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Abstract—Despite opaque machine learning models 
outperform transparent models, users are still unable to 
comprehend and trust their outcomes. 

Therefore, Explainable Artificial Intelligence (XAI) 
becomes a prominent research area. The main objective of 
this discipline is providing new techniques, tools and models 
that explain how opaque machine learning models operate to 
give predictions or simply offer some information about 
system decisions. 

In this article, we present an experimental evaluation of 
explainable models used in XAI, namely: LIME, SHAP, 
ANCHOR and EBM. Those models are applied on the results 
of two opaque machine learning models: Random Forest and 
XGBoost. Our experimental evaluation covers various 
aspects for comparison including: 

• Examining the explainability coverage of methods. 
• Comparing explanations provided by each method. 

Keywords—LIME, SHAP, ANCHOR, EBM, Local 

explainability, Global explainability. 

 

I. INTRODUCTION 

In recent decades, Artificial Intelligence (AI) has made 
impressive strides, accomplishing tasks that were once 
deemed nearly impossible for human beings. Nonetheless, 
this growth has also given rise to substantial concerns, 
especially concerning the transparency and explainability of 
AI systems. Thus, the birth of (XAI) [1] wich aimes at making 
AI models understandable and interpretable for users and 
stakeholders. Instead of solely providing outcomes, 
explainable AI models furnish explanations on how decisions 
are provided especially for opaque models. 

An opaque or black-box arrive at conclusions or decisions 
without providing any explanations as to how they were 
reached, while a transparent model is a perfectly known 
model because it is possible to build it entirely from previous 
knowledge [2]. 

XAI models can be categorized as local or global. Each of 
these models aims to explaining how the AI    model makes 
predictions at different levels. The local model focuses on 
understanding the behavior of AI algorithms locally, its 
hierarchical l e v e l  is low, often based on a               single 
observation (or on a small subset of observations).     These 
models provide metrics related to how each feature            
contributes to a given final prediction generated by the AI 
model.    On the other hand, global model focuses on 
understanding the behavior of the AI algorithm at a high 
hierarchical level, i.e how features contribute to all predictions 
performed by the model [3]. 

 
 
 

Interestingly, there is an absolute difference between 
interpretability and explainability in XAI. Interpretability 
refers to the ability to understand the inner workings of the 
model, either the model as a whole or at least the parts of the 
model relevant to a given prediction. This might involve 
understanding decision rules, thresholds and the capability to 
manually derive model outcomes. 

 While in explainability, we believe that a model's 
prediction is explainable if a mechanism can offer (partial) 
information about the prediction. For instance, this could 
involve identifying which aspects of an input were most 
significant for the resulting prediction or recognizing what 
changes made to an input would lead to a different prediction. 
This understanding can be leveraged to enhance the model's 
ability to predict more accurately in the future [4]. 
Among the objectives of XAI are: 
• Enhancing users' confidence by enabling them to 

comprehend the rationale behind AI-driven decisions. 
• Facilitating the detection and rectification of potential 

errors or biases in models, thereby enhancing the quality 
and reliability of AI models. 

• Adhering to ethical standards and data protection 
regulations. Users have the right to know how their data 
is used and how decisions are made. 

In this article, we present experimental studies on tabular 
data involving four methods: LIME, SHAP, ANCHOR                    and 
EBM. 

Our work concentrates on quantifying measures to assess 
explainability techniques. The main contribution of this 
article is as follows: First, we introduce two powerful 
machine learning models which are Random Forest and 
XGBoost. We provide a detailed experimental evaluation of 
three recent and popular agnostic local explainability 
techniques: LIME, SHAP, and ANCHOR, and examine the 
behavior of predictions from each method. Second, we compare 
the results of local and global explanations. Finally, we 
introduce the EBM model and assess its performance 
(accuracy) along with its various local and global 
explanations. 

Random Forest is one of the most popular and commonly 
used algorithms by Data Scientists. I t  i s   a 
Supervised Machine Learning Algorithm that is used         widely 
in classification and regression problems. It builds  decision 
trees on different samples and takes their majority    vote for 
classification and average in case of regression. Among its 
advantages: 
• It can be used in classification and regression problems. 
• Having a larger number of trees in the forest leads to 

greater accuracy and helps avoid the issue of overfitting. 
• It performs well even if the data contains null/missing 

values. 
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Figure 1: Simplified structure of Random Forest [5] 

 

XGBoost stands for extreme gradient boosting. This 
approach is based on decision trees and builds upon other 
methods such as random forest and gradient boosting 
optimization. It performs well with large and intricate 
datasets by employing various optimization techniques. 

XGBoost has achieved remarkable results in machine 
learning competitions, not only due to its principle of 
sequential self-improvement but also because it encompasses 
a significant number of hyperparameters that can be adjusted 
and fine-tuned for enhancement purposes. 

This high degree of flexibility makes XGBoost a very 
robust choice [6]. 

Figure 2 : Simplified structure of XGBoost [5]. 

 

In this article, we attempt to apply explainable models on 
opaque systems. The rest of this article is structured as 
follows: section 2 sheds light on the overview and the studies 
explainable model. Section 3 presents the experience made 
on the explainable models proposed as well as the results 
obtained. Section 4 provides some discussion. While section 
5 is a conclusion. 

 
II. OVERVIEW OF THE STUDIES EXPLAINABLE 

MODEL 
A. LIME 

The LIME technique, introduced as a method for 
local interpretability, operates on the premise that within 
the boundary of a complex machine learning model can 
be approximated as linear. This approach elucidates the 
instance in question by constructing an interpretable 
model based on perturbed samples derived from the input 
instance of interest. Specifically, LIME generates 
perturbed samples centered  around the instance requiring 
explanation. Within this perturbed sample set, for each 
instance, LIME obtains predictions from the model to be 

expounded upon. This      collection of perturbed samples and 
their associated predictions then serves as the training dataset 
for the interpretable model. Subsequently, the technique 
assigns weights to the instances within the new training dataset 
based on their proximity to the instance necessitating 
explanation. Ultimately, LIME fits an interpretable model 
using this newly    established training dataset [7]. 

 
Figure 3: Presenting intuition for LIME [8] 

 

 
B. SHAP 

 

Vicinity of the instance under examination, the decision 
SHAP (short for SHAPley Additive exPlanation) for the post-
hoc explanation of machine learning methods. The model 
generates a prediction value for each test sample and provides 
an explainable prediction. The main idea is to calculate the 
marginal contribution of the features added to the model, i.e., 
the SHAP value, which is equivalent to the impact of the 
features on the sample. In cooperative game theory, the SHAP 
value is calculated in equation (1) as follows [9]: 

�m = ∑� ⊆ �{
}|�|! (� − |�| − 1)! �! ∙ [�(� � {
}) − �(�)] (1)  

Where Φm is the contribution of the m feature, L is the feature 
subset, N{m} is the feature set, M is the total number of input 
features, v (L ∪ {m}) is the predicted value of the model 
when the sample has only the feature values in L ∪ 
{m} and v (L) is the predicted value of the model when the 
sample has only the feature values in L. In line with the 
additive eigen property approach, the linear function g is 
defined in equation (2) as follow [10]: 
 �(�) = �0 + ∑
 = 1��mxm   (2) 
where g(x) is the explained model prediction for sample x, Φm 
is the mean of the model prediction and xm is the mth feature 
sample [11]. 

More concretely, the SHAPley value operates by justly 
dividing the variation between the prediction and the average 
prediction among the values of features for the instance under 
consideration. 

 
 

 
Figure 4 : the five research directions pursued by SHAPley- 

and SHAP-based approaches in XAI [12]. 



 

C. ANCHOR 

An ANCHOR explanation is a rule that sufficiently 
“ANCHORs”  the prediction locally – such that changes to the 
rest of the feature values of the instance do not matter. In 
other words, for instances on which the ANCHOR holds, the 
prediction is (almost) always the same. 
ANCHORs are intuitive, easy to comprehend, and have 
extremely clear coverage – they only apply when all the 
conditions in the rule are met, and if they apply the precision 
is high (by design) [13]. In practical terms, the greedy 
approach encounters certain limitations: 
• it can only maintain a single rule at a time, thereby 

preventing modification of suboptimal choices, 
• it yields the shortest ANCHOR, which might not 

coincide with the ANCHOR possessing the highest 
coverage. 

To address these drawbacks, an alternative approach to 
constructing ANCHORs is the beam-search method. This 
technique maintains a collection of candidate rules and directs 
the search towards selecting the ANCHOR with the most 
extensive coverage among the myriad of possible ANCHORs. 

 

Figure 5: Different from LIME, ANCHORs uses the “local 

region” to learn how to explain the model [14] 
 

D. Explainable Boosting machine (EBM) 

The Explainable Boosting Machine (EBM) is a glassbox 
model engineered to achieve accuracy akin to leading machine 
learning methods such as Random Forest and Boosted Trees, 
while maintaining high explainability. EBM is structured as  a 
generalized additive model indicate in equation (3) as follow 
[15]:    �(�[�]) =  0 + !"#(�# )   (3 )  

Where g is the link function that adapts the Generalized 
Additive Model (GAM) to different parameters such as 
regression or classification. EBM introduces several key 
enhancements over traditional GAMs (Hastie and Tibshirani, 
1987). Firstly, EBM learns each function fj using modern 
machine learning techniques such as bagging and gradient 
boosting. The boosting procedure is carefully confined to 
training on one feature at a time in a round-robin manner, 
employing a very low learning rate to ensure feature order 
doesn't impact the results. It iterates through the features to 
mitigate collinearity effects and learn the optimal fj feature 
function for each attribute, showing how each feature 
contributes to the model's prediction. Secondly, EBM can 
automatically detect and include pairwise interaction terms 
indicate in equation (4) as follow [15]: 

 
�(�[�]) =  0 + !"#(�# ) + ∑ "%# (�%, �# ) (4) 

 
Figure 6: “The Science Behind InterpretML: Explainable Boosting 

Machine” on YouTube by Microsoft Research [16] 
 

In terms of predictive capability, EBM consistently 
exhibits surprisingly robust performance, on par with state-of- 
the-art methodologies such as Random Forest and XGBoost. 
Another advantage of EBM surfaces in its lightweight 
inference procedure, making it particularly suitable for 
production environments where minimizing prediction 
latency is crucial. 

 
III. EXPERIMENTS AND RESULTS 

In this experiment, we used a "Mobile Price 
Classification" dataset from Kaggle, containing data tabular 
information on the mobile phone (2000 lines) namely: ram 
(random access memory in megabytes), battery life (longest 
time that a single battery charge will last), Wi-Fi (wireless 
networking technology) and 4G support, etc [17]. 

Our dataset contains categorical data such as: "dual_sim", 
"four_g" and "wifi" that we will use in the ANCHOR method. 
For the dataset split ratio between training and validation, we 
took 80% for training and 20% for validation. 

We have a multi-class dataset classification. The aim of the 
prediction is to find the price range of the mobile device based 
on the mentioned features. We have four distincts categories  
which are: "Zero", "One", "Two", and "Three". 

Regarding the hardware aspect of our experimentation, we 
used a 2019 MacBook Pro with the following configuration: 

• CPU: Intel i5, 8th generation with 8 CPUs and a 
frequency of 1.4GHz. 

• RAM: 16GB DDR3 clocked at 2133MHz. 
• GPU: Intel Iris Plus Graphics Family with 8GB of 

VRAM. 
We applied two machine learning models to our dataset: 

Random Forest and XGBoost, the notable performance results 
are shown in Table (1). 

we have 400 occurrences of each class in y_true, the 
finding results noted in Table (1) indicate that Random Forest  
holds a slight edge over XGBoost in terms of performance 
including the classifier's ability to identify all positive 
samples(recall) and the weighted harmonic mean of 
precision(F1-score)[18]. 

 
 Precision Recall F1-score Support 

Random 
Forest 

0.80 0.80 0.80 400 

XGBoost 0.79 0.79 0.79 400 

Table 1: The metrics of Random Forest and XGBoost for our 

model 
 



 

A. First Experiment: Local explainability 

The local explanations help us understand what is 
happening at each prediction level locally. 

1) LIME 

LIME presents the impact of each variable on the final 
decision. For instance: Considering that the models' 
predictions yield the "Three" class as the outcome. We 
can observe that the variables "ram" and "battery" have a 
positive influence whereas the variables "wifi" and 
"four_g" have a negative influence on the prediction for 
Random Forest (Figure 7), but only variable "four_g" 
have a negative impact on the prediction for XGBoost 
(Figure 8) 

Then, we observe a minor influence of the 
"power_battery" and “mobile_wt” variables on the same 
prediction between the two models (Random Forest and 
XGBoost). Overall, the results are quite similar. 

 

 
2) SHAP 

Regarding the explanations of visualizations. There are             
three alternatives: force plot, decision plot, and waterfall plot. 
Firstly, the force plot is useful for visualizing where the 
output value stands relative to the base value (we notice    that 
there is a difference of f(x) between the two models). We  can 
also observe which variables have a positive impact (in red: 
“ram” contributes to making the prediction higher than the 
baseline value) or a negative impact (in blue) on the 
prediction and the magnitude of this impact (Figure 9, Figure 
10). 

Secondly, the waterfall plot also enables us to observe the 
magnitude and nature of a variable's impact along with its 
quantification. It also helps reveal the order of the variable 
importance and the values taken by each variable for the 
studied instance (Figure 11 and Figure 12). 

 

 

 
Figure 7 Example of an explanation describing the influential features for predicting (LIME with Random Forest) 

 
 

Figure 8 Example of an explanation describing the influential features for predicting (LIME with XGBoost) 

 
  



 

 
 

Figure 9: Force plot gives us the explainability of a single model prediction (class “Three”: SHAP with Random 

Forest) 

 

Figure 10: Force plot gives us the explainability of a single model prediction (class “Three”: SHAP with XGBoost) 

 
 

 

 
Figure 11: Waterfall plot gives us the explainability of a single 

model prediction (class “Three”: SHAP with Random Forest) 

 

 
Figure 12: Waterfall plot gives us the explainability of a single model 

prediction (class “Three”: SHAP with XGBoost) 

 

 
 

3) ANCHOR 

First and foremost, it's necessary to specify the categorical 
variables (the index of their column and the values they take). 
In our case, we have three categorical variables: "wifi", 
"dual_sim," and "four_g," with values ranging between 0 and 
1. The explanation provided for the chosen class (the 
predicted          class "Three") reveals the variables influences this 
prediction. We observe that a RAM value relatively higher 
than the average (RAM > 2985.25) and a battery power value 
greater than 1220.50. So, this explanation achieves 
remarkable accuracy (97.3% for Random Forest (Figure 13) 
and 97.9% for XGBoost(Figure 14)) and includes an 
additional piece of information called coverage. Coverage 
describes the proportion of observations that satisfy the 
ANCHOR; in this case, 14% of the tested data possesses the 
characteristics defined by the ANCHOR. 

 
4) EBM 

Dashboard is a great feature from Interpret ML which 
allows you to see all the results in one view (Figure 15). The 
explanations available are split into tabs each one is covering 
an aspect of the pipeline. 

• Data covers exploratory data analysis which is 
designed mostly for feature-level. 

• Performance covers both model performance and 
user-defined groups. 

• Global explains model decisions. 
• Local explains a model decision for every 

instance/observation in one view [19]. 
 

 

We notice that the predictions provided by the Random 
Forest, XGBoost, and even EBM models are similar (Table 1), 
with EBM having an advantage in accuracy reaching 81%. 

In classification, the intercept is the log of the base rate (for 
example -2.8 if the base rate is 10%). So, this graph lets us 
explain model prediction on an individual sample by showing 
us a bar chart of how much individual features contributed to 
this prediction (Figure 15). It accepts a list of samples and their 
predictions as an input for generating an explanation object. 

Also, we observe the positive influence of the "ram" 
variable on the "Three" class. 

 
B. Second Experiment: Global explainability. 

Global explainability lets the model owner determine to 
what extent each feature contributes to how the model makes                its 
predictions over all the data. Given that LIME and ANCHOR 
are methods for local interpretation, we are left with two 
methods to consider: SHAP and EBM. 

 
1) SHAP 

The summary plot for multiclass classification (Figure 16) 
shows the overall importance of the variables calculated by the 
absolute SHAP values for each class. 

In our case, we can see that the class drop hardly uses 
“wifi”, “dual_sim” and “four_g” functionality. We can also see 
that the classes allow and deny the same functionality almost 
equally. This is the reason why the confusion between 

 



 

them is relatively great. For a better separation of the 
classes of authorization and refusal, it is necessary to 
generate new functionalities only dedicated to these 
classes. 

Each point in the summary plot (Figure 17) is a 
SHAPley value for a feature and an instance. The 

position on the y-axis is determined by the 
characteristic and on the x-axis by the SHAPley value. 
We can see that the "wifi" feature is the least   important 
feature, and it has low SHAPley values. The color 
represents the value of the feature from low to high (red 
dots for high values and blue dots for low values). 

 

 
Figure 13: Local prediction (ANCHOR with Random Forest) 

 

 
Figure 14: Local prediction (ANCHOR with XGBoost) 

 

 
 

Figure 15: This can be used to view local explanation of all the models being used for predication in one view 
 

 
 

 
 



 

The dependence plot is a scatter plot that shows the 
effect of a single feature on the predictions made by the 
model. 

In the Figure18 and Figure19, we can observe a 
distinct vertical pattern of color coding that indicates the 
relationship between the attribute’s "ram" and 
"battery_power". 

2) EBM 

The feature importance summary (Figure20) shows that 
two features "ram" and "battery_power" are very essential 
features. We can also look at individual characteristics to 
notice the impact. 

Figure 21 for example shows the variations of the  features  
"ram" according to the classes. 

 

Figure 16: Summary plot shows the importance of the variables for each 

class 

 
Figure 17: Summary plot shows the values of SHAP represented for 

each variable in their order of importance 

 

 
Figure 18: Dependance plot shows interaction between the features, 

“ram” and “battery_power” (Random Forest) 

 

 
Figure 19: Dependance plot shows interaction between the features, 

“ram” and “battery_power” (XGBoost) 

 

Figure 20: Summary of features in order of importance 

 

 
Figure 21: Variations of "ram" functionality by class 



 

 

        Models 

  

   Criteria 

LIME SHAP ANCHOR EBM 

Approach Perturbed samples 
derived from the input 
instance of interest. 

Calculate the average 
marginal contribution of a 
feature value across all 
possible coalitions 
(Shapley value) 

The same approach as 
LIME, but the resulting 
explanations are expressed 
as easy-to-understand IF-
THEN rules. 

A glass box model, designed for 
high precision, uses modern 
machine learning techniques 
such as bagging and gradient 
boosting. 

Hierarchical 

Level 

� Local. 
� Global. 

� Local. 
� Global. 

� Local 
� Global. 

� Local. 
� Global. 

Results 

Presentation 

• Predictions 
probabilities. 

• influence rate of 
features for each 
class. 

• Force plot. 
• Waterfall plot. 
• Summary plot. 
• Dependence plot. 

• Predictions in rules 
form. 

• Explanation of 
predictions. 

• Interpret ML Dashboard. 
• Feature importance. 
• Variations of each feature 

by class. 

Accuracy Applied on results of: 
• Random Forest: 

94%. 
• XGBoost:  100% 

   Not displayed Applied on results of: 
• Random Forest: 97.3%. 
• XGBoost:  97.9%. 

• EBM: 98.3%. 

Execution 

time 

 

 Fast execution 
(0.07s) 

Slower than other models 
especially if there are many 
features (0.85s) 

Slightly slower than LIME 
(0.08s) 

The fastest among these models 
(0.05s) 

Table 2: Comparison between LIME, SHAP, ANCHOR and EBM 
 

IV. DISCUSSION 

The main similarities and differences between the XAI 
models studied   are provided in Table 2. 

The four models offer comparable results with variations 
in terms of presentation, accuracy and execution time. 
• For local explanations: LIME presented results by 

displaying the predicted class and positive influencing 
degree of each feature. SHAP offered a variety of 
presentations that could enrich explanations. ANCHOR 
provided an intuitive presentation of results in a rule 
form with a greater precision compared to LIME. 
Meanwhile, EBM in addition to predicting the class, 
once demonstrated a higher accuracy than LIME and 
provided a more detailed display. 

• For global explanation: SHAP and EBM present their 
results in the form of graphs that aid in comprehending 
the overall contribution of features to the model and 
how each feature is connected to the model. 
Additionally, SHAP offers a "dependence plot" that can 
illustrate interactions between two features. 
 

V. CONCLUSION 

In this study, we conducted a comparative study between 
global and local explainable model. We examined distinct 
models, namely LIME, SHAP, ANCHOR and EBM, the 
findings indicated that there wasn’t a definitive winner, as the 
results provided by these explainability techniques are quite 
comparable, the difference lies in how these results are 
presented. 

It is important to note that all models have identified the 
same features that influence positively the predictions, 
meanwhile SHAP present more graphical presentation. 

The EBM model is the best fit for local and global 
explanations with high accuracy and fast execution time. 

In the future works, we plan to propose our explainable 
model and we will compare it to studied models of this paper. 
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