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Abstract— In this paper, we propose an original approach to
colour correlation-based stereo matching with mono-dimensional
windows. The result of the algorithm is a quasi-dense disparity
map associated with its confidence map. For each pixel, corre-
lation indices are computed for several widths of windows and
several positions of the current pixel. Three criteria, extracted
from each correlation curve, are combined by a fuzzy filter to
define a confidence measure. A basic decision rule computes the
disparity value and its associated confidence for the most of the
image pixels. A first study shows results obtained on grey level
images with our 1D method and a classical 2D method. Here,
the 1D approach presents better results. Moreover, our method is
applied to the RGB colour space. A disparity map is computed
with each of the three colour components. A fusion step allows to
compute the disparity values based on these three disparity maps.
The method is validated on the Tsukuba image pair. In the first
time, we show that our method presents lower error rates with
the RGB colour space than with the grey level image and this,
for identical density rates. In a second time, our results (with
the colour way) are compared in terms of errors and density rate
with those obtained using similar colour 2D methods (presented
on the Middlebury website). Our algorithm is ranked in the first
places for each area of the image.

I. INTRODUCTION

A. Window-based stereo matching

Stereovision is a typical problem in computer vision and in
3D reconstruction. Given two images — called left and right
images — capturing a scene at the same time from two points
of view, stereo techniques aim at defining conjugate pairs
of pixels, one in each image, that correspond to the same
spatial point in the scene. The difference between positions
of conjugate pixels, called the disparity, yields the depth of
the point in the 3D scene.

Sparse or dense disparity maps can be computed. Sparse
disparity maps are produced by stereovision algorithms
matching features like edges or corners. Dense disparity
maps are computed by algorithms based on the analysis
of the grey levels or colours of pixels in a neighbourhood
centred on each pixel of the images. In both cases, because
of the epipolar geometry, the conjugate of a pixel in the first
image lies on the corresponding epipolar line in the second
image. This allows one to restrict the matching process to
epipolar lines.

In the following sections, we focus our attention on
dense stereo approaches based on the analysis of a pixel
neighbourhood. In these methods, the pairs of conjugate

pixels are computed by maximising (or minimising) a simi-
larity (dissimilarity) function. The properties of this function
depend on the grey level or colour distributions in the two
windows centred on pixels of epipolar lines. On the one
hand, the selection of window shape and size is crucial
for the success of matching. The dense stereo algorithms
assume that all pixels within the windows have the same
disparity. Therefore, the windows must not be too large.
On the other hand, if the window is too small, the data
available to estimate the similarity function are not sufficient.
In literature, several window-based approaches have been
presented to deal with this trade-off.

Kanade and Okutomi have proposed an adaptive neigh-
bourhood method [1], in which they iteratively modify the
neighbourhood size and shape according to the local varia-
tion of the intensity and current depth estimates. Pérezet al.
also use a neighbourhood with variable shape determined by
analysing the similarity between pixels [2]. Some authors use
shiftable windows methods: Fusielloet al. have presented
a Symmetric Multi-Window (SMW) algorithm [3]. They
compute the SSD (Sum of Squared Differences) on nine
rectangular windows in which the current pixel is positioned
at different places, and keep the window with the smaller
SSD. Hirschm̈uller combines the correlation computed on the
window centred on the considered pixel with the correlations
computed on several support windows [4].

In these algorithms, the modification of window config-
uration is based on one or several parameters defining the
confidence granted to the matching. This notion is essential
in some applications, especially for multisensor fusion algo-
rithm and several confidence measures have been described
in literature [5]. In [4], the author analyses the relative
difference between the two lowest minima of the correlation
function. If this value is higher than a fixed threshold, the
window configuration is validated and the confidence is high.
In [6], the matching is marked as good if the global minimum
of the correlation function is sharp. If the confidence is low,
several authors prefer to mark the pixels as unmatched and
provide semi-dense disparity maps.

B. 1D vs 2D correlation window

All the previously cited authors describe methods assum-
ing that the images have been rectified [7]. In this case,
the conjugate pairs of pixels are located on a single and



same line in the left and right image. Usually, authors
compute correlation indices with two-dimensional windows
shifted along the raster lines to deal with textureless area
and increase the density of the disparity map. Unfortunately,
when neighbour pixels within the window do not have the
same disparity, errors appear.

In images of real scenes, this fronto-parallel plane assump-
tion — i.e. assumption that all the pixels have the same
disparity — is regularly violated because of the perspective
effect or because complex objects cannot be accurately
described with planes. In this case, disparity errors and a
blurring effect across depth discontinuities appear in the
resulting map. Moreover, the larger the size of the 2D
window, the higher the error rate.

In our work, we assume that the information located on the
epipolar line, e.g. the single raster line, is sufficient to provide
a good matching. In the following sections, we will present
an original stereo algorithm using 1D correlation windows
and a fuzzy logic filter. Each pixel is labeled with a disparity
and the associated confidence value. A basic decision step
determines the disparity value and its confidence for the
most of image pixels. Indeed, in the case of occlusions
or in untextured areas, no information is locally available
and most area-based methods compute wrong disparities. To
minimize the effect of this drawback, we propose a quasi-
dense method.

C. Colour correlation-based matching

In computer vision application, the choice of colour space
is important. However, a lot of colour spaces have been
proposed; In [8], Vandenbrouckeet al. have classified the
most of the used colour spaces. Several authors have used
colour information for correlation-based stereo matching
algorithm. Indeed, as presented in [9], the use of colour
images can improve the accuracy of stereo matching. The
authors have tested their stereo matching method with nine
different colour spaces: The results show that colour always
improves matching however the best colour space is not easy
to underline.

In this paper, we aim at taking into account the colour
information with our 1D grey level matching approach. We
compute a disparity map with each colour component and
combine the results in order to have a denser and more
precise disparity map.

The paper is organised as follows. In Section 2, our 1D
windows-based approach is described. Section 3 presents the
first results obtained on grey level image; A comparison is
done with results computed with the classical 2D method of
Hirschm̈uller using the Middlebury evaluation framework.
In Section 4, we introduce the use of colour information
by detailing the combination method. The colour way is
compared to the grey level one. So, our disparity map is
compared to maps computed by four other similar colour
methods related in literature. The last Section is dedicated
to conclusions and outlines future studies.

II. THE 1D APPROACH

The proposed method relies on a particular combination
of correlation scores computed on several 1D windows. It
provides a disparity map associated to a confidence map.
The confidence map indicates the level of certainty of each
matching, which can be low for example in untextured
regions. The overall method is composed of the four steps
presented in figure 1. The following sections describe each
step, except the left and right consistency (LRC). LRC is a
very classical method used to remove incorrect matchings
that has already been widely presented in the literature. The
reader can find a detailed explanation of this technique in [5].

In the figure 1, the correlation scores, the confidence
values and the final disparity map can be computed using
various tools and theories. In this part, we present a case
study in which the most basic techniques are used for each
stage.

Two epipolar
rectified images

?

1. Calculate similarity measures in each
pixel via 1D window-based method
(several widths - several positions)

?
2. Model confidence value
for each similarity measure

?
3. Decision-making process

Select the most confident disparities

?
4. Left-Right Consistency

Remove some of incorrect matches

?

Final disparity and confidence maps

Fig. 1. Algorithm outlines.

A. Similarity measure

Classical area-based dense stereo algorithms assume that
all pixels within correlation windows have the same disparity.
Determining the optimal correlation window is crucial for the
success of matching, but doing this a priori without specific
knowledge about the scene is often impossible. Selecting
a specific window size and shape corresponds to making
a decision at the beginning of the process. We propose to
postpone the decision until the last stage of the matching
process. Thus, we compute 1D correlation scores for several
widths of the window and several positions of the current
pixel.

Let wn = 2n+1 be the width of a 1D windowΩn, wheren
is an integer in the range[1, nmax]. The window corresponds



to a neighbourhood of the reference pixel(x, y). Let pi be the
position of the reference pixel inΩn, with pi ∈ [−n..n]. An
identical window is placed in the other image at pixel(x, y)
and shifted by an integer values within range[smin, smax].

Figure 2 represents what we call the volume of all corre-
lation values computed for a single reference pixel. Each
cube represents the correlation value computed on a 1D
window with widthwn (wn ∈ [w1, wnmax

]) shifted bys and
for which the position of the current pixel ispi. Each line
of cubes in the volume along thes direction is equivalent
to a correlation curve obtained for a given position of the
reference pixel in the correlation window and for a given
width of this window.

p−n 0 pn

wnmax

w1

smin

smax

Fig. 2. Correlation volume, for a single reference pixel, defined by the
whole set of configurations of the correlation window

In order to show that our 1D approach performs well what-
ever correlation technique is chosen, we have selected a basic
one, i.e. the Sum of Squared Differences (SSD) dissimilarity
index. Thus, the correlation indexC(x, y, p, wn, s) is defined
as:

C(x, y, p, wn, s) =
i=−p−n∑
i=−p+n

(Il(x + i, y) (1)

−Ir(x + i− s, y))2

with


wn = 2n + 1
n ∈ [0, nmax]
p ∈ [−n, n]
s ∈ [smin, smax]

, (2)

whereIl andIr denote respectively the grey level functions
of the left and right images.

For a given value ofp and wn, the correlation curve is
defined by the list of valuesC(p, wn, s) with s ∈ [0, smax]:

{C(p, wn, s)}s∈[0,smax] . (3)

In the following, to simplify the notations, the parametersx
andy have been removed from the equations.

Correlation curves are computed using 1D windows with
sizes ranging from3 × 1 to 21 × 1 (i.e. n ∈ [1, 10] and
nmax = 10). Small windows are retained in order to test
their capabilities to provide a good matching.

In area-based stereo matching, determining the optimal
correlation window is the main problem. We propose to anal-
yse the correlation scores for different windows: we compute

correlation curves fornmax window sizes and(2nmax + 1)
positions of the current pixel in each window. All correlation
curves are considered as sources of information that are
combined to yield the disparity of the current pixel.

B. Confidence modeling

This step aims at associating a confidence value to each
correlation measure, i.e. to each cube of the correlation
volume. The confidence volume has therefore the same shape
as the correlation volume.

Some authors have already proposed to associate a confi-
dence value with the matching [4], [6], [3]. In [4], the author
analyses the relative difference between the two lowest
minima of the correlation function. If this value is higher
than a threshold, the window configuration is validated and
the confidence is high. In [6], the matching is marked as
good if the global minimum of the correlation function is
sharp. If the confidence is low, several authors prefer to mark
the pixels as unmatched and compute semi-dense disparity
maps [10]. As described in [5], several confidence measures
of different kinds can be extracted from the correlation
curves.

Since we have to combine several confidence criteria, that
are not only numerical and do not share the same semantics,
fuzzy logic is the most adapted framework. Fuzzy logic
techniques are often used for applications in which human
expertise is available to solve the given problem, and they
allow for formalising fuzzy assertions in order to make them
usable by a computer [11].

In our case, we compute the confidence value by: 1)
extracting several criteria from the correlation curves and 2)
modeling each of them by fuzzy membership functions. All
the correlation curves of the correlation volume are processed
by a set of fuzzy filters that yield the fuzzy confidence
ConfFL(p, wn, s) for every positionp of the current pixel
in the window of sizew and for every shifts. A single
confidence value is then associated to every shift in order to
evaluate the likelihood that this shift is the disparity for the
current pixel.

We extract the following three characteristics from the
correlation curves:
• The curvature metric, which measures the curvature of

the correlation curve for every shift (excluding sides).
The sharper the correlation valley, the higher the cur-
vature and the quality of the matching. The curvature
metric Cur(p, wn, s) is defined as:

Cur(p, wn, s) = −2 · C(p, wn, s)
+C(p, wn, s + 1) + C(p, wn, s− 1) .

• The rankR(p, wn, s). Correlation values are sorted in
increasing order and the rank of a correlation value
corresponds to its position in the sorted list. In the ideal
case, a single minima exists and the shift that appears
at the first position is the disparity. Unfortunately, the
curve often shows several minima and the first shift in
the sorted list is not always the solution. In this case,
the confidence must be decreased.



• The numberN(p, wn) of inflexion points characterising
the number of minimum valleys (convex curves). A
correlation curve with a single valley presents less
ambiguity than other with several minimum valleys.
N(p, wn) is defined by:

∂2C(p, wn, s)
∂s2

= 0 .

These three characteristics are modeled using fuzzy sets
with 3 states (bad, medium, good), defined by classical mem-
bership functions (triangular and trapezoidal). For example:
• whenCur(p, wn, s) is high the state of the associated

membership function isgood.
• when N(p, wn) and R(p, wn, s) are high the states of

their associated membership functions arebad.
Figure 3 shows the membership functions of the fuzzy

Curvature Metric criterion with three states: bad, medium
and good.
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Fig. 3. Membership functions of the fuzzy Curvature Metric criterion

In the fuzzy filters, we use the standard IF-THEN-ELSE
inference mechanism. Each inference rule computes an el-
ementary confidenceConf for a given value ofp, wn

and s. The 27 (33) inference rules have been defined by
analysing the behaviour of the three characteristics,Cur, R,
and N on typical image neighbourhoods. In each rule, the
fuzzy confidence valueConf can take five states: null, bad,
medium, good, excellent.

In the defuzzification step, the 27 fuzzy confidence values
are combined using the center of gravity method, to yield
the global confidence valueConfFL(p, wn, s). In our imple-
mentation, no parameter of this fuzzy processing is adjusted,
i.e. each result is computed with an identical fuzzy logic filter
with fixed parameters.

C. Decision-making proccess

In this part, we aim at defining a basic but efficient
method for selecting the correct disparity in the confidence
volume. Firstly, we select the shifts∗wn

(p) corresponding to
the maximum confidence value for any positionp of the
current pixel in the window with sizewn:

s∗wn
(p) = arg[max

s
{ConfFL(p, wn, s)}] . (4)

Then, we compute the numberNwn(s) of occurrences of
these maximum values, for a fixed widthwn, as:

Nwn(s) = Countp[s = s∗wn
(p)] , (5)

and we mark the disparityd∗wn
at the shift values with

the maximum number of occurrences for all positions of the
current pixel:

d∗wn
= arg[max

s
(Nwn(s))] . (6)

Finally, the disparityd∗wn
is assigned to the pixel(x, y) if

the following condition is satisfied:

Nwn(d∗wn
)

2n + 1
≥ Tdec . (7)

whereTdec is a threshold. WhenTdec is equal to one, the
condition of equation (7) means that the same disparity was
computed for all the positions of the reference pixel in the
window with sizewn.

The disparity map is filled by repeating the algorithm steps
equivalent to equations (5), (6) and (7), starting with the
largest window and decreasing its width until a disparity is
assigned to the pixel. This process allows for affecting the
disparity in untextured areas and for filling the map near
discontinuities while avoiding errors (essentially due to larger
correlation windows).

To sum up, the decision-making step computes the dispar-
ity at each pixel(x, y) as follows:

d(x, y) = 0 ; n = nmax

Do
s∗wn

(p) = arg[maxs {ConfFL(p, wn, s)}]
Nwn(s) = Countp[s = s∗wn

(p)]
d∗wn

= arg[maxs(Nwn(s))]
If Nwn

(d∗wn
) ≥ Tdec × (2n + 1)

d(x, y) = d∗wn

Else n− 1
While (n > 0) and (d(x, y) = 0)

The final confidence valueConf(x, y) associated with the
selected disparityd(x, y) is computed as the average of the
confidence values of the selected shift, for each position of
the reference pixel in a window with the selected width.

Thus, the confidence volume is analysed to reduce the
amount of data and to provide a confidence for every shift.
It is important to note that several levels of decision can
be implemented using this approach. The standard disparity
determination corresponds to a basic decision that selects a
single shift for each pixel and associates with it a confidence
varying from0 to 100%.

This method yields a disparity map associated to its
confidence. The following section presents results obtained
on theTsukuba stereo image pair in grey levels.

III. RESULTS ON GREY LEVEL IMAGE

This section, presents and compares results based on our
1D method and those based on the classical 2D Hirschmüller
method [4]. Hirschm̈uller combines the correlation computed
on the window centered on the considered pixel with the
correlations computed on several support windows [4]. In
this paper, we select the configuration with one window in
the middle surrounded by four partly overlapping windows.



Firstly, the correlation values are computed with this configu-
ration. Afterward, the left-right consistency check invalidates
places of uncertainty.

We have evaluated our stereovision technique on the
Tsukuba stereo image pair. Figure 4 presents the left image
of the Tsukuba stereo pair, the ground truth, the textured
and untextured regions and the areas near discontinuities.

Our 1D method yields a quasi-dense disparity map as-
sociated with a confidence map as presented figure 5. In
this comparison, the thresholdTdec was fixed to one and the
disparity maps are sparsely defined.

(a) (b) (c) (d)

Fig. 4. (a) Left image, (b) Ground truth disparity map, (c) Textured regions
(grey pixels) and untextured regions (white pixels), (d) Occluded regions
(black pixels) and regions with discontinuities (white pixels).

Figure 5 presents the left image in grey levels of the
Tsukuba pair, the ground truth, the quasi-dense disparity
map computed and the associated confidence map.

(a) (b)

Fig. 5. (a) Quasi-dense disparity map computed on grey level image, (b)
Associated confidence map.

TABLE I

RESULTS OBTAINED ON GREY LEVEL IMAGES BASED ONM IDDLEBURY

STEREOEVALUATION WITH |∆ε| > 0.5

Tsukuba

Algorithm BO BT BD BT

Density 45.15 23.11 46.45 62.94

Realtime [4] 3.672 2.892 4.322 4.242

Our method 2.191 1.241 3.031 2.881

For the quantitative comparison, we compute the pixel to
pixel difference between our disparity map and the ground
truth disparity map of the stereo pair. Because it is a quasi-
dense disparity map, we do not take into account the non-
assigned pixels. To start with an identical basis of compar-
ison, we proceed in the same way for the other method,
i.e. taking only into account the pixels to which a disparity
was assigned by our method. We consider that a disparity is
false if the pixel to pixel difference is greater than0.5, which

is the lowest error threshold defined in the new evaluation
technique of the Middlebury website [12].

Table I presents the results of this quantitative comparison.
The first row gives the density of the computed disparity map
and the following rows the error rates for each algorithm
versus the type of region: non-occluded (BO), texture-less
(BT ), near discontinuities (BD) and textured (BT ).

Firstly, one can notice that our method is top ranked. Every
object in this image is located in a different vertical plane,
which does not allow an error threshold greater than 0.5.
Thus, the averaging effect of 2D correlation windows yields
a lot of matching errors.

With our proposed technique, we consider that in untex-
tured regions, there is no information and that it is more
appropriate to assign no disparity to the pixel. This behaviour
can be observed in the resulting map where the density of
matched pixels is very low in untextured areas.

In regions near discontinuities, we achieve good results be-
cause objects are located in vertical planes distant from each
other. 2D method violates the fronto-parallel assumption.

Therefore, a 2D correlation window including several
raster lines does not satisfy the constraint of constant dispar-
ity along the vertical direction and averages the information.
In the next part, we introduce colour information in our 1D
method in order to show its capabilities to improve matching
results.

IV. USE OF COLOUR INFORMATION

In this section, we aim at using colour information avail-
able in theTsukuba image pairs; The initial colour space
of the image (i.e. the RGB colour space) is retained as basis
of this first study.

A. Combination method

The RGB colour space can be decomposed into its three
components: red, green and blue. Our 1D method is applied
on each component and yields three disparity maps with
the confidence maps. At this stage, we ought to combine
the three disparity maps in order to obtain a final disparity
map. The following basic rule is employed to determine
the final disparity value: For a given pixel(x, y), if the
assigned disparity values on the different colour components
are identical, this value is retained as the final disparity. The
associated confidence value is computed as the average of
the confidence values of the assigned disparities. If one or
several assigned disparities are different, the value of pixel
(x, y), in the disparity and confidence maps, is equal to zero.

The following section presents a comparison between the
disparity maps computed with the two ways : the grey level
one and the colour one.

B. Results on colour image and comparison

The previously described combination method allows
merging the disparity values obtained with the three com-
ponents of the RGB colour space in order to compute the
final disparity and confidence maps.

The obtained results are shown figure 7. Like in the
previous comparison, the thresholdTdec was fixed to one.



We can notice that the disparity maps computed on the three
components (red, green and blue) are as dense as the one
obtained on grey level image. However, each component does
not assign the same pixels. For example, we can see that the
orange lamp, composed essentially of the red component, is
totally affected on the disparity map of the red component;
the green and blue ones are sparser. Thus, by combining the
disparity maps obtained with the three components, our 1D
method computes denser disparity map than with grey level
image.

In a quantitative way, we compute error rates based on
Middlebury Stereo Evaluation (with|∆ε| > 0.5) and this, on
the same basis of assigned pixels. In table II, we can notice
that the disparity values computed with the colour way are
slightly more precise, especially in areas near discontinuities.

TABLE II

ERROR RATES OF COMMON ASSIGNED DISPARITY VALUES BASED ON

M IDDLEBURY STEREO EVALUATION WITH |∆ε| > 0.5

Tsukuba

Method BO BT BD BT

Grey levels 1.89 0.92 2.66 2.60

RGB-Fusion 1.88 0.92 2.58 2.57

Density 44.15 21.99 45.15 62.02

By tunning the confidence value between 0 and 100%,
we can remove assigned disparity values which seem less
confident. In this way, the density of the disparity map varies
with the selected confidence level: This allows determining
the evolution of the matching error rates versus the density
of the map. Figures 6(a), 6(b), 6(c) and 6(d) show match-
ing error rates versus density rates based on the disparity
maps computed with grey level images and RGB images
in respectively non-occluded areas(BO), non-textured areas
(BT ), textured areas(BT ), and discontinuities(BD). It is
obvious that the colour approach of our 1D method provides,
for identical density rates, better matching results that the
grey level approach. Moreover, by combining the disparity
obtained with the three RGB components, we can obtain
denser disparity maps with more precision.

In the next section, we compare our 1D approach to
colour correlation-based stereo matching with other similar
methods.

C. Comparison with similar methods

In this section, we compare our results with those obtained
by other similar algorithms. We focus our attention on
window-based stereo matching algorithms associated to the
WTA approach and using the colour information, for which
associated results are available in [12]. We have selected four
comparable methods:

• MMHM [6] ;
• Improved Coop. [13] ;
• Adapt. weights [14] ;
• Comp. win. [15] ;
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Fig. 6. Matching error rates versus density rates based on the disparity maps
computed with grey level images and RGB images in: (a) non-occluded
areas(BO), (b) non-textured areas(BT ), (c) textured areas(BT ), and (d)
discontinuities(BD)

The following results, presented in Table III, were obtained
from Tsukuba stereo pair using the evaluation technique
proposed by the Middlebury website. They are compared
with the results provided on this website for the four previ-
ously presented algorithms. The first row gives the density
of the computed disparity map and the following rows the
error rates for each algorithm versus the type of region: non-
occluded (BO), texture-less (BT ), near discontinuities (BD)
and textured (BT ).

Firstly, one can notice that our method gives results
comparable with those of others algorithms although it uses
only 1D correlation windows: Our method is ranked in the
first places. Firstly, this is due to our 1D approach which
provides more precise matching in comparison with 2D
approaches. Moreover, the combination of the three precise
disparity maps, obtained on each color component, computes
a final disparity map denser and always also precise.

Our method presents very interesting results especially in
regions near discontinuities: The error rates obtained with the
four other methods are much higher. In the same way that
with the grey level method, the untextured regions are very
sparse on the disparity map because no information allows
to have efficient matching, even if the colour information is
used.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed an original stereo match-
ing method based on the analysis of a set of 1D correlation
scores. The method computes a quasi-dense disparity map
and an associated confidence map.

For every pixel, similarity measures are evaluated with
several 1D correlation windows of different widths, in which
the current pixel is not necessary placed at the center.
The correlation indices are further processed by a set of
fuzzy filters to assign a confidence to every shift value. A



TABLE III

COMPARISON BETWEEN OUR RESULTS OBTAINED ONRGB COLOUR

IMAGES AND FOUR SIMILAR COLOUR METHODS(BASED ON

M IDDLEBURY STEREO EVALUATION WITH |∆ε| > 0.5)

Method BO BT BD BT

Density 53.08 31.40 56.66 70.67

Improved Coop. [13] 4.383 3.653 5.793 4.913

Adapt. Weights [14] 3.251 1.411 5.772 4.602

Comp. Win. [15] 4.954 3.714 6.484 5.855

MMHM colours [6] 4.995 4.725 8.685 5.194

Our 1D colour method 3.352 2.372 4.721 4.061

decision-making process analyses the confidence values for
all window widths and positions to determine a disparity for
each pixel and an associated confidence value.

Our method has been applied on the well-known stereo
image pair of the university ofTsukuba in grey levels : it
shows the ability to provide good matching in most cases.
The algorithm takes the advantage of the 1D property and
yields much better results than the classical 2D method
presented by Hirschm̈uller.

So, the algorithm has been applied on each colour com-
ponent of the RGB colour space ; then, the three disparity
maps, obtained on each colour component, are combined to
compute the final disparity map with its confidence map. Our
colour method has been compared to several similar colour
methods presented on the Middlebury stereo website with
the Tsukuba stereo pair.

This study has shown that the information in a 1D window
is often rich enough to provide good matching results. More-
over, the information brought by each colour component
allows to have denser disparity map in comparison of those
obtained on grey level image.

The advantages of our method are that (1) it is fundamen-
tally parallel due to the correlation window shape and to the
structure of the fuzzy logic filters and that (2) no parameter
tuning is required. Of course, with a standard sequential
implementation, computation time is high and incompatible
with the real-time constraint. However, the method can be
implemented in real time on dedicated hardware.

At the moment, we study how to analyse in a different
way the correlation and confidence volumes, in order to
reduce the disparity error rate. In the same way, we aim
at computing disparity maps on other colour spaces and
find the more appropriated space with our algorithm and the
studied image pair. So, disparity maps could be computed on
colour components of a set of colour spaces: a decision step
could find the most confident component among the whole
of studied components.
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Fig. 7. (a) Left image, (b) Quasi-dense disparity map, (c) Associated confidence map.


