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Abstract

We present a stylized model with feedback loops for the evolution of a population’s wealth over
generations. Individuals have both talent and wealth: talent is a random variable distributed identically
for everyone, but wealth is a random variable that is dependent on the population one is born into.
Individuals then apply to a downstream agent, which we treat as a university throughout the paper
(but could also represent an employer) who makes a decision about whether to admit them or not. The
university does not directly observe talent or wealth, but rather a signal (representing e.g. a standardized
test) that is a convex combination of both. The university knows the distributions from which an
individual’s type and wealth are drawn, and makes its decisions based on the posterior distribution
of the applicant’s characteristics conditional on their population and signal. Each population’s wealth
distribution at the next round then depends on the fraction of that population that was admitted by the
university at the previous round.

We study wealth dynamics in this model, and give conditions under which the dynamics have a single
attracting fixed point (which implies population wealth inequality is transitory), and conditions under
which it can have multiple attracting fixed points (which implies that population wealth inequality can be
persistent). In the case in which there are multiple attracting fixed points, we study interventions aimed
at eliminating or mitigating inequality, including increasing the capacity of the university to admit more
people, aligning the signal generated by individuals with the preferences of the university, and making
direct monetary transfers to the less wealthy population.

1 Introduction

The wealth of a population evolves over generations as a function of the opportunities available to it.
Opportunities available to a generation depend not only on their talent, but also on the wealth of the previous
generation. In such a dynamical system, the initial wealth of a population determines how wealth evolves
and what it will be in the limit. Understanding this system can help illuminate when and why inequalities
can arise and persist.

In this paper we define and analyze a simple, mathematically-tractable model for this feedback system,
before considering possible interventions to make its behavior more equitable. To discuss the main conclusions
of our paper, we first need to provide a sketch of our model. Individuals are divided across multiple populations,
and have both a type (an abstraction of talent) and a wealth. Within a single population, the distribution of
wealth and types are given by Gaussians with known means and variances. Types are distributed identically
across populations, but each population has its own distribution of wealth. An individual from a particular
population is sampled by sampling their type T from the (universal) type distribution, and their wealth
W from the wealth distribution particular to their population. An individual then generates a signal
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S = βT + (1− β)W , i.e., some convex combination of their wealth and type. This signal could represent e.g.
an individual’s score on a standardized test, or the rating that results from an interview. Here we allow that
the signal might have a dependence on wealth rather than just type because of the indirect effects it can have
on evaluations: for example, the ability to engage in additional test preparation. Downstream, a university1

who has no direct knowledge of applicant’s types or wealth (but with knowledge of the distributions from
which they were drawn) observes the signal, and forms a posterior belief about the applicant’s type and
wealth. The university seeks to select individuals for whom another convex combination αT + (1 − α)W
exceeds some threshold τ , and so selects exactly those applicants for whom E[αT + (1− α)W |S] ≥ τ . Here
again we allow that the university might have an explicit preference for wealth (and not purely for type).
This might represent e.g. a desire for full tuition payments or future alumni donations, or a more nebulous
desire for “culture fit” or for skills associated with wealth (e.g. students who can walk on to the sailing or
squash team). For each population we then let the mean wealth of the next generation be a non-decreasing
function of the fraction of people admitted to the university at the previous round. We also assume that
the distribution of types (or talent) remains unchanged over generations and is identical for all individuals,
independent of their population.

First, we consider the fixed points of these wealth dynamics. If there is only a single fixed point (and
the dynamics converge to it), this implies that wealth inequality across population groups is transitory, and
that over time it will equalize (as the mean wealth of all populations moves to the single attracting fixed
point). On the other hand, if there are multiple fixed points of the wealth dynamics, then wealth inequality
can persist, with different populations “stuck” at different fixed points.

We give conditions under which the dynamics correspond to a contraction map and have a single fixed
point (implying that wealth inequality is transitory). These conditions in particular include the case when
α = 1 — i.e. when the university is selecting entirely based on inferred type. On the other hand, there are
other situations (in which, necessarily the university places some weight (1− α) > 0 on wealth) in which case
there can be two attracting fixed points (and a third unstable fixed point), which can result in persistent
inequality absent intervention: one population can be “trapped” in the less wealthy fixed point, while the
other one is in the more wealthy fixed point.

We then turn our attention to interventions. We focus our study of interventions on ways to move a
population’s wealth from the lower fixed point to the higher fixed point, or to modify the dynamics so
that there is a single attracting fixed point (which leads to wealth equality). We consider three types of
interventions:

1. Increasing The Capacity of the University: We consider what happens when the university is
able to admit more applicants (by lowering its threshold τ). We show that doing this has positive
effects: either it shifts the dynamics from the regime in which there are multiple fixed points to the
regime in which there is a single fixed point (thus leading to long-term wealth equality), or it raises the
wealth of both attracting fixed points.

2. Changing the Design of the Signal S: We consider what happens if we are able to better align
the signal the university receives with the university’s objective function (by shifting β closer to α

— i.e. by having the signal weight type and wealth more similarly to how they are weighted in the
university’s objective function). We show that as β is moved closer to α the disparity between the
two fixed points is reduced. Notably, and perhaps counter-intuitively, making the signal depend more
on type (by increasing β) is not always the way to reduce disparities (despite the fact that type is
distributed identically across populations).

3. Direct Subsidies to the Disadvantaged Population: Finally we consider making direct financial
subsidies to the disadvantaged population, to shift them from the lower wealth attracting fixed point to
the basin of attraction of the higher wealth fixed point (from which they will naturally proceed to the
higher wealth fixed point without further intervention). We consider a parameterized family of objective

1Throughout this paper we describe the downstream agent as a university admitting students. However we could also view
the downstream agent as an employer hiring employees, or any other agent allocating opportunities based on evidence that
conflates talent and wealth that have effects on the long-term wealth of the selected individuals.
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functions that the designer might have, that differ in how they relatively weight the cost of the subsidy
with the wealth of the disadvantaged population, and in how they discount time. Within this class
of interventions, we focus on two options: the most aggressive “1-shot” option makes a large 1-shot
payment to directly increase the wealth of the disadvantaged population to move them to the basin
of attraction of the wealthier fixed point. The least aggressive “limiting” option makes the minimal
payment per round that is guaranteed to cause eventual convergence to the wealthier fixed point. We
derive conditions under which the “1-shot” option is preferred by the designer over the “limiting” option
and vice versa.

1.1 Discussion and Limitations

For mathematical tractability, we study a simple stylized model, which should be viewed as a first cut at
attempting to model wealth inequality rather than a faithful description of the full problem. For example,
we have assumed that the university has access to an applicant’s wealth only indirectly via inferences that
can be drawn from their test score and population. In practice, a university has a number of other signals
at their disposal. One should interpret the wealth populations in our model as equivalence classes induced
by the information available to them at admissions time. Similarly, we have modeled individual talent via
a static “type” distribution, when in fact talent is multi-dimensional and not static (and might depend on
opportunities that different populations might have different access to prior to university admissions). We
have not modelled university capacity constraints, and this allows us to treat each population independently
of the others.

Nevertheless, several qualitative takeaways emerge from our modelling that we think are interesting:
for example, in our model, the persistence of inequality (multiple attracting fixed points) depends on the
university using a selection rule that intentionally takes into account wealth, rather than just talent. We show
that if the university puts α = 1 weight on type in our model, there is only a single fixed point. This suggests
that changes in admission policies that reduce the focus on wealth (for example, switching to need-blind
admissions and reducing or eliminating legacy admissions) might have beneficial long-term effects. As another
takeaway, we find that aggressive interventions (in our model, that aim to lift the lower-wealth population in
one shot to the basin of attraction of the higher-wealth fixed point) are often the most cost effective in the
long run, compared to more modest interventions that would accomplish the same goal after k > 1 rounds.
On the other hand, incremental interventions become optimal when society heavily discounts the future. This
suggests that institutions that are able to formulate longer-term goals, but have the resources to act on them
immediately (for example, non-profit universities with large endowments) may be able to combat wealth
inequality more effectively.

1.2 Related Work

Our paper is related to economic models of inequality, which date back to Arrow [1973] and Phelps [1972].
For example, Coate and Loury [1993] and Foster and Vohra [1992] study two stage models in which the
existence of self-confirming equilibria can cause inequality to be persistent even when populations are ex-ante
identical.

More recently, the computer science community has begun studying dynamic models of fairness. Jabbari
et al. [2017] study the costs of imposing fairness constraints on learners in general Markov decision processes.
Hu and Chen [2018] study a dynamic model of the labor market similar to that of Coate and Loury [1993],
Foster and Vohra [1992] in which two populations are symmetric, but can choose to exert costly effort in
order to improve their value to an employer. They study a two-stage model of a labor market in which
interventions in a “temporary” labor market can lead to high-welfare symmetric equilibrium in the long
run. Liu et al. [2018] study a two-round model of lending in which lending decisions in the first round can
change the type distribution of applicants in the 2nd round, according to a known, exogenously specified
function. Liu et al. [2020] study a dynamic model where in each round, strategic individuals decide whether
to invest in qualifications and the decision-maker updates his classifier that decides which individuals are
qualified; they characterize the equilibria of such dynamics and develop interventions that lead to better
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long-term outcomes. Arunachaleswaran et al. [2020] study a model in which decisions over individuals and
populations are made along a multi-layered pipeline, where each layer corresponds to a different stage of life.
They consider the algorithmic problem faced by a budgeted centralized designer who aims to intervene on
the transitions between layers to obtain optimally fair outcomes, when such modifications are costly. Kannan
et al. [2019] study a two stage model of affirmative action in which a college may set different admissions
policies for an advantaged and disadvantaged group, but a downstream employer makes hiring decisions that
maximize their expected objective given their posterior belief on student qualifications (that depend on the
college’s policies). Jung et al. [2020] study an equilibrium model of criminal justice in which two populations
with different outside option distributions make rational decisions as a function of criminal justice policy;
they show that policies that have been proposed with equity considerations in mind (equalizing false positive
and negative rates) actually emerge as optimal solutions to a social planner’s optimization problem even
without an explicit equity goal.

We highlight two closely related papers. Heidari and Kleinberg [2021] also study a model of inter-
generational wealth dynamics across many rounds, in which both wealth (which they model as a binary)
and talent play a role in success, as a function of opportunities that can be allocated to a limited portion
of the population. Like us, Heidari and Kleinberg [2021] use college admissions as a running example of
an institution allocating the opportunities, and like us, study a model in which admissions to college plays
the role of determining wealth increase or decrease from one generation to the next. Our models differ in a
number of specifics, but the primary difference between these two works is that Heidari and Kleinberg [2021]
study the optimal policy for a very patient institution interested in maximizing its long-run payoff, and show
that it recovers a form of affirmative action, preferentially offering opportunities to the less wealthy population
so that it can reap the benefits of their resulting increased wealth in future generations. In contrast, we
study institutions that are myopic, and optimize only for their short-term reward. In this setting, we study
conditions under which such institutions do or do not perpetuate inequality, and study interventions in the
settings in which they do. Mouzannar et al. [2019] study a continuous time dynamic in which two populations
with binary, fully observable type are selected by a college with a myopic objective, whose selection rate
within each population changes their type distribution at the next round. They study conditions under which
imposing an “affirmative action” constraint (having the same selection rate within each population) can lead
to equal or improved outcomes in the long run. In addition to various differences in the models (they study a
setting with fully observed, binary types) and the class of interventions considered (we study changing what
is observable to the university and offering direct subsidies), the most salient difference is that our model
seeks to understand how wealth evolves over the long run, and has the crucial feature that wealth can be
partially conflated with type in the signal observed by the university. We also focus on intervening directly
on wealth via monetary subsidies. In contrast, Mouzannar et al. [2019] do not model wealth, and in their
dynamic, the type distribution directly evolves and is fully observable. Hence their myopic college does not
need to do any inference as in our model.

2 Preliminaries

Definition 1 (Attracting fixed points). Let f : R → R be a real-valued function and let x∗ be such that
f(x∗) = x∗. We call x∗ a fixed point of f . Further, let at(x) be the sequence defined by a0 = x and
at+1 = f(at); we say that x∗ is attracting for x if and only if at(x) converges to x∗.

Claim 1 (Attracting fixed points). Let f be a real-valued, continuous, non-decreasing function such that x∗

is a fixed point of f . If f(x) > x for all x ∈ [a, x∗), x∗ is attracting on [a, x∗). Similarly, if f(x) < x for all
x ∈ (x∗, b], x∗ is attracting on (x∗, b].

Proof. Let x ∈ [a, x∗). Let at(x) be the sequence defined by a0 = x and at+1 = f(at). a1 = f(a0) > a0, Since
f is non-decreasing a2 = f(f(a0)) ≥ f(a0), but f(x) > x ∀x ∈ [a, x∗), so this inequality is in fact strict, i.e
a2 > a1. Note that by induction, we have for all t that x∗ = f(x∗) ≥ at+1(x) = f(at(x)) > at(x) . . . > a0;
hence at is increasing and at ∈ [a, x∗] for all t. In particular, at is a convergent sequence with a finite limit in
[a, x∗]. Now, since f(x) > x for all x < x∗, x∗ is f ’s unique fixed point on [a, x∗]. Because f is continuous,
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we must have limt→+∞ at+1 = limt→+∞ f(at) = f (limt→+∞ at), i.e. the limit l must satisfy f(l) = l. The
only point on [a, x∗] that satisfies this condition is x∗, yielding the first part of the result. A similar argument
holds for the second part of the proof.

3 Model

We consider a university that has a non-atomic set of applicants from two different sub-populations (or
groups), denoted 1 and 2, and must decide which applicants to admit. Each applicant has a type T , where
the types are random variables drawn i.i.d. from a known distribution D; we assume that the distribution of
types is the same for both groups. Further, each applicant also has a wealth Wi; wealth is drawn i.i.d. from a
known distribution Wi which may depend on the applicant’s group i. We assume that wealth and types are
drawn independently of each other.

The university aims to make decisions based on each applicant’s type and wealth, and would like to admit
individuals for whom

αT + (1− α)W ≥ τ,
for some parameter α ∈ [0, 1] and some threshold τ . Here, α represents how much the university values type
versus wealth. However, the university cannot directly observe this quantity. Instead, we assume that it can
only see a score S for each applicant (for example in the form of a standardized test result), where the score
is a convex combination of both an applicant’s type T and wealth W . We write

S = βT + (1− β)W,

for some known β ∈ [0, 1]. The university then performs a Bayesian update and admits individuals that
satisfy

ET,W [αT + (1− α)W |S] ≥ τ.
We are interested in understanding the long-term dynamics of a process where the university’s decisions

(made as described above) affect the individuals’ future attributes. We consider a discrete time horizon, in
which at each time step t ∈ Z+, the university’s decisions shapes the distribution of wealth in each group
in time step t + 1. In particular, we assume that the expected wealth µt+1

i of group i in step t + 1 is the
fraction of group i that is admitted by the university at time step t. I.e., we write

µt+1
i = PS [ET,W [αT + (1− α)W |S] ≥ τ ] (1)

This is motivated by the fact that students that are admitted to competitive universities are expected to
reach better life outcomes and accumulate more wealth.

In the rest of the paper, we make the following assumptions on the functional form of the type and wealth
distributions:

Assumption 1. The type T at any time instant is drawn from the distribution T ∼ N
(
0, γ2

)
. The initial

wealth at time 0 for population i satisfies µ0 ∈ [0, 1], and Wi ∼ N
(
µti, σ

2
)

at time step t for a fixed constant
σ.

Note that the type can be centered around 0 without loss of generality, by changing the value of τ used by
the employer by the corresponding amount. The assumption µ0 ∈ [0, 1] is also without loss of generality, and
simply renormalizes the average wealth of a group to be between [0, 1], so long as we consider populations
with bounded wealth. Note that with our assumptions the mean wealth of each group always stays in the
range [0, 1] although the sampled wealth of individuals can fall outside this interval.

4 Wealth Dynamics and Properties

We note that the dynamics of each group only depend on the decisions made by the university within that
group. Therefore, we can treat groups independently. In this section, we focus on a single group at a time,
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and drop the dependencies on i in our notations for simplicity. We show that several attracting fixed points
can arise from our dynamics; in particular, there are regimes of parameters under which there is a low wealth
fixed point that groups with initially low wealth converge to, and a high wealth fixed point that groups with
initially high wealth converge to. In Section 5.3, we consider interventions that apply to more general update
functions that the ones described in this Section, so long as they have similar fixed point properties.

4.1 Computing the Wealth Update Rule

We start by characterizing the joint distributions of the type T , the wealth W , and the score S.

Claim 2. Let µ , E[W ]. We have that (T, S) forms a bivariate Gaussian distribution with mean (0, (1−β)µ)
and covariance matrix [

γ2 βγ2

βγ2 β2γ2 + (1− β)2σ2.

]
Similarly, (W,S) forms a bivariate Gaussian distribution with mean (µ, (1− β)µ) and covariance matrix[

σ2 (1− β)σ2

(1− β)σ2 β2γ2 + (1− β)2σ2.

]
The proof is provided in Appendix A.1. This allows us to compute the update function that maps the

wealth of a group in the current round, µt, to the wealth of that same group in the next round, µt+1:

Lemma 1. Recall that τ is the threshold used by the university to decide admission. At every time step t, we
have

µt+1 = 1− Φ
(
K (α, β, γ, σ)

(
τ − (1− α)µt

))
,

where K (α, β, γ, σ)) ,
√
β2γ2+(1−β)2σ2

αβγ2+(1−α)(1−β)σ2 and Φ is the cumulative density function of a standard Gaussian.

We denote the update rule function

f(x) , 1− Φ (K (α, β, γ, σ) (τ − (1− α)x)) . (2)

For simplicity of notation, we omit the dependency of f in the parameters of the problem when clear
from context. When not, we explicitly write the dependency of f in the parameters of interest. The proof of
Lemma 1 is mostly algebraic, and is provided in Appendix A.2.

4.2 Fixed Points and Convergence of the Dynamics

We can now use the closed-form expression for the update rule to study the properties of the wealth dynamics.
In this section, we bound the number of fixed points of our dynamics, provide properties of these fixed points,
and characterize which fixed point each initial wealth converges to. We start by noting that the update rule
has a simple shape. Indeed:

Claim 3. f(x) is continuous and increasing in x. Further, f is convex on [0, x∗] and concave on [x∗, 1] where

x∗ =


0 if τ ≤ 0,
τ

1−α if 0 < τ < 1− α,
1 if τ ≥ 1− α.

The proof of the above claim is given in Appendix A.3. We now use the above properties on the shape of
f to derive properties of its fixed point. First we remark that f has at least one fixed point, since f(0) > 0
and f(1) < 1, and f is continuous. Now, note that the number of fixed points of f is also upper-bounded:
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Figure 1: A wealth update function with a single fixed point, for α = 0.1, β = 0.6, γ = 0.4, σ = 1.1, τ = 0.2.
The update function is plotted in blue, its single fixed point in red, and the wealth dynamics induced by
the update function in green. Sub-figure (a) considers dynamics starting at an initial wealth of 0.2 while
sub-figure (b) considers dynamics starting at wealth 1.0.

Lemma 2. Suppose 0 < τ < 1 − α, then f(x) = x has at most 3 solutions for x ∈ [0, 1]. If f has 3 fixed
points z1 < z2 < z3, it must be that z1 <

τ
1−α < z3. If τ ≤ 0 or τ ≥ 1−α, f(x) = x only has a single solution

for x ∈ [0, 1].

The proof is provided in Appendix A.4. Lemma 2 has direct implications for disparities across groups
with different starting expected wealth. In particular, the number of fixed points of f determines whether
different groups must converge to equal wealth (the case in which there is only a single fixed point) in the
long-run or whether there are cases in which wealth inequality is persistent (the case in which there are
multiple fixed points). We discuss these implications in more details in the rest of this section.

The Case of a Single Fixed Point We now study conditions under which f has single vs. multiple fixed
points. We first consider the case of a single fixed point. In this case, we remark that the single fixed point
has the following property:

Claim 4. If z is the single fixed point of f , then z is attracting on [0, 1].

Proof. Since f(0) > 0, f(1) < 1, and f is continuous and has a single fixed point z, it must be that
f(x) > f(z) = z for x < z and f(x) < f(z) = z for x > z. Applying Claim 1 concludes the proof.

This implies in particular that when f has a single fixed point z, wealth dynamics converge to this fixed
point no matter what the starting wealth was. This means in particular that there are no long-term disparities
between populations of different initial socio-economic statuses (though they may take different amounts of
time to reach the same wealth), i.e. the dynamics self correct for initial wealth disparities. Figure 1 shows an
instantiation of a wealth update functions with a single fixed point and the corresponding wealth dynamics
(in green); the plots illustrate convergence of the dynamics to the single fixed point starting both from an
initially low wealth (Figure 1 (a)) and from an initially high wealth (Figure 1 (b)).

We note that Lemma 2 already implies that there exist interesting situations in which the dynamics have a
single attracting fixed point and wealth dynamics are self-correcting. The first one is when τ is small (τ < 0);
i.e., the university is not very selective in its admissions. Intuitively, this leads to most individuals from
any group being admitted (almost) independently of their starting wealth, which allows even economically
disadvantaged groups to build wealth over time. The other situation deriving from Lemma 2 arises when
τ > 1− α. This can arise for two reasons: first, is the university is very selective and sets high values of τ ,
wealth becomes insufficient to qualify an individual for admission (as then (1− α)E[W |S] ≤ 1− α < τ); an
agent must have sufficiently high (inferred) type to be admitted, which helps reduce disparities due to wealth.
This can also arise when α is large and the university is mostly interested in type over wealth. Intuitively, in
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this case, the university pays significant attention to their posterior belief on the type of an individual, which
facilitates equalizing the treatment of groups of different wealth since they have the same type distributions;
while the university cannot observe type directly, they discount for average wealth more (by a factor of
(1− α)µ) hence correct for wealth disparities more as α is smaller.

Below, we provide an additional condition under which f has a single fixed point:

Claim 5. If K(α, β, γ, σ) ≤
√

2π
1−α , f is a contraction mapping and has a unique attracting fixed point.

Proof. This immediately follows from f ′(x) = K(1−α)√
2π

exp
(
−K2(τ − (1− α)x)2/2

)
and from

exp
(
−K2(τ − (1− α)x)2/2

)
≤ 1 (with equality at x = τ/(1− α)). Note that f(0) > 0 and f(1) < 1 so the

fixed point z must satisfy f(x) < z if and only if x < z and must be attracting.

We note that K(α, β, γ, σ) =

√
V ar(S)

Cov(D,S) where D = αT +(1−α)W . This implies that, holding the college’s

objective function (i.e., α) constant, the better the scoring rule aligns with the university’s admissions criteria
(i.e. as the covariance between D and S increases), the smaller K becomes. This makes the condition that f
is a contraction mapping with a single fixed point easier to satisfy, which in turn causes wealth dynamics to
self-correct for initial inequality. When α → 1, the condition is always satisfied, and f has a single fixed
point. This may not be surprising in that in this case the university only cares about type in admissions, and
the university requires a higher threshold on scores for wealthier populations; this helps reduce disparities
across populations with disparate wealth.

The Case of Multiple Fixed Points We first characterize which fixed points are attracting when multiple
points arise, and which regime of initial wealth lead to which fixed points. We focus on the case of three fixed
points, as the case of two fixed points is a corner case than can only arise if f(x) is tangent to Id(x) = x at
one of the fixed points.2

Claim 6. Suppose f has 3 fixed points, denoted z1 < z2 < z3. Then z1 is attracting for [0, z2) and z3 is
attracting for (z2, 1].

Proof. This follows from the proof of lemma 2. Indeed, let g(x) = f(x)− x, we have that g(0) = f(0) > 0,
then g must decrease below 0, increase above 0, and decreases below 0 again as g(1) = f(1)− 1 < 0. This
implies that f(x) > x for x < z1 and x ∈ (z2, z3), while f(x) < x for x ∈ (z1, z2) and x > z3.

In particular, when there are three fixed points, a population that starts with low wealth will converge to
the first fixed point, while a group with large initial wealth will converge to the third fixed point. In this case,
initial disparities in wealth persist in the long term, and interventions are needed for different populations to
obtain equitable long-term wealth outcomes. Figure 2 shows a wealth update function with three fixed points
and the corresponding dynamics for two different starting points. We note that starting at low wealth leads
to convergence to the first and lowest fixed point, while starting at relatively high health leads to convergence
to the highest fixed point. The figure illustrates how wealth disparities can propagate and amplify over time.

We note that such situations can only arise in the regime in which 0 < τ < (1− α). In particular:

Claim 7. Suppose K(α, β, γ, σ) >
√

2π
1−α and τ = 1−α

2 . Then f has 3 fixed points.

Proof. In this case, note that x∗ = τ
1−α = 1

2 . Further, we know that

f(x∗) = 1− Φ (K (α, β, γ, σ) · (τ − (1− α)x∗))

= 1− Φ(0)

= 1/2,

2Suppose this is not the case. f(0) > 0 hence f(x) > x before the first fixed point. Because it is not tangent to the identity
line, it must then be that f(x) < x between the first and the second fixed point. Similarly, it must then be that f(x) > x after
the second, last fixed point. This contradicts f(1) < 1.
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Figure 2: A wealth update function with 3 fixed points, for α = 0.1, β = 0.95, γ = 1.4, σ = 1.1, τ = 0.5. the
update function is plotted in blue, its fixed points in red, and the wealth dynamics induced by the update
function in green. Sub-figure (a) considers dynamics starting at an initial wealth of 0.5 while sub-figure (b)
considers dynamics starting at an initial wealth of 0.7.

implying that x∗ = 1/2 is a fixed point of f . Further,

f ′(x∗) =
K(1− α)√

2π
> 1,

hence f(x) < x in a small neighborhood (x∗ − ε, x∗) and f(x) > x in a small neighborhood (x∗, x∗ + ε). By
continuity of x and the fact that f(0) > 0, f(x) = x must have a solution on [0, x∗). Similarly, since f(1) < 1,
f(x) = x must have a solution on (x∗, 1].

Note that because f is continuous in τ , f must have three fixed points for any τ in a neighborhood of
1−α

2 . I.e., there exists a continuous range of values of τ for which f has three fixed points, showing that such
situations are not a corner case of our framework, unlike when f has two fixed points.

Remark 1. There is a gap between the conditions given in Claim 5 and Lemma 2 under which a single fixed
point arises, and the condition given in Claim 7. In particular, we remark that even if f is not a contraction

mapping and K >
√

2π
1−α , or when 0 ≤ τ ≤ 1 − α, it may still have only a single fixed point. To investigate

how often 3 fixed points can arise, we picked a uniform grid of parameter values (α, β, γ, σ, τ) ∈ [0, 1]5 and

investigated what fraction of the parameters that satisfy either 0 ≤ τ ≤ 1− α or K >
√

2π
1−α actually lead to an

update rule with three fixed points. We found that this was the case for roughly 30 percent of the values we
explored, implying the existence of a significant range of parameters for which there are disparities in the long
term wealth of different populations.

5 Interventions To Improve Long Term Population Wealth

In this section, we consider different types of intervention aiming at improving and equalizing population
wealth, when the wealth dynamics have multiple fixed points (and so are not necessarily self correcting). We
consider three types of interventions: i) changing the design of the admission rule used by the university, ii)
changing the design of the standardized test or scoring rule that the university relies on, and iii) providing
subsidies to disadvantaged groups.

5.1 Changing the Admission Rule

Since in our model, it is admission to university that confers a wealth advantage to the next generation, a
natural intervention is to increase the capacity of the university, thereby admitting more people. Rather than

9



changing the objective function of the university (α), we model this kind of intervention by decreasing the
university’s admissions threshold τ . We note that although we do not explicitly quantify it, increasing the
capacity of a university will come at some financial cost, and so this kind of intervention is not necessarily
incomparable to the direct subsidies we consider later.

The claim below characterizes how the fixed points of f change when we change the value of τ . For the
sake of notation, we let f(., τ) be the update rule when the chosen threshold is τ , and omit the dependencies
of f in the other parameters of the problem.

Theorem 1. Fix α, β, γ, σ. For a given admission threshold τ , let z1(τ) < z2(τ) < z3(τ) be the fixed points
of f when all 3 exist. Let τ ′ < τ be such that f(., τ ′) has 3 fixed points, we have

z1(τ ′) > z1(τ) and z3(τ ′) > z3(τ),

but
z2(τ ′) < z2(τ).

Proof Sketch. The proof follows simply by showing that the update function is decreasing in τ . In turn,
decreasing τ moves the update rule f “up”, which increases attracting fixed points and decreases unstable
ones. The full proof is given in Appendix B.1.

In interpreting Theorem 1, we recall that only the first and third fixed points z1 and z3 are attracting,
and that z2 is unstable (has no points x for which it is attracting for x 6= z2). Hence, if we are in a situation
in which there is persistent wealth inequality (multiple fixed points), we find that if we can decrease the
admissions threshold τ of the university, then either :

1. We increase the wealth of both of the attracting fixed points (and hence the wealth of both populations,
irrespective of which attractive fixed point they are at). By decreasing z2 we also reduce the size of the
attracting region [0, z2) of the lower wealth fixed point, thus enabling poorer populations to converge to
the most desirable fixed point. Or

2. We move the dynamics to one in which there is only a single fixed point, and hence eliminate wealth
inequality.

5.2 Changing the design of the scoring rule S

The college has to engage in inference about an applicant’s type and wealth when β 6= α, because the signal
it receives does not align with its objective function. What if we can modify the signal (by e.g. changing the
design of a standardized test) to more closely align the signal with the college’s objective?

In this section we characterize how the fixed points of f change when we change the value of β. We denote
f(., β) the update rule when the scoring rule uses parameter β, while the other parameters of the problem
remain fixed.

Theorem 2. Fix α, τ, γ, σ. For a given β, let z1(β) < z2(β) < z3(β) be the fixed points of f when all 3 exist.
Suppose β < α and let β′ ∈ (β, α) be such that f(., β′) has 3 fixed points, then

z1(β′) > z1(β) and z3(β′) < z3(β).

Similarly, if β > α and β′ ∈ (α, β), we have

z1(β′) > z1(β) and z3(β′) < z3(β).

Proof Sketch. The first part of the proof follows simply by showing that the update function is increasing in
β for x < τ/(1 − α) (where the first fixed point lies) and decreasing in β as for x > τ/(1 − α) (where the
third fixed point lies). In turn, increasing β < α towards α move the update rule f “up” around the first
fixed point and “down” around the third fixed point, which increases z1 and decreases z3. A similar argument
holds for β > α. The full proof is given in Appendix B.2.
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Intuitively, one might suppose that to reduce wealth disparities, we should redesign tests so as to make
them reflect type more strongly and wealth less strongly (since types are distributed identically across groups).
But Theorem 2 shows that counter-intuitively, this need not be the case3. Instead, what Theorem 2 shows
is that in order to reduce inequality, we want to move β towards α, causing the signal to better reflect the
objective function of the college —- even when this results in reducing the extent to which the signal reflects
type4. Theorem 2 shows that moving β towards α always has the effect of reducing wealth disparities. It
either:

1. Increases the wealth of the less wealthy attracting fixed point, and decreases the wealth of the more
wealthy attracting fixed point, thereby decreasing the long term wealth disparity, or it

2. Shifts the dynamic to one that has only a single fixed point, thereby eliminating long term wealth
disparities.

5.3 Direct Subsidies

We have thus far considered interventions that can be applied by the college (admitting more students) or a
testing body (changing the design of the signal). In this section, we take the point of view of a funding body
or governmental agency that can provide direct monetary subsidies to populations. We generalize the class of
functions we study to include any function f satisfying the following properties:

Assumption 2. f is continuous and increasing. Further, f has three fixed points z1 < z2 < z3 with f(x) > x
on [0, z1] and [z2, z3] and f(x) < x on [z1, z2] and [z3, 1].

The above assumption captures the main properties of our function f = 1−Φ (K (α, β, γ, σ) (τ − (1− α)x))
when it has three fixed points and implies the same attracting properties we established for z1, z2, and z3,
but also encompasses more general update rules that need not result from the Gaussian inference process
we have studied thus far. We note that this allows us to study general S-shaped function with diminishing
returns at both ends of the socio-economic spectrum. Such functions model situation in which people of very
low income or very high income see little upward mobility (in the first case because of a lack of access to
opportunities, and in the second case due to the fact that individuals of higher income are rare), whereas
middle income individuals have significant opportunities to improve their wealth.

We denote by C(µ, t) the subsidy given to a population with wealth µ at time step t. The wealth of a
population t+ 1 then depends of the wealth in time t as

µt+1 = f
(
µt + C(µt, t)

)
.

In this setting, we consider interventions that allow a population to reach beyond the second fixed point
z2. Once a population reaches wealth (even slightly) over z2, their wealth naturally evolves to the highest
attracting fixed point z3 over time; i.e., wealth dynamics self-correct for disparities with no intervention
needed. For the same reason, we only consider µ0 ∈ [z1, z2]; this is because populations with µ0 < z1 will
converge to z1 without intervention, and we can start intervening once µ0 reaches z1, while a population with
µ0 > z2 will reach the best long-term outcome (the highest fixed point, z3) on its own. Therefore, from now
on, we assume C(µ) = 0 for all µ /∈ [z1, z2]. We can now formulate our centralized designer’s objective, which
is to minimize the following loss function:

L(C) = λ

T (C)−1∑
t=0

ρtC(µt, t) + (1− λ)

T (C)−1∑
t=0

ρt(z2 − µt),

3Even when β → 1, f may have three fixed points: by Claim 7, this arises for example when K(α, 1, γ, σ) = 1
αγ

> 1−α√
2π

and

τ = 1−α
2

. In this case, setting β = α surprisingly leads to better outcomes than β = 1.
4Of course, if we can, we would prefer to increase the extent to which the college values type rather than wealth, but to the

extent that we cannot do this, then we want to align the test with the college’s objective.
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where ρ, λ ∈ [0, 1), and T (C) = min{t s.t. µt ≥ z2} is the first time step such that µt ≥ z2. Here ρ is a
discounting factor; the lower ρ is, the less the designer cares about future as opposed to immediate outcomes.
The objective is a convex combination of two terms, with weights controlled by λ. The first term consists
of the discounted monetary cost of the subsidies (the sum goes up to time T (C)− 1, since after the wealth
of the population crosses z2, the subsidies cease. This term represents a preference to spend less money on
direct subsidies. The second term consists of the sum discounted difference between the target wealth z2 that
the intervention is aiming at, and the wealth of the population at the current round. This term represents a
preference to quickly increase the wealth of the lower wealth population. λ represents the relative strength of
these two preferences.

Note that z2 − µ0 is a constant term that does not depend on the designer’s interventions, hence we will
equivalently aim to minimize

L(C) = λ

T (C)−1∑
t=0

ρtC(µt, t) + (1− λ)

T (C)−1∑
t=1

ρt(z2 − µt),

where we drop the discounted difference between z2 and the initial wealth µ0 at t = 0.

Algorithmically finding a near-optimal subsidy function C(.) We note that in our setting, one may
discretize the space of possible costs and use dynamic programming to find optimal interventions from each
possible starting point. However, doing so requires carefully understanding the wealth update function f . In
practice, detailed knowledge of f will be hard to come by. For this reason, in the rest of this section, we will
aim for a “detail free” solution and consider a simple class of constant subsidies and study how they can be
applied with minimal information about the wealth update f .

Constant Subsidies In the rest of this section, we consider the case in which C(µ) is constant in µ for
z1 ≤ µ ≤ z2. I.e. there exists C ∈ [0, 1] such that C(µ) = C for all µ ∈ [z1, z2] and C(µ) = 0 otherwise. We
call these C-subsidy interventions. We qualify a C-subsidy intervention as a k-shot intervention if it takes
k time steps under the subsidy to reach wealth (at least) z2 when starting at wealth z1, i.e. if T (C) = k.
Note that different values of C may lead to the same number of steps k such that µk ≥ z2, i.e. there may be
several values of C that qualify as a k-shot intervention for a given value of k.

Our aim is to give guidelines on how to choose C while using minimal information about the function f .
Here, we will encode this minimal information as a single, real parameter ∆, defined as

∆ = max
x∈[z1,z2]

x− f(x). (3)

Intuitively, ∆ measures how difficult it is for a subsidy to have an effect on wealth that propogates in the
next round. When ∆ → 0, we have that f(x) → x on x ∈ [z1, z2], and investing a subsidy of C increases
the population wealth by C, since f(µt + C) → µt + C. However, we have that for at least one value of
µt, f(µt + C) = µt + C −∆, implying that when ∆ is large, a large amount of the subsidy is lost in the
next round, and so its overall effect is small. If we want to guarantee that our subsidies will eventually lift
the lower wealth population to the higher wealth fixed point independently of its starting point, we need to
consider subsidies in which C > ∆.

Claim 8. Suppose C ≤ ∆. Then there exists a starting wealth µ0 ∈ [z1, z2) such that µt < z2 for all t; i.e.,
µt never reaches z2. On the other hand, if C > ∆, there exists t such that µt ≥ z2.

Proof. Let x∆ ∈ (z1, z2) be any value of x such that f(x) = x−∆ (note that x∆ 6= z1, z2 where f(x)−x = 0,
since f(x) < x on [z1, z2] if f has three fixed points). Suppose µt < x∆ − ∆ and C ≤ ∆, then µt+1 =
f (µt + C) < f (x∆ −∆ + C) ≤ f(x∆) = x∆−∆. I.e., µt < x∆−∆ < z2 for all t so long as µ0 ∈ [z1, x∆−∆);
note that the interval is not empty as x∆ −∆ = f(x∆) > z1. For the second part of the proof, note that by
definition of ∆, for all t, µt+1 = f (µt + C) ≥ µt + C −∆, hence the group wealth increases by at least a
constant amount C −∆ at each time step.
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Intuitively, this holds because if C is smaller than ∆, it becomes insufficient to compensate the fact that
the wealth of a group can decrease by an amount up to ∆ at each round. In the rest of this section, we aim
to understand how different interventions for different values of C compare to each other, and when to choose
low-cost versus high-cost interventions. Before doing so, we note that there is always a single, optimal 1-shot
intervention among all such 1-shot interventions:

Fact 1. The 1-shot intervention with cost C = z2 − µ0 has smaller cost than any other 1-shot intervention.
This immediately follows from the fact that any 1-shot intervention with cost C has loss λC, and that no
intervention with C < z2 − µ0 can reach z2 in one shot, as µ1 = f(µ0 + C) < f(z2) = z2.

We now provide a sufficient condition under which the 1-shot intervention is guaranteed to be optimal.

Theorem 3. Suppose ρ ≥ λ. Then, any k-shot intervention has higher loss than the 1-shot,
(
z2 − µ0

)
-subsidy

intervention. I.e. the
(
z2 − µ0

)
-subsidy intervention is optimal.

Proof. The proof follows by induction on k. First, let us consider the base case when k = 2, and let C
be any cost that leads to convergence in two shots. Consider any starting point µ0 ∈ [z1, z2]. Note that
the sequence of wealth µ0 → µ1 → µ2 must satisfy µ1 < z2 and µ2 ≥ z2. Further, note that because
µt+1 = f (µt + C) ≤ µt + C we must have C ≥ µt+1 − µt. We then have that the loss L satisfies

L(C) = λC + (1− λ)ρ(z2 − µ1) + ρ(λC)

≥ λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1) + ρ[λ(z2 − µ1)]

= λ(µ1 − µ0) + ρ
(
z2 − µ1

)
≥ λ(µ1 − µ0) + λ

(
z2 − µ1

)
= λ(z2 − µ0).

This concludes the case of k = 2.
For k > 2, note that we have µk−1 < z2 and µk ≥ z2. Letting C be any cost that leads to reaching z2 in

k shots, we have that the loss function is given by

L(C) ≥ λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1) +

[
λ

k−1∑
t=1

ρtC + (1− λ)

k−1∑
t=2

ρt(z2 − µt)

]

= λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1) + ρ

[
λ

k−1∑
t=1

ρt−1C + (1− λ)

k−1∑
t=2

ρt−1(z2 − µt)

]

= λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1) + ρ

[
λ

k−2∑
t=0

ρtC + (1− λ)

k−2∑
t=1

ρt(z2 − µt+1)

]
.

The second term in the last line of the inequality is the loss function when starting at µ1 ∈ [z1, z2] instead of
µ0. Indeed, write νt = µt+1 the sequence that starts at µ1 and satisfies νk = µk−1 < z2 but νk−1 = µk ≥ z2

(hence this new sequence converges in k − 1 rather than k steps); the loss of this sequence is given by:

λ

k−2∑
t=0

ρtC + (1− λ)

k−2∑
t=1

ρt(z2 − νt) = λ

k−2∑
t=0

ρtC + (1− λ)

k−2∑
t=1

ρt(z2 − µt+1).

By the induction hypothesis, since the cost of a one-shot intervention is lower than that of any k − 1-shot
intervention, we have that

λ

k−2∑
t=0

ρtC + (1− λ)

k−2∑
t=1

ρt(z2 − µt+1) ≥ λ
(
z2 − µ1

)
.

Therefore, L(C) is lower bounded by

λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1) + ρ[λ(z2 − µ1)] ≥ λ(µ1 − µ0) + λ(z2 − µ1) ≥ λ(z2 − µ0).
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In particular, 1-shot interventions become optimal when the discounting factor ρ is relatively large, or
when λ is relatively small. The first result intuitively arises because when ρ becomes large, the centralized
designer cares about cost and wealth of the group at each time step; a 1-shot intervention allows the designer
to incur a single up-front cost for intervening (instead of inefficiently investing a smaller cost per round over
more rounds, and losing some of this invested cost, up to ∆, at each time step) while immediately reaching
high wealth outcomes. On the other hand, no matter what ρ is, when λ becomes small, the designer only
cares about reaching high wealth as soon as possible, hence prefers faster interventions. We now provide
sufficient conditions under which 1-shot is not optimal:

Theorem 4. If ρ < λ
(

1− C
z2−µ0

)
, the C-subsidy intervention has lower loss than the 1-shot,

(
z2 − µ0

)
-

subsidy intervention.

Proof. Consider any intervention with cost C such that µk ≥ z2, i.e. we reach z2 after at most k time steps.
First, remember that the loss for this intervention is given by

λ

k−1∑
t=0

ρtC + (1− λ)

k−1∑
t=1

ρt(z2 − µt).

Noting that µt ≥ µ0 for all t, hence z2 − µt ≤ z2 − µ0, we can upper bound the loss by

λ

+∞∑
t=0

ρtC + (1− λ)

+∞∑
t=1

ρt(z2 − µ0) =
λC

1− ρ
+ (1− λ)

ρ

1− ρ
(z2 − µ0)

≤ λC

1− ρ
+ (1− λ)

ρ

1− ρ
(z2 − µ0).

In turn, we have that a sufficient condition for C-subsidy to have a lower loss than one-shot is given by

1

1− ρ
(
λC + (1− λ)ρ(z2 − µ0)

)
< λ(z2 − µ0).

This can be rewritten as

λC + (z2 − µ0)ρ− λ(z2 − µ0)ρ < λ(z2 − µ0)− λ(z2 − µ0)ρ,

i.e.
(z2 − µ0)ρ < λ(z2 − µ0)− λC,

which immediately leads to the theorem statement.

Theorem 4 gives conditions under which the minimal 1-shot intervention has higher cost than the C-
subsidy intervention. But recall that we can take C as small as ∆ + ε (for arbitrarily small ε) and still get
an intervention that reaches the region of attraction for the highest wealth fixed point. Thus we have the
following corollary, which gives a necessary condition for the 1-shot intervention to be optimal:

Corollary 1. If ρ < λ
(

1− ∆
z2−µ0

)
, then the (∆ + ε)-subsidy intervention has lower loss than the 1-shot,

(z2 − µ0)-subsidy intervention as ε→ 0.

The above corollary provides the most stringent condition that we can derive from Theorem 4 for 1-shot
not to be optimal. In particular, we note that the cheapest intervention we can use, the (∆ + ε)-subsidy

one, is better than the 1-shot intervention so long as ρ < λ
(

1− ∆
z2−µ0

)
. We note that the combination of

Theorem 3 and Corollary 1 show that when ∆ becomes small and subsidy interventions are efficient, the
condition that ρ ≥ λ becomes nearly tight for optimality of the 1-shot, (z2 − µ0)-subsidy intervention. When
∆ is large, there are still situations in which the condition of Corollary 1 is essentially necessary and sufficient
for the (∆ + ε)-subsidy to be better than the 1-shot intervention, as evidenced by the example below:.
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Example 1. Suppose f is continuous, but such that it is linear on interval (a, b) ⊂ (z1, z2) with f(x) = x−∆
within said interval. We have immediately that µt+1 = µt + C −∆ hence µt = µ0 + t(C −∆) so long as t is
such that µt ∈ (a, b). Here, the one-shot intervention still has loss λ(z2 − µ0). However, the (∆ + ε)-subsidy

intervention reaches z2 − ε, hence z2, after no less than Tε = b−µ0

ε →ε→0 +∞ time steps. In turn, it has loss
at least

L(∆ + ε) ≥ λ
Tε−1∑
t=0

ρt(∆ + ε) + (1− λ)

Tε−1∑
t=1

ρt(z2 − µ0 − tε)

→ε→0
λ

1− ρ
∆ +

ρ(1− λ)

1− ρ
(z2 − µ0).

The proof of Theorem 4 shows that the loss is also upper-bounded by

L(∆ + ε) ≤ λ

1− ρ
(∆ + ε) +

ρ(1− λ)

1− ρ
(z2 − µ0).

Hence, it must be that this bound is essentially tight, i.e. that

L(∆ + ε)→ε→0
λ

1− ρ
∆ +

ρ(1− λ)

1− ρ
(z2 − µ0).

In particular, in this case, the condition of Theorem 4 and Corollary 1 is not only sufficient but also necessary
for the (∆ + ε)-subsidy intervention to have better loss than the one-shot intervention.

Acknowledgements

This work was supported in part by NSF grants AF-1763307 and FAI-2147212 and a grant from the Simons
Foundation.

References

Kenneth Arrow. The theory of discrimination. Discrimination in labor markets, 3(10):3–33, 1973.

Eshwar Ram Arunachaleswaran, Sampath Kannan, Aaron Roth, and Juba Ziani. Pipeline interventions.
arXiv preprint arXiv:2002.06592, 2020.

Stephen Coate and Glenn C Loury. Will affirmative-action policies eliminate negative stereotypes? The
American Economic Review, pages 1220–1240, 1993.

Dean P Foster and Rakesh V Vohra. An economic argument for affirmative action. Rationality and Society, 4
(2):176–188, 1992.

Hoda Heidari and Jon Kleinberg. Allocating opportunities in a dynamic model of intergenerational mobility.
In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pages 15–25,
2021.

Lily Hu and Yiling Chen. A short-term intervention for long-term fairness in the labor market. In Pierre-
Antoine Champin, Fabien L. Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis, editors, Proceedings of
the 2018 World Wide Web Conference on World Wide Web, WWW, pages 1389–1398. ACM, 2018.

Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron Roth. Fairness in
reinforcement learning. In International Conference on Machine Learning, pages 1617–1626, 2017.

Christopher Jung, Sampath Kannan, Changhwa Lee, Mallesh Pai, Aaron Roth, and Rakesh Vohra. Fair
prediction with endogenous behavior. In Proceedings of the 21st ACM Conference on Economics and
Computation, pages 677–678, 2020.

15



Sampath Kannan, Aaron Roth, and Juba Ziani. Downstream effects of affirmative action. In Proceedings of
the Conference on Fairness, Accountability, and Transparency, pages 240–248, 2019.

Lydia T Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. Delayed impact of fair machine
learning. In International Conference on Machine Learning, 2018.

Lydia T Liu, Ashia Wilson, Nika Haghtalab, Adam Tauman Kalai, Christian Borgs, and Jennifer Chayes.
The disparate equilibria of algorithmic decision making when individuals invest rationally. In Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency, pages 381–391, 2020.

Hussein Mouzannar, Mesrob I Ohannessian, and Nathan Srebro. From fair decision making to social equality.
In Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 359–368, 2019.

Edmund S Phelps. The statistical theory of racism and sexism. The american economic review, pages 659–661,
1972.

A Omitted Proofs for Section 4.2: Wealth Dynamics

A.1 Proof of Claim 2

Because S is a convex combination of W and T , both (T, S) and (W,S) are multivariate Gaussians. The
covariances are given by

Cov(T, S) = βCov(T, T ) + (1− β)Cov(T,W ) = βγ2,

Cov(W,S) = βCov(W,T ) + (1− β)Cov(W,W ) = (1− β)σ2

and

Cov(S, S) = β2Cov(T, T ) + (1− β)2Cov(W,W ) + 2β(1− β)Cov(T,W ) = β2γ2 + (1− β)2σ2.

A.2 Proof of Lemma 1

Using Claim 2, we have that

E[T |S = s] =
Cov(T, S)

V ar(S)
(s− (1− β)µ) =

βγ2

β2γ2 + (1− β)2σ2
(s− (1− β)µ),

and

E[W |S = s] = µ+
Cov(W,S)

V ar(S)
(s− (1− β)µ) = µ+

(1− β)σ2

β2γ2 + (1− β)2σ2
(s− (1− β)µ).

Therefore, the university admits a student with score s if and only if(
αβγ2 + (1− α)(1− β)σ2

β2γ2 + (1− β)2σ2

)
(s− (1− β)µ) ≥ τ − (1− α)µ,

which can be rewritten as

s− (1− β)µ√
β2γ2 + (1− β)2σ2

≥
√
β2γ2 + (1− β)2σ2

αβγ2 + (1− α)(1− β)σ2
· (τ − (1− α)µ) .

Noting that by Claim 2, S−(1−β)µ√
β2γ2+(1−β)2σ2

follows a normal distribution with mean 0 and variance 1; the

expression for µt+1 (hence the update rule) is then given by

1− Φ

( √
β2γ2 + (1− β)2σ2

αβγ2 + (1− α)(1− β)σ2
· (τ − (1− α)µ)

)
= 1− Φ (K (α, β, γ, σ) · (τ − (1− α)µ))

This concludes the proof.
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A.3 Proof of Claim 3

For simplicity of notations, let us write K instead of K(α, β, γ, σ). Continuity is immediate from f being the
composition of a linear (hence continuous) function and the continuous function Φ. Now, we have

f ′(x) =
K(1− α)√

2π
exp

(
−K2(τ − (1− α)x)2/2

)
≥ 0,

showing f is increasing. Finally, the second order derivative of the update rule f ′′(x) is given by

K3(1− α)2(τ − (1− α)x)√
2π

· e−K
2(τ−(1−α)x)2/2.

The result immediately follows, as f ′′(x) ≥ 0 if and only if x ≤ τ
1−α .

A.4 Proof of Lemma 2

Let us write g(x) = f(x)− x. Note that f(x) has a fixed point if and only if g(x) = 0.

1. τ ≥ 1−α and f is convex on [0, 1]. Then g′(x) = f ′(x)−1, g′′(x) = f ′′(x), and g is also convex. Further,
note that g(0) = f(0)− 0 > 0 and g(1) = f(1)− 1 < 0. Therefore, g(x) = 0 can only have one solution
at most. Indeed, let x∗ be the smallest value in [0, 1] for which g(x∗) = 0; we have that for all x ∈ (x∗, 1],
we can write x∗ = λx+ (1− λ)1 for some λ ∈ (0, 1], Then, we have g(x) ≤ λg(x∗) + (1− λ)g(1) < 0 by
convexity.

2. τ ≤ 0 and f is concave on [0, 1]. Then f can have at most 1 fixed point by the same argument as above.

3. Otherwise, note that g′(x) = f ′(x)− 1 is first increasing up until x∗ = τ/(1− α) then decreasing in x.
Therefore, g′ has at most two zeros x− and x+. If g′ has two zeros, they must satisfy x− < x∗ and
x+ > x∗, and that g′(x) < 0 for x < x−, g′(x) ≥ 0 for x ∈ [x−, x+], and g′(x) < 0 for x > x+. g then
has at most three intersection with 0, with the first intersection on [0, x−], the second on [x−, x+], and
the third on [x+, 1]. When g′ has at most one zero, g can only have at most 2 zeros

This concludes the proof.

B Omitted Proofs for Section 5: Interventions for Long-term Fair-
ness

B.1 Proof of Theorem 1

This follows from the fact that f(x, τ) is decreasing in τ for all x ∈ [0, 1]. First, this implies that f(x, τ ′) >
f(x, τ) ≥ x for all x ∈ [0, z1(τ)]. Hence z1(τ ′) > z1(τ). For the third fixed point, note that f(z3(τ), τ ′) >
f(z3(τ), τ) = z3(τ); because f is continuous and f(1) < 1, this immediately implies that f has a fixed point
on (z3(τ), 1], hence z3(τ ′) > z3(τ).

Finally, let us consider the case of the second fixed point. First, we note that it must be that z1(τ ′) < z2(τ).
Suppose this is not the case, it must be that f(x, τ ′) > x for all x < z2(τ). Further, for all x ∈ [z2(τ), z3(τ)],
we must have f(x, τ ′) > f(x, τ) ≥ x, hence f(x, τ ′) > x for all x < z3(τ). This implies z1(τ ′) > z3(τ).
However, we must have z3(τ) ≥ τ/(1− α) while z1(τ ′) ≤ τ ′/(1− α) < τ/(1− α), which is a contradiction.
Now that we have z1(τ ′) < z2(τ), note that it must be that f(x, τ ′) < x on a small neighborhood
(z1(τ ′), z1(τ ′) + ε) by our characterization of the fixed points of f . Since f is continuous and f(z2(τ), τ ′) >
f(z2(τ), τ) = z2(τ), there exists a fixed point on (z1(τ ′), z2(τ). Since z3(τ ′) > z3(τ) > z2(τ), this must be
the second fixed point z2(τ ′).

17



B.2 Proof of Theorem 2

The partial derivative of f with respect to β is given by

∂

∂β
f(x, β) = [τ − (1− α)x] · φ (K(α, β, γ, σ)(τ − (1− α)x))

× (α− β)γ2σ2√
β2γ2 + (1− β)2σ2(αβγ2 + (1− α)(1− β)σ2)2

where φ is the probability density function of a standard Gaussian. Note that for α < β, ∂
∂β f(x, β) < 0

when x < τ/(1 − α) and ∂
∂β f(x, β) > 0 when x > τ/(1 − α). In particular, f(x, β′) > f(x, β) ≥ x for all

x ≤ z1(β)(< τ/(1 − α)), hence f(.β′) has no fixed point on [0, z1(β)]. This means that z1(β′) > z1(β).
Similarly, f(x, β′) < f(x, β) ≤ x for all x ≥ z3(β)(> τ/(1− α)), hence f has no fixed point on [z3(β), 1] and
z3(β′) < z3(β). A similar proof follows for α ≥ β′ > β.
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