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Abstract—Tracking of elderly people is indispensable to assist
them as fast as possible. In this paper, we propose a new
trajectory tracking technique to localize elderly people in real
time in indoor environments. A mobility model is constructed,
based on the hidden Markov models, to estimate the trajectory
followed by each person. However, mobility models can not be
used as standalone tracking techniques due to accumulation of
error with time. For that reason, the proposed mobility model
is combined with measurements from the network. Here, we use
the power of the WiFi signals received from surrounding Access
Points installed in the building. The combination between the
mobility model and the measurements result in tracking of elderly
people. Real experiments are realized to evaluate the performance
of the proposed approach.

Index Terms—elderly people, hidden Markov models, mobility,
tracking, WiFi RSSI.

I. INTRODUCTION

The number of elderly people is increasing worldwide. From

461 million people older than 65 years in 2004, it is expected

that this number reaches 2 billion by 2050 [1]. By the same

time, the United Nations expects that 64 countries will have

an elderly population of more than 30% [2]. One of the major

problems related to older population is an increased risk of

adversse events, such as falls. According to the World Health

Organization [3], more than 28% of people aged 65 and over

fall each year, increasing to more than 32% for those over 70

years. When a fall happens, rapid intervention is needed in

order to avoid serious injuries.

An indispensable condition for a fast intervention is the

knowledge of the elderly person’s location. This is applicable

for any urgent assistance requested by elderly people in case

of a fracture or moving inability in care centers, hospitals,

nursing homes, etc. Elderly people might also have a difficulty

in determining the location they are in, or how to arrive to the

destination they desire [4]. The development of tracking tech-

niques allows us to instantaneously determine the location of

the elderly people at the moment they ask for help. This is also

beneficial for the ambulance service and firefighters to assist

people immediately in case of emergencies, through knowing

their location instead of scanning the whole environment. The

tracking algorithm can be executed in the background and

displayed once the elderly person demands help or connected

to the trigger of an alarm system. Real time localization is

also required to study the Activities of Daily Living (ADL) in

community-dwelling elderly people [5], [6].

A solution for localization is to equip each elderly person

with a smart sensor in the form of a bracelet, a medallion,

or smart phone. The objective becomes to localize the sensor,

thus determining the position of the elderly person. Outdoor

localization techniques are well-established using Global Po-

sitioning Systems (GPS) [7]. However, this technology can

not be efficiently used for indoor applications [8]. Existing

solutions consist in using signals that are available in closed

environments, like ultra-wideband, Bluetooth, and WiFi [9],

[10]. One advantage of WiFi signals over the others is that one

can rely only on the Access Points (APs) present inside the

building, with no additional hardware. The localization process

consists then in finding the sensor’s location according to the

WiFi signals collected from APs [11], [12].

The tracking can be viewed as a sequential localization

problem. Thus, it requires a real-time recursive location es-

timation algorithm. In addition to measurements collected

from the network, one can use additional information such as

knowledge of past location, speed, acceleration, or trajectory

of the sensor being tracked, in order to correct the estimated

location. Several state-of-the-art methods have been proposed

to tackle this issue such as the Kalman filter [13], the extended

Kalman filter (EKF) [14], and the particle filter [15].

In this paper, we propose a novel tracking approach for

real time localization of vulnerable elderly people in indoor

environments. The idea is to equip each person with a sensor

that measures the Received Signal Strength Indicators (RSSIs)

of WiFi APs. These measurements are used to build an

observation model. A mobility model is then constructed to

determine the trajectory of the sensor. It is based on hidden

Markov models (HMMs), to be trained using information from

the network. This mobility model is combined afterwards with

the observation model in order to determine the location of the

sensor, thus the elderly person.

The remainder of the paper is organized as follows. Section

II states the problem. Section III describes the observation

model. Section IV explains the mobility model based on the

HMMs, and how it is combined with the observation model

to track the sensors. Section V evaluates the performance of

the proposed approach through experiments on real data.



II. PROBLEM STATEMENT

The tracking problem consists in estimating the sensor’s

zone in real time using its mobility and the signals strengths

it collects from the surrounding WiFi APs. We consider an

environment composed of NZ zones, denoted by Zj , j ∈
{1, . . . , NZ}. Let NAP be the number of APs, denoted by

APk, k ∈ {1, . . . , NAP}, and ρt be the vector of RSSI

measurements collected by the sensor at the instant t from

surrounding APs. The aim of the proposed algorithm is to

find a function T, such that T(ρt) = (Wt(Z1), . . . ,Wt(ZNZ
)),

where Wt(Zj) is the confidence level of having the sensor of

observation ρt residing in the zone Zj at the instant t. It is

worth noting that only one sensor is considered here; however,

the method can be applied in the same manner to as many

sensors as needed.

III. OBSERVATION MODEL

The observation model uses RSSI data received from sur-

rounding WiFi APs to estimate the zone of the mobile sensor.

In an offline phase, fingerprints are collected by measuring the

RSSIs of all existing APs in random positions of each zone.

Let ρj,k,ℓ, ℓ ∈ {1, . . . , Nj}, be the set of Nj measurements

collected in the zone Zj with respect to APk. Then, in the

online phase, once a new RSSI measurement ρt of size NAP

is received from all the detected APs, the model is used to

assign certain evidence to each zone. Formally, the role of the

observation model O is to assign a weight mO,t(·) to each

zone Zj, j ∈ {1, . . . , NZ}, for each observation ρt at instant

t. To do that, the kernel density estimate is used to construct

a distribution Q(·) by modeling the RSSIs of each zone with

respect to all APs,

QZj
(·) = 1

Nj

Nj
∑

ℓ=1

1

hj,1 . . . hj,NAP

NAP
∏

k=1

K
( · − ρj,k,ℓ

hj,k

)

, (1)

where K(·) is the kernel and hj,k is the bandwidth of the kernel

in each zone with respect to each AP. Since the shape of the

kernel does not effect the model [16], the Gaussian kernel is

considered due to the facility of its analytical derivations,

K(u) =
1√
2π

e−
1

2
u2

. (2)

The bandwidth hj,kis estimated by maximizing the pseudo-

likelihood leave-one-out cross validation [17], hj,k =
argmaxh MLj,k(h), where MLj,k(h) is computed as,

MLj,k(hj,k)=
1
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(3)

It has been proven in literature that this criterion leads to a

KDE that is the closest to the true model [18]. The weight

assigned by the observation model to each zone at any instant

t is thus computed as the output of the kernel density estimate

of each zone followed by a normalization phase,

mO,t(Zj) =
QZj

(ρt)
∑NZ

i=1
QZi

(ρt)
(4)

IV. HMM-BASED MOBILITY MODEL

In this tracking approach, we construct a mobility model

using hidden Markov models (HMMs). The idea is to create,

for each transition between two consecutive zones, a trajectory

that the sensor follows to move from one zone to another. A

HMM is constructed for each trajectory, yielding a probability

that the sensor has followed it. This probability is then

combined with the evidence assigned by the observation model

to determine a confidence level that the sensor resides in

each zone. At first, we provide a general overview of the

HMMs. We then present the architecture of the proposed

mobility model, the way we use it to assign evidence, and the

confidence-based zone estimation through combination with

the observation model.

A. Hidden Markov Models

A HMM is a probabilistic model that can be used to

represent a sequence of observations, and these observations

can be either discrete or continuous, and can be either time

dependent or independent [19]. The reason why the states

in HMM are described as hidden is because the observer

is unaware of the nature of the states. A first order HMM

assumes that the current state depends only on the previous

state. A second order HMM assumes that the present state

depends on the two previous states, and a third order HMM

considers three previous states and so on. Suppose we have

an NS-state HMM model Λ, where NS is the total number of

states denoted S = {s1, s2, . . . , sNS
}. Whenever a sequence

of length α, R = {R1, R2, . . . , Rα}, is observed, the objective

of the HMM is to determine the corresponding state sequence

S = {s1, s2, . . . , sα}.

An HMM is defined by three primary parameters, as

described in the following. The first one is the transition

probability that designates the probability of arriving at the

next states for each present state. The set of probabilities

of transitioning from any state to another one are termed as

transition probabilities and form a matrix A. Since the model

is a HMM, the actual states are hidden from the observer.

The latter measures observable data and then determines the

probability that each type of observation is in each state.

These probabilities are termed as emission probabilities and

form a matrix B. Another parameter of the HMM is π,

which is the set of probabilities of starting at different states.

It can be either uniform, random, or any vector generated

from prior knowledge. Therefore, any HMM can be defined

as Λ = (A,B, π). We denote afy, f, y ∈ {1, . . . , NS}, an

element of the matrix A, the transition probability from state

f to y. We denote bf (R), f = 1, . . . , NS , an element of the

matrix B, the output probability distribution [20].

B. Architecture

In this tracking approach, we make use of the trajectory

of the sensor in indoor environments. The objective is to

detect a transition of the sensor from any zone to another

in a period of time. For that reason, we use the HMMs

to determine a probability or likelihood that the sensor has



(a) Construction of transition region between all pair of
neighboring zones.

(b) Creation of NS -state HMM from trajectories in each
transition region.

Fig. 1: Illustration of the architecture of the HMM-based mobility model.

followed a certain trajectory. Each HMM Λ is defined by the

three aforementioned parameters, Λ = (A,B, π). As a state

sequence S = {s1, . . . , sα} is determined, we can observe

a sequence R = {R1, . . . , Rα} since the states are hidden,

corresponding to a vector of RSSI measurements at each

state. We are interested in determining the probability P (R|Λ),
which is the probability of observing the sequence R, given

the HMM model Λ. This probability is used as an evidence to

be combined with that obtained by the observation model O(·)
to determine a confidence level of having the sensor residing

in each zone.

We construct a set of HMMs denoted as Λij , i, j ∈
{1, . . . , NZ}, where Λij is an NS-state HMM corresponding

to a transition region or trajectory between zones Zi and Zj .

The parameter NS is the number of states chosen by the user

in each transition region. In the offline phase, a transition

region between each pair of neighboring zones is created as

shown in Fig. 1(a). This region is divided into NS states. At

each state, a set of η RSSI measurements is collected. This

leads to a set of κ = NS × η RSSI measurements in each

transition region. Trajectories or sequences are constructed by

randomly selecting a measurement from each state, as shown

in Fig. 1(b). All these constructed trajectories are considered

as a database for each HMM. The parameters of each HMM

Λij = (A,B, π) are calculated as follows,

• Since at each state, except for the first and the last where

there is only two options, the sensor can equiprobably

stay in its position, move to the state upfront, or move to

the state behind, we define the NS×NS transition matrix

A as,

A =


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• The emission model of each sequence is computed by

modeling the offline collected RSSI measurements of

each sequence with a multi-dimensional distribution,

bf (R) = Qκ(ρf ), i ∈ {1, . . . , NZ}. The distribution

Qκ(ρf ) is the output of the distribution Q(·) for obser-

vation ρf modeled using the RSSIs κ with respect to all

the detected APs.

• Unless there is a prior knowledge regarding the starting

state of the sensor, the vector π is defined as π =
[ 1

NS
, . . . , 1

NS
].

C. Weight assignment

Given a NS-state HMM model Λ, and an observation

sequence R, the aim is to evaluate the probability of observ-

ing the sequence P (R|Λ). This is a problem of evaluating

the observed sequence when we know the parameters of

the HMM. In the simplest form, we can break down the

evaluation of P (R|Λ) as follows. Given a state sequence

S = {s1, . . . , sα}, 1 ≤ α ≤ NS , we can compute the joint

probability of the observed sequence and the state sequence,

P (R,S|Λ) = P (R|S,Λ)× P (S|Λ). (5)

This is the product of the probability of the observation

sequence R given S, and the probability of the state sequence

S given the model. The first term is obtained from the emission

matrix B as,

P (R|S,Λ) =
α
∏

f=1

bsf (Rf ). (6)

The second term is obtained from the transition matrix A as,

P (S|Λ) =
α
∏

f=1

asf−1sf . (7)

We can then derive P (R|Λ) as the summation of P (R,S|Λ)
over all possible state sequences S [21],

P (R|Λ) =
∑

for all S

P (R,S|Λ) =
∑

for all S

α
∏

f=1

asf−1
asf bsf (Rf ).

(8)

The total number of state paths increases quickly with the

length of the sequence, and thus becomes computationally

expensive and not feasible depending on α. However, a for-

ward–backward algorithm can be used to obtain P (R|Λ), and



reduces the computational burden. The expression in equation

(8) can be transformed as follows,

P (R|Λ)=

NS
∑

y=1

P (R1, . . . , Rf , sf = y|Λ).P (Rf+1, . . . , Rα|sf = y,Λ).

(9)

The probability of observing the sequence can thus be deter-

mined using forward and backward probabilities,

gf(y) = P (R1, . . . , Rf , sf = y|Λ). (10)

hf(y) = P (Rf+1, . . . , Rα|sf = y,Λ). (11)

The probabilities in equations (10) and (11) can be computed

recursively,

gf+1(y) =

[

NS
∑

x=1

gf (x)axy

]

by(Rf+1); (12)

hf (y) =

NS
∑

x=1

ayxbx(Rf+1)hf+1(x). (13)

Therefore, the probability P (R|Λ) is given by,

P (R|Λ) =
NS
∑

y=1

gf(y)hf (y). (14)

This is the probability of observing a sequence R of length α
given an NS-states HMM Λ.

The objective of the proposed mobility model is to assign

an evidence that the sensor has followed a trajectory, which is

a transition between a zone and another. After constructing a

HMM Λij for each transition between two zones as explained

in the previous paragraph, it is time to use these HMMs

to estimate the trajectory of the sensors. Once a sequence

R = {R1, . . . , Rα} is detected, each HMM Λij assigns a

probability or likelihood that the sensor has followed the

state sequence corresponding to that HMM. The probabilities

P (R|Λij), i, j ∈ {1, . . . , NZ}, are computed for each HMM.

Thus, the probability of transitioning from any zone to another

is computed. For pairs of zones where no transition is possible,

the probability is zero. We define the transition coefficient

pij , i, j ∈ {1, . . . , NZ}, from Zi to Zj as follows,

pij =

{

P (R|Λij), if i 6= j;

1−∑NZ

j=1
P (R|Λij), if i = j.

(15)

We compute pij for i = j as such, because we consider that

the probability of the sensor staying in the same zone to be

the complement of all the probabilities that the sensor moves

from that zone to all other zones. We compute the evidence

mM,t(·) as follows,

mM,t(Zj) =

NZ
∑

i=1

mO,t−1(Zi)× pij , (16)

where mO,t−1(Zi) is the weight associated by the observation

model O(·) at instant t − 1. If there is no transition from a

zone to another, the coefficient pij for i = j will be large.

This does not cause a problem when used in equation (16)

because, if there is no transition, all coefficients pij for i = j
will be large, and thus mO,t−1(·) is the deciding evidence.

The zone already having a high confidence in the previous

instant will still have high confidence, relative to the other

zones. The determination of pij for i = j, as done here is

only valid by the way we transfer this probability to the next

instant, and its combination with the observation model. In

fact, if there is no transition, we will obtain large transition

coefficients pii, for all i ∈ {1, . . . , NZ}, which results in false

estimations.

D. Confidence-based zone estimation

The confidence level Wt(·) that the sensor resides in each

zone is obtained by combining the evidence assigned by both

the observation and the mobility models as follows,

Wt(Zj) =
mO,t(Zj)×mM,t(Zj)

∑NZ

χ=1
mO,t(Zχ)×mM,t(Zχ)

. (17)

This zone having the highest confidence level is then selected.

A second choice is also possible by choosing the zone having

th second highest evidence.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

tracking approach through experiments in a real environment.

We study the influence of the mobility model when combined

with the observation model. We then study the influence of the

sequence length α. In addition, we compare the performance

of the proposed approach with state-of-the-art techniques.

A. Experimental Setup

Experiments are conducted in WLAN environments, in the

Statistics and Operational Research Department and the Living

Lab of the University of Technology of Troyes, France. The

layout plan of Experiment 1 has an approximated area of

500 m2, and is partitioned into 21 zones. The layout plan

of Experiment 2 has an area of 550 m2 and is partitioned to

19 zones. The experiments are not realized on elderly people,

but on healthy adults taking into consideration the situation

and movement of elderly people. To evaluate the performance

of the mobility-based tracking approach, 10 trajectories of

50 observations each are examined. In order to consider an

environment similar to that of elderly people, their movement

is studied. Bohannon [22] studied the gait speed of 230 healthy

adults aged between 20 and 79 years, measured attheir usual

pace. The study revealed the following results. The mean

comfortable gait speed for women in their 70s was found to

be 1.27m/s, while it wa 1.33m/s for men. Montero-Odasso

et al. [23] explored the gait speed of 100 elderly patients aged

75 years and over. A maximum gait speed was found to be

0.8m/s. Graham et al. [24] examined the walking speed of

174 in-hospital elderly people aged 65 years and over. The

study reported an average velocity of 0.43m/s of hospitalized

older adults. As demonstrated by various studies, the walking

speed varies with sex, height, age, health, country, etc [22],



TABLE I: Influence of the mobility model on the

performance of the tracking approach.

Experiment 1 Experiment 2

Model accuracy (%) online time (s) accuracy (%) online time (s)

Observation model 79.77 0.1104 80.44 0.1479

Tracking approach 87.74 0.1944 89.43 0.2138

[25]. We consider here an average speed of 1m/s, then we

study the influence of this parameter on the performance of

the proposed approach. In fact, this speed is important to

construct the NS state HMMs. In a 1m/s setting and 0.75s
as the time interval between two localization instants, we can

construct NS states where the distance between each two states

is dS = 1m/s × 0.75s = 0.75m. Although this method can

be used to track any sensor in general or person in particular,

it is more convenient and efficient for tracking elderly people.

In fact, the relatively low speed of these people allows us to

build longer HMMs, thus collecting more information about

the trajectory of the sensors.

B. Evaluation of performance

We study the influence of the mobility model on the

performance of the tracking approach when combined with

the observation model, for an average speed of 1m/s. In each

transition region between neighboring zones, a 10-state HMM

is created. The chosen length of the observed sequence α
varies then from 1 to NS = 10. We consider here a sequence

length α = 8, as for a sequence length α = 10, the gained

accuracy is not worthy the added processing time. This means

that after receiving a sequence of 8 observations, we use

the HMMs to determine the probability that the sensor has

followed the 8-state sequence of the 10-state HMMs. Table I

shows the influence of the mobility model on the performance

of the tracking approach when combined with the observation

model. As the table shows, a significant enhancement in

the overall accuracy is noted when the observation model is

combined with the proposed mobility model, yet at the expense

of an additional processing time.

We study the influence of the length of the sequence α
by varying it from 2 to 10 and evaluating the performance

of the tracking approach. Table II shows the influence of the

sequence length α on the overall accuracy and the execution

time. As the table shows, the overall accuracy of the tracking

algorithm increases as the sequence length increases. This is

due to augmenting the amount of information used by the

HMMs to determine the likelihood that the sensor has followed

the different trajectories. However, enlarging the sequence

length increases the execution time. After a sequence of length

8, no significant accuracy is gained, yet with an important

additional execution time. For that reason, we consider only

sequences of length 8.

TABLE II: Influence of the sequence length α on the

performance of the tracking approach.

Experiment 1 Experiment 2

α accuracy (%) online time (s) accuracy (%) online time (s)

2 80.60 0.1308 81.81 0.1507

4 82.19 0.1430 84.22 0.1662

6 84.42 0.1725 87.76 0.1877

8 87.74 0.1944 89.43 0.2138

10 87.97 0.2486 90.54 0.2503

C. Comparison with state-of-the-art methods

In this paragraph, the proposed approach is compared with

well-known localization techniques. Koyuncu & Yang [26]

present a weighted k-nearest neighbors algorithm (WKNN)

for indoor localization. To estimate the position of the sensor,

the new received measurement is compared with the elements

in the fingerprint database using Euclidean distances. A set of

k smallest Euclidean distances is selected and the k-nearest

neighbors algorithm is then applied. The algorithm averages

the coordinates of the k-nearest neighbors of the sensor,

weighting each distance by a factor previously determined ac-

cording to a mathematical model, to give its location estimate.

Shang et al. [27] propose a connectivity-based localization

algorithm. The advantage of connectivity-based algorithms is

that they do not rely on collected measurements. The sensor’s

location is given as the intersection of the ranges of the

APs detected by the sensor. On the other hand, conventional

classification techniques such as neural network (NN) [28] and

Support Vector Machines (SVM) [29] are applied. Table III

compares the overall accuracy and the localization processing

time of the various described techniques. As the table shows,

the proposed approach outperforms other state-of-the-art meth-

ods in terms of overall accuracy. This is at the expense of

a higher processing time. Another advantage of the proposed

method is that it does not require an inertial measurement unit

to measure the speed. This makes it advantageous with respect

to the existing statistical filters presented in the introduction,

where the instantaneous inertial measurements are required to

update the estimation.

TABLE III: Comparison of the proposed approach with

various localization methods.

Experiment 1 Experiment 2

Method accuracy (%) online time (s) accuracy (%) online time (s)

WKNN 83.78 0.0982 84.28 0.1265

Connectivity 84.29 0.1107 86.67 0.1338

NN 84.72 0.1466 85.82 0.1866

SVM 85.55 0.1559 86.47 0.1912

Proposed 87.74 0.1944 90.54 0.2503



VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented a mobility-based tracking ap-

proach for elderly people in indoor environments. The mo-

bility model is based on hidden Markov models and aims at

determining the trajectory that the elderly person follows. The

proposed mobility model was combined with an observation

model to determine the location of the elderly person. The

performance of the tracking approach was illustrated through

experiments in two real scenarios. The conducted experiments

demonstrated significant enhancement in the overall accuracy

carried by the mobility model. The accuracy of the tracking

approach was also found to increase with the sequence length.

In addition to the enhancement in the overall accuracy, an

important advantage of the proposed approach, as compared

with the state-of-the-art tracking techniques, is that no inertial

measurement units are needed to perform the tracking. In

future work, we aim at combining the proposed mobility model

with other more advanced observation model to achieve higher

tracking accuracy. In addition, we will conduct the experiments

on elderly people instead of healthy adults with conditions

similar to elderly people. This leads to a more appropriate

evaluation of the proposed tracking approach. Moreover, we

will use the described real-time tracking method to evaluate

the ADL of elderly people.
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