Dynamic Voltage and Frequency Scaling for
Optimal Real-Time Scheduling on Multiprocessors

Kenji Funaoka, Akira Takeda, Shinpei Kato, and Nobuyuki Yamasaki
Graduate School of Science and Technology
Keio University, Yokohama, Japan
Email: {funaoka,takeda,shinpei,yamasaki} @ny.ics.keio.ac.jp

Abstract— Not only system performance but also energy ef-
ficiency is critically important for embedded systems. Opti-
mal real-time scheduling is effective to not only schedulability
improvement but also energy efficiency for the systems. In
this paper, real-time dynamic voltage and frequency scaling
(RT-DVES) techniques based on the theoretically optimal real-
time static voltage and frequency scaling (RT-SVFS) techniques
proposed in our previous work are presented for multiprocessor
systems. Simulation results show that RT-DVFS covers up the
disadvantages of RT-SVFS in the sense that RT-DVFS are not
practically affected by the difference among systems, whereas the
energy consumption of RT-SVFS highly depends on the selectable
processor frequency especially in high system utilization.

I. INTRODUCTION

Multiprocessor architectures such as Simultaneous Multi-
threading (SMT) and Chip Multiprocessing (CMP) are be-
coming more attractive for intelligent embedded systems. It
is important for embedded systems that real-time tasks such
as robot controls and image processing meet their real-time
constraints. Consequently powerful processors are desirable
for these systems. On the other hand, the trade-off between
system performance and energy efficiency is critically impor-
tant for battery-based embedded systems. Real-time operating
systems must go together with both requirements.

Real-time voltage and frequency scaling has been intro-
duced to solve the problem. The processors of most recent
computer systems are based on CMOS logic. Maximum
processor frequency f depends on supply voltage V, and
energy consumption E is proportional to processor frequency
and square of supply voltage (i.e., E o< fV?2) [1]. Real-time
voltage and frequency scaling can potentially save energy at
a cubic order, while they meet real-time constraints. Real-
time voltage and frequency scaling is based on the essential
characteristic of real-time tasks; namely the tasks can be
executed slowly as long as all deadlines are met. This goal
can be theoretically realized by real-time static voltage and
frequency scaling (RT-SVFS). However there is still room for
improvement on practical environments. The peak computing
rate is much higher than the average throughput that must be
sustained since most of real-time scheduling theories are based
on the worst-case analysis to meet real-time constraints. Real-
time dynamic voltage and frequency scaling (RT-DVFS) can
save more energy by leveraging the characteristic.

Real-time voltage and frequency scaling techniques are
constructed on real-time scheduling theories to meet real-time

constraints. For single-processor systems, EDF [2] is an opti-
mal real-time scheduling algorithm. On the other hand, EDF-
FF and EDF-US, which are the extensions for multiprocessors,
are not optimal [3], [4]. Approximately 50% processor time is
wasted to meet real-time constraints on the algorithms at the
worst-case. In other words, the algorithms theoretically require
twice as many processors or powerful processors as optimal
algorithms do. Accordingly the systems which leverage the
algorithms expend more energy than ideal. Fortunately three
optimal real-time scheduling algorithms for multiprocessors
are presented (i.e., PD? [5], EKG [6], and LNREF [7], [8]).
PD? incurs significant run-time overhead due to its quantum-
based scheduling approach. EKG concentrates workloads on
some processors due to the approach similar to partitioned
scheduling. From the viewpoint of energy efficiency, energy
consumption is minimized when the workloads are balanced
among processors [9]. LNREF is an efficient algorithm on the
balance as compared to the other optimal algorithms.

The remainder of this paper is organized as follows. The
next section discusses the related work. In section III, we show
the system model. Sections IV and V explain LNREF and
RT-SVEFS. In section VI, we present RT-DVFES techniques for
optimal real-time scheduling on multiprocessors. Section VII
evaluates the technique on practical environments. Finally we
conclude with a summary and future work in section VIII.

II. RELATED WORK

Many real-time voltage and frequency scaling techniques
have been proposed in many aspects for single processor
systems. Pillai and Shin [10] show a RT-SVFS technique based
on the optimal real-time scheduling algorithm EDF [2]. Our
uniform RT-SVFS on multiprocessors is analogous to EDF-
based RT-SVFS. Real-time dynamic voltage and frequency
scaling (RT-DVFS) techniques are also proposed for hard real-
time systems [10], soft real-time systems [11], and dynamic
real-time systems [12] to achieve more energy efficiency.

On the other hand, previous works such as [13], [14], [15]
for multiprocessors are based on partitioned scheduling or non-
optimal global scheduling. As mentioned above, the algorithms
require twice as many processors or powerful processors
as optimal algorithms do at the worst case. Our RT-SVFS
techniques [16] are the first work which leverages optimal real-
time scheduling on multiprocessors. No RT-DVFS technique
based on optimal real-time scheduling is presented heretofore.

III. SYSTEM MODEL

Optimal real-time voltage and frequency scaling on mul-
tiprocessors is a NP-hard partition problem since selectable
processor frequency is discontinuous on practical systems.
Consequently we assume that processor frequency can be con-
trolled continuously at first. The effectiveness of the technique
is shown in the simulation on practical environments.

The problem of scheduling a set of hard periodic tasks
with voltage and frequency scaling on a multiprocessor system
is presented. The system is modeled as a taskset T =
{T1,...,Tn}, which is a set of N periodic tasks to be exe-
cuted on M processors P = {Pi,..., Pyr}. Each processor P
is characterized by continuous normalized processor frequency
ar (0 < ap < 1). Each processor can execute at most
one task simultaneously. Each task can not be executed in
parallel among processors. Each task 7; is characterized by
two parameters, worst-case execution time c; and period p;.
A task T; executed on a processor Py, requires ¢; /v, processor
time at every p; interval. The relative deadline d; is equal to
its period p;. All tasks must complete the execution by the
deadlines. The ratio ¢;/p;, denoted u; (0 < u; < 1), is called
task utilization. U = ;. _pu; denotes taskset utilization.
Maximum task utilization is defined as Upax = max{u;|T; €
T}. We assume that all tasks may be preempted and migrated
among processors at any time, and are independent (i.e., they
do not share resources and do not have any precedence).

In this paragraph, the differences between the system model
and practical environments are discussed. (1) In practical
environments, operable processor frequencies are discontin-
uous. The set of operable frequencies is defined as f =
{fi, -y fmlfr < -+ < fm}. The lowest frequency f; € f
such that a, < f;/fm will be selected to bridge the gap be-
tween theory and practicality. (2) Processor throughput is not
proportional to processor frequency in many cases as opposed
to the system model described above. In practical systems,
the frequency which can achieve the corresponding system
throughput will be selected. (3) The system model assumes
that no overhead occurs at run-time. In practical environments,
the scaled frequency interferes with the scheduling even if
the frequency is not changed dynamically. The worst-case
overhead must be included in the worst-case execution time.

IV. T-N PLANE ABSTRACTION

T-N Plane Abstraction [7], [8] is an abstraction technique of
real-time scheduling. T-N Plane Abstraction is based on the
fluid scheduling model [17]. In the fluid scheduling model,
each task is executed at a constant rate at all times. Figure
1 illustrates the difference between the fluid schedule and a
practical schedule. The figure represents time on horizontal
axis and task’s remaining execution time on vertical axis. In
practical scheduling, the task will be blocked by the other
tasks as shown in the lower of the figure since a processor can
execute only one task simultaneously. In the fluid scheduling
model, each task T; is executed along its fluid schedule
path, the dotted line from (r;,¢;) to (r; + p;,0), where r;
is the release time of the current job. It is impossible for

remaining A

execution time | 11uid schedule path
Cik-. practical schedule path
I L
i |
| | \ N
L I i g
releasg time p. ! i deadline
44 ! 1| | I
€] T >
1 | | |
Ti _|4__121_0_C_k_e£1__ N l--»[3

L
i time
Fig. 1. Fluid schedule and a practical schedule.

remaining execution time

fluid schedule path T-N plane
| | ‘ | deadline
Cip-.. J \ |
T N
T by = \
4 D
! Cof--__
L v
o A b, ! ‘
° CNI." S Tl
L e
o, time
nodal remaining| | | !
execution time | I :
\ l
o o o Tag L [ise } o o o
EEES O NN IREEIS RN

S k-1th - kth k4] th T-N plane

Fig. 2. T-N Plane Abstraction.

the fluid scheduling model to realize optimal schedule on
practical systems since one processor must execute multiple
tasks simultaneously. Notice that tasks need not constantly
track their fluid schedule paths. Namely deadlines are the only
time at which tasks must track the fluid schedule paths.
Figure 2 shows the way T-N Plane Abstraction abstracts
real-time scheduling. All deadlines divide time as the vertical
dotted lines as shown in the figure. The right isosceles triangles
called T-N planes (Time and Nodal remaining execution time
domain planes) are placed between every two consecutive
deadlines. The rightmost vertex of the T-N plane coincides
with the intersection of the fluid schedule path and the right
side of the divided time-span. Since T-N planes in the same
time-span are congruent, we have only to keep in mind an
overlapped T-N plane shown in the lower of the figure at a
time. The overlapped T-N plane represents time on horizontal
axis and task’s nodal remaining execution time on vertical
axis. If the nodal remaining execution time becomes zero at
the rightmost vertex of each T-N plane, the task execution
follows the fluid schedule path at every deadline. Since T-N

nodal remaining execution time
e token

T, q

no nodal laxity diagonal (NNLD)

i
! fluid schedule path
0
i Iy
time
Py
P,

time

Fig. 3. Example of LNREF.

planes are repeated over time, good scheduling algorithms for
a single T-N plane can help all tasks to meet their deadlines.

Figure 3 shows an overlapped T-N plane, where tokens
representing tasks move from time tg to ¢¢. All tokens are on
their fluid schedule paths at the beginning of the T-N plane. A
token moves diagonally down if the task is executed; otherwise
it moves horizontally. If all tokens arrive at the rightmost
vertex, all tasks meet their deadlines. The successful arrival to
the rightmost vertex is called nodally feasible. For the nodal
feasibility, new events at which the scheduling decision is
made again in the T-N plane are laid on. Event C and Event
B occur when tokens hit the oblique side (NNLD) and the
bottom side of the T-N plane, respectively. We assume that the
jth event occurs at time ¢;. M tokens which have the Largest
Nodal Remaining Execution time are selected First (LNREF)
on M processors at every event. LNREF is an optimal real-
time scheduling algorithm for multiprocessors in the sense that
any periodic taskset with utilization U < M will be scheduled
to meet all deadlines. If U > M, no algorithm can realize the
successful schedule. Therefore we assume that U < M.

For example, there are four tasks (T%,75,75,7T4) and two
processors (P;, P») as shown in Figure 3. Since there are two
processors, two tasks can be executed simultaneously. At time
tog, 11 and 15 are executed on P; and P> in the LNREF order.
Event B occurs at time ¢; since 75 hits the bottom side of the
T-N plane. Then two tasks 77 and T3 are selected again. Event
C occurs at time t, since Ty hits the oblique side (NNLD) of
the T-N plane. The rescheduling is ingeminated at every event.

V. STATIC VOLTAGE AND FREQUENCY SCALING

RT-SVES proposed in our previous work [16] is based on
the technique called T-N Plane Transformation. Figure 4 shows

nodal remaining execution time
oty

Fig. 4. T-N Plane Transformation (ay, = 0.5).

Algorithm: DecideUniformFrequency
1: foreach 1..M as k

2: o = max{Umax, U/M}

3: end foreach

Fig. 5. Uniform RT-SVFS.

a transformed T-N plane with frequency o = 0.5. Selected
tokens move diagonally down along the NNLD of the T-N
plane. If oy is given to the processor Py, the voltage Vj
is uniquely defined since maximum processor frequency f
depends on supply voltage V. Thus the voltage and frequency
scaling is equivalent to the frequency decision problem.
RT-SVES techniques for different types of systems are
presented in the following sections. SMT processors share re-
sources among threads; thus the voltage and frequency can be
controlled only uniformly among threads. On the other hand,
the voltage and frequency can be controlled independently
among processors in most of CMP and Symmetric Multipro-
cessing (SMP) processors. We first show a uniform RT-SVFS
technique targeting for SMT processors. Then an independent
RT-SVES technique targeting for CMP and SMP processors is
constructed upon the uniform RT-SVFES technique.

A. Uniform RT-SVFS

We assume that all processors have the same frequency
a(=a; = ... = ayy). Figure 5 shows the uniform RT-SVFS
algorithm. The algorithm is theoretically optimal as a static
approach in the case where the voltage and frequency can be
controlled only uniformly among threads or processors [16].
DecideUniformFrequency differs from the independent RT-
SVES technique described in the next section in the sense that
DecideUniformFrequency is also optimal on practical systems,
which can not control processor frequency continuously.

B. Independent RT-SVFS

The strategy of independent RT-SVFS is analogous to
EKG [6]. All tasks are classified into either heavy or light.
Each heavy task T; is exclusively executed on one processor
Py, with frequency o, = w;. All light tasks are executed on the
other processors by LNREF with DecideUniformFrequency.

Definitions for heavy and light are presented. T'**YY and
Tlight denote the sets of heavy and light tasks, respectively.

Light taskset utilization is defined as U™ = 37 ighe ;.

light i . e
o = max{u;|T; € T""} denotes maximum utilization

Algorithm: DecideIndependentFrequency
Require: u; > u2 > ... > un
. Theavy _
. light _
: foreach 1...M as i
if UL S it/ (Af —) then
Theavy _ Theavy U {Tz}
Tlight — Tlight\{Ti}
else
break
end if
: end foreach
11: foreach 1..M as k
12: if P executes a heavy task 7} then

VRN A R

—
=

13: o = Uk

14: else

15: o = UM/ (M — H)
16: end if

17: end foreach

Fig. 6. Independent RT-SVFS.

of T'", The number of heavy tasks is represented as H.
Heavy tasks are executed on the processors (P, ..., Py). The
number of processors for the light taskset is M — H.

The independent RT-SVFS algorithm is shown in Figure
6. Tasks are sorted in decreasing utilization order at first,
and we assume that all tasks are light. Then a light task
T, with utilization u; = Uﬁﬂi is classified into heavy to
dislodge the bottleneck of uniform RT-SVFS while Uper >
U'isht/ (M — H) holds. The algorithm is theoretically opti-
mal [16] in the sense that energy consumption is minimized.
Furthermore the algorithm can solve the problem in polyno-
mial time as opposed to the exhaustive algorithm [16].

VI. DYNAMIC VOLTAGE AND FREQUENCY SCALING

RT-DVEFS accommodates to the fluctuation of tasks’ execu-
tion time. Since LNREF is based on the worst-case analysis,
the voltage and frequency assigned by RT-SVFS is unnec-
essarily high in many cases. Each task 7; almost always
completes the execution earlier than c; is completely consumed
because c; represents “worst-case” execution time. Assume
that a task T; completes the execution at time ¢;, earlier than
¢; is completely consumed as shown in Figure 7. Schedulers
can detect the early completion, and Event B occurs at time
t;. In this case, the time [; ;/, which represents the theoretical
value, can be reused for voltage and frequency scaling.

RT-SVES presented in the previous section resolves the
problem based on the task utilization, while RT-DVFS con-
trols the voltage and frequency based on nodal utilization
introduced by Cho et al [7]. [; ; denotes the nodal remaining
execution time of a task T; at time t;. The nodal utilization
of T; at time t; is defined as r;; = 1; ;/(ty — t;). S; =
ZT,;ET r;,; denotes total nodal utilization at time ¢;. Smax; =
max{r; ;|T; € T} denotes maximum nodal utilization of T at
time ¢;. The nodal utilization of light taskset at time ¢; is
defined as S;-lght = >, erlight Ti,j- Syeh ; = max{r;;|T; €
T'"} denotes maximum nodal utilization of T'&" at time

worst-case remaining execution time
A

theoretical schedule path

\;(\—'—actual schedule path

0 O »>
t j-1 zjf t j time
Event B
Fig. 7. Actual and theoretical schedules.

Algorithm: DecideUniformFrequencyDynamic
1: foreach 1..M as k

2: ag = max{Smax,/, Sy /M}

3: end foreach

Fig. 8. Uniform RT-DVFS.

t;. The utilization of RT-SVFS can be changed to the nodal
utilization to realize RT-DVFS as shown in Figures 8 and 9.
The RT-DVEFES techniques are performed at time ¢y and arbi-
trary time. The nodal remaining execution time of completing
tasks is zero since the tasks do not need to be executed until
next releases. Thus the nodal utilization of completing tasks is
zero. RT-DVFS achieves lower energy consumption than RT-
SVES does since RT-DVFES takes account of the zero nodal
utilization. If the voltage and frequency scaling is performed
at time ¢;; shown in Figure 7, rescheduling by LNREF at time
t; is required since the T-N Plane is transformed at time ;.

A. Feasibility

The feasibilities of the RT-DVFS techniques are presented.
The feasibility of the independent RT-SVFES technique is
provided by the uniform independent RT-SVFES technique [16];
thus the independent RT-DVFS technique provides the feasibil-
ity if the uniform RT-DVFS technique provides the feasibility.
In other words, we have only to keep in mind whether the
uniform RT-DVFS technique can provide the feasibility.

Critical moment [7] is the first time when more than M
tokens simultaneously hit the NNLD as shown in Figure 10.
Cho et al. [7] show that critical moment is the sufficient and
necessary condition where tokens are not nodally feasible in
T-N Plane Abstraction. It is also available in the transformed
T-N plane in the same manner since oy < Spaxo holds for
all k£ in the uniform RT-DVES technique (i.e., all tokens are in
the transformed T-N plane at time ¢y [16]). Theorem 1 shows
that the condition where a critical moment occurs is derived
from total nodal utilization.

Theorem 1 (Total Nodal Utilization at Critical Moment):
If a critical moment occurs at time ¢;, S; > oM.

Algorithm: DecideIndependentFrequencyDynamic
Require: ry j; > 1y ;v > ... > 1N j/

1: Theavy _

2: Tlight — T

3: foreach 1...M as i

4 if SEE > SUEN/ (M — H) then
5. Theavy _ Theavy U {Tz}

6: Tlight — Tllghl\{TZ}

7: else

8: break

9: end if

10: end foreach
11: foreach 1..M as k
12: if P executes a heavy task 7} then

13: A = Tk,j

14: else ‘

15: ar =S /(M — H)
16: end if

17: end foreach

Fig. 9. Independent RT-DVFS.

nodal remaining execution time
Ol

6

0
1y Critical ty
Moment time

Fig. 10. Critical moment.

Proof: This proof is the similar fashion as that of
LNREF [7] since frequency scaling is the lengthways time
scaling of T-N planes. The remaining time /; ; of the tasks on
the NNLD at the critical moment is «(ty — ¢;). Thus

M+1 N

a(ty —t;) g
S; = T = > aM,
’ Z ty —t; Z t—t; "
=1 i=M-+2
where (T%,...,Ta+1) are on the NNLD at time ¢;. [|

The contraposition of Theorem 1 implies that no critical
moment occurs if S; < «aM holds for all j. If Sy < oM
holds, no critical moment occurs since total nodal utilization is
monotonically decreasing as shown in the following theorem.

Theorem 2 (Total Nodal Utilization): If Sy < oM, no crit-
ical moment occurs throughout the current T-N plane.

Proof: This proof is shown by the inductive method. The
induction hypothesis is:

S;1=8

>

~ Z li’jfl = S(tf —tjfl), (1)

T; eT

lij—1

_Yiml g
ty —1;1

nodal remaining execution time
at;

time
ly

Fig. 11. RT-DVEFS performed at time ¢;/

where S < «M. Assume that N'(< M) tokens can be
selected at time t;_;. Since all tasks are in the T-N plane
at first, r; ;1 <1 for all ¢; thus S;_1 = 5 < aN' is derived
from S < M and r; ;1 < 1 for all 4. The total remaining
execution time decreases by aN'(t; —t;_1) between time ¢, _;
and ¢;. S; is calculated as follows:

1
S. = § L.
J t—t, i,

1
= Dl | —aN'(t;—t;)

ty —1; g

<« since Equation (1)
Sty —tj—1) — aN'(t; —tj—1)

ty —t;
We have

Sj_l — Sj

g Sty —ti-1) —aN'(t; —tj-1)
ty —t;

:M(a]\ﬂ ~8)>0

ty—tj
:>Sj71 > Sj.

If Sy < aM, no critical moment occurs from Theorem 1 since
total nodal utilization is monotonically decreasing. |

We assume that the voltage and frequency scaling is per-
formed at time ¢;; as shown in Figure 11. Note that ¢;; does
not represent the exact time. Consequently the voltage and
frequency scaling can be performed at any time. All tokens
remain nodally feasible as shown in the following theorem.

Theorem 3 (Feasibility in RT-DVFS): All tokens are
nodally feasible even if the voltage and frequency scaling is
performed at any time.

Proof: Sj < aM holds before the voltage and frequency
scaling since Sj_; < aM from Theorem 2 and no token
hits the NNLD between time ¢;_; and ¢;. When the voltage
and frequency scaling is performed at time t;,, the shaded
triangle shown in Figure 11 is transformed by the RT-DVFS
algorithms. Assume that the frequency changes from « to o'.

TABLE I
SYSTEMS FOR SIMULATION.

System 1 System 2 System 3
a \% a |4 a \%

0.5 3 0.5 3 036 14
075 4 075 4 |05 15
1.0 51083 45| 064 1.6
1.0 5 073 1.7

082 1.8

091 1.9

1.0 20

If S; < o/M for all j > j', all tokens are nodally feasible
from Theorem 1. Since S; is monotonically decreasing from
Theorem 2, S; < oM holds for all j > j'. Therefore all
tokens remain nodally feasible from Theorem 1. |

Theorem 3 shows that the voltage and frequency scaling
can be performed at any time. Frequent voltage and frequency
scaling can reduce much energy consumption; however it
incurs significant run-time overhead. Therefore the frequency
of the voltage and frequency scaling is the trade-off between
energy efficiency and system performance.

B. Practical Implementation

The previous section shows that the RT-DVFS techniques
can be performed at any time. Assume that the RT-DVFS tech-
niques are performed at every A interval. If A — 0, energy
consumption based on the RT-DVFS techniques is minimized
theoretically; however it is unrealistic from the viewpoint of
system overhead. The balance between practicality and energy
efficiency is important. The events (i.e., time ¢y, Event C, and
Event B) are good timings of voltage and frequency scaling
since (1) additional rescheduling at voltage and frequency
scaling is not required, and (2) the task sort of the independent
RT-SVES can be omitted since LNREF sorts tasks in decreas-
ing nodal remaining execution time. The implementation can
accommodate to the early completion shown in Figure 7 since
Event B occurs at the early completion.

VII. SIMULATION

The advancement of RT-DVFS proposed in this paper is
evaluated by comparing with RT-SVFS in terms of energy
consumption in three systems shown in Table I. Each system
has the operable sets of normalized frequency « and voltage
V' for each processor as shown in the table. The voltage and
frequency scaling is performed only at every event to restrain
the overhead of the voltage and frequency scaling. The sim-
ulation interval L is [0, min{lem{p;|T; € T}, 232}]. Energy
represents the normalized energy consumption as follows:

1 L Osz,Q
EnergyRatio = — @ dt,

L J, MV2

where Viax represents the maximum voltage of each system.
Five cases are compared. Static represents the case where
the voltage and frequency is controlled by RT-SVFS shown
in Figure 6. The other four cases are that the voltage and
frequency is controlled by RT-DVFS shown in Figure 9.

ax

1 | 4
o 0.8 1
g
a7
>
206 1
=
m
04 1
02 1 1 1 1 1

04 05 06 07 08 09 1 1.1

System utilization

Fig. 12. Energy of System 1.

In RT-DVEFS, the four cases where actual execution time
uniformly varies in the range of [0.4¢;, ¢;] (40%), ([0.6¢;, ¢;])
(60%), [0.8¢;, ¢;] (80%), and always c¢; (100%) of worst-case
execution time for each task T; are presented in the results.
The other RT-DVES algorithms shown in the previous
papers can not be compared since the previous algorithms
based on non-optimal real-time scheduling algorithms can not
guarantee the schedulability in high system utilization.

A. Simulation Setup

Each simulation is modeled as four processors and a taskset.
A taskset is initially empty. A new task is appended to the
taskset as long as U < Ulger, Where Upger is the target
utilization for each simulation. For each task T, its utilization
u; is computed based on a uniform distribution in the range
of [0.01,0.1]. Only the utilization of the last task is adjusted
so that U becomes Ulyrger. Each task T; is generated with the
period p; in the integer range of [100, 3000] and the worst-case
execution time ¢; = wu;p;. In order to measure the average
energy consumption, hundred simulations are conducted for
each system utilization U/M between 0.5 and 1.0 where most
traditional algorithms can not guarantee the schedulability.

B. Simulation Results

Figures 12, 13, and 14 show the results corresponding to that
of Systems 1, 2, and 3, respectively. The figures show system
utilization U/M on the horizontal axis and the average Energy
on the vertical axis. The results of the three systems show
that the results of RT-SVFS highly depend on the selectable
voltage and frequency level in the higher system utilization.
The reason comes from the fact that RT-SVFS must take
account of the worst case execution time and can not change
the voltage and frequency for ever. On the other hand, RT-
DVES can accommodate to dynamic environments even if
actual execution time is always equal to worst-case execution
time (100%). The reason comes from the fact that the voltage
and frequency levels selected by RT-DVFS are unnecessarily
high only at first; namely most of tasks complete the execution
earlier than the ideal case since the set of higher voltage

1 L 4
o 0.8 1
3
a4
>
206 1
=i
o
04 r
02 L L L L L L
04 05 06 07 08 09 1 1.1
System utilization
Fig. 13. Energy of System 2.
Static
Lt 100% 1
80%
60% -l ;
° 0.8 |+ 40% —e— i
3
24
&
5 0.6 1
=i
83|
04 1
0.2 : :

04 05 06 07 08 09 1 1.1

System utilization

Fig. 14. Energy of System 3.

and frequency is selected to bridge the gap between theory
and practicality as shown in the system model. After that,
RT-DVFS can decrease the voltage and frequency. Therefore
the curves of RT-DVFS smoothly decrease as compared to
that of RT-SVFS. RT-DVFS can linearly reduce the energy
consumption when actual execution time varies uniformly. In
the lower system utilization, all results are mostly the same
since the selectable voltage and frequency is bounded by the
sets of lowest voltage and frequency shown in Table L.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented two algorithms for real-time
dynamic voltage and frequency scaling based on an optimal
real-time scheduling algorithm for multiprocessors. The RT-
DVES algorithms proposed in this paper is based on the
optimal RT-SVFS techniques proposed in our previous work.
The algorithms can be applied to both uniform settings and
independent settings of the voltage and frequency among pro-
cessors. RT-DVFS can accommodate to dynamic environments
even if actual execution time is always equal to worst-case
execution time. Additionally RT-DVES can linearly reduce the
energy consumption when actual execution time varies.

The practical implementation is a topic for the future work.
The frequency of the voltage and frequency scaling is a
trade-off between energy efficiency and system performance.
Frequent voltage and frequency scaling incurs significant run-
time overhead due to the physical limitation of processors.
Therefore effective implementation and appropriate control of
the voltage and frequency are required in practical systems.

ACKNOWLEDGEMENT
This research is supported by CREST, JST.

REFERENCES

[1] T. D. Burd and R. W. Brodersen, “Energy Efficient CMOS Micro-
processor Design,” in Proc. of the 28th Annual Hawaii International
Conference on System Sciences, Jan. 1995, pp. 288-297.

[2] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,” Journal of the ACM, pp.
46-61, Jan. 1973.

[3] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia, “Worst-Case
Utilization Bound for EDF Scheduling on Real-Time Multiprocessor
Systems,” in Proc. of the 12th Euromicro Conference on Real-Time
Systems, June 2000, pp. 25-33.

[4] T. P. Baker, “An Analysis of EDF Schedulability on a Multiprocessor,”
IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 8§,
pp. 760-768, Aug. 2005.

[5] J. H. Anderson and A. Srinivasan, “Early-Release Fair Scheduling,” in
Proc. of the 12th Euromicro Conference on Real-Time Systems, June
2000, pp. 35-43.

[6] B. Andersson and E. Tovar, “Multiprocessor Scheduling with Few
Preemptions,” in Proc. of the 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, Aug.
2006, pp. 322-334.

[71 H. Cho, B. Ravindran, and E. D. Jensen, “An Optimal Real-Time
Scheduling Algorithm for Multiprocessors,” in Proc. of the 27th IEEE
Real-Time Systems Symposium, Dec. 2006, pp. 101-110.

, “Synchronization for an Optimal Real-Time Scheduling Algorithm

on Multiprocessors,” in Proc. of the 2nd IEEE International Symposium
on Industrial Embedded Systems, 2007, pp. 9-16.

[9] H. Aydin and Q. Yang, “Energy-Aware Partitioning for Multiprocessor
Real-Time Systems,” in Proc. of the 17th IEEE International Parallel
and Distributed Processing Symposium, Sept. 2003, pp. 22-26.

[10] P. Pillai and K. G. Shin, “Real-Time Dynamic Voltage Scaling for Low-
Power Embedded Operating Systems,” in Proc. of the ACM Symposium
on Operating Systems Principles, 2001, pp. 89-102.

[11] J. A. Stankovic, C. Lu, and S. H. Son, “The Case for Feedback Control
Real-Time Scheduling,” in Proc. of the 11th Euromicro Conference on
Real-Time Systems, June 1999, pp. 11-20.

[12] C. H. Lee and K. G. Shin, “On-Line Dynamic Voltage Scaling for Hard
Real-Time Systems Using the EDF Algorithm,” in Proc. of the 25th
IEEE Real-Time Systems Symposium, Dec. 2004, pp. 319-335.

[13] C. Xian, Y.-H. Lu, and Z. Li, “Energy-Aware Scheduling for Real-Time
Multiprocessor Systems with Uncertain Task Execution Time,” in Proc.
of the 44th ACM/IEEE Design Automation Conrefence, 2007, pp. 664—
669.

[14] J.-J. Chen and T.-W. Kuo, “Allocation Cost Minimization for Periodic
Hard Real-Time Tasks in Energy-Constrained DVS Systems,” in Proc.
of the IEEE/ACM International Conference on Computer-Aided Design,
Nov. 2006, pp. 255-260.

[15] D. Shu, R. Melhem, and B. R. Childers, “Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multiprocessor
Real-Time Systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 14, no. 7, pp. 686-700, July 2003.

[16] K. Funaoka, S. Kato, and N. Yamasaki, “Energy-Efficient Optimal
Real-Time Scheduling on Multiprocessors,” in Proc. of the 11th IEEE
International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing, May 2008.

[17] P. Holman and J. H. Anderson, “Adapting Pfair Scheduling for Sym-
metric Multiprocessors,” Journal of Embedded Computing, vol. 1, no. 4,
pp. 543-564, May 2005.

[8]

