it becomes difficult
to apply L; / Lo loss function or cross entropy directly on
them. However, the gridding method introduced by GRNet
[5] overcomes this problem by converting unsorted 3D point
clouds into 3D grids. Therefore, GRNet introduces a novel
loss function called Grid Loss Function. This loss function is
defined as the distance L; between two sets of values of 3D
grids. In other words:

1
N3g

LG'ridding (I/Vpred7 Wgt) _ Z HWpred _ WgtH. (7)
Here, WPred W9t € RNG. Gppeg =< VP4 WPred > and
Gy =< V9, W9 > are 3D grids obtained by applying
gridding to the ground truth (G;) and the predicted (Gprea))
point clouds. Additionally, Ng corresponds to the resolution
of the 3D grids. The last used loss function (L) on the other
hand is defined as follows: L = Lop + Log + Lgridding-

TABLE I: GRNET vS GRJOINTNET RESULTS

GRNet GRJointNet

car 6.26 / 2.92 6.18 / 3.00
plane 5.70 / 1.49 3.27 / 1.50
chair 5.52/2.92 4.58 / 2.36
pistol 13.07 / 1.83 12.71 / 1.85

IV. EXPERIMENTS

The performances of GRNet and GRJointNet were compa-
red for four selected categories on the ShapeNet-Part dataset
[23]. Given that GRNet is an algorithm designed to perform
completion, we carried out our experiments separately for both
completion and segmentation purposes. All algorithms were
trained over 50 epochs. Adam optimization was used on both
networks. In the completion experiments, a total of 11705
training samples and 2768 test samples were used from the
ShapeNet-Part dataset. The results are shown comparatively in
Table I over four randomly selected individual classes inclu-
ding "car", "plane", "chair" and "pistol". In the table, we used
the average Chamfer distance as the metric for performance
comparison, where the smaller values are the better results
and the best results are shown in bold. For each value pair
cdsparse/Cddense i Table I, cdsparse and cdgense refer to the
Chamfer distances of the sparse and dense completed point
clouds to the ground truth, respectively.

In the part-segmentation experiment, since GRNet does not
have a segmentation feature, we present only our results in the
Figure 3 using two examples from four different categories. In
the figure, the first row shows the reference images, the second
row shows the inputted incomplete point clouds, whereas the
third and fourth rows respectively show the sparse and dense
point clouds that are the outputs of the model, all together with
the segmentation results.



V. CONCLUSION

In this study, a synergistic deep learning-based method is
proposed for the completion and segmentation of incomplete
(3D) point clouds. While the proposed method achieves near
or better performance than our baseline method (GRNet) in
the completion category, it can also successfully segment the
completed point cloud to provide further functionality. In real-
world autonomous system applications, the collected data is
often incomplete and noisy while including data from several
different types of sensors. In this context, it can be said that
models focusing only on one task will be less efficient and
perform worse compared to integrated systems that process all
the available data synergistically. To that end, similar to the
method proposed in this study, more useful and effective mo-
dels that can use various features of the gathered data (position,
distance, image, etc.) to perform multiple autonomous system-
based tasks are being developed [24]-[26]. Integrated systems
using such mentioned methods allow use of common inputs at
different components and as such, they can lower the required
computational resources, while acquiring extra information
from other components’ internal processes to enhance each
others performances.
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