
T-FREX: A Transformer-based Feature Extraction
Method from Mobile App Reviews

Quim Motger1, Alessio Miaschi2, Felice Dell’Orletta2, Xavier Franch1, Jordi Marco1

1Universitat Politècnica de Catalunya, Barcelona
{quim.motger,xavier.franch,jordi.marco}@upc.edu

2Institute for Computational Linguistics "A. Zampolli" (CNR-ILC), ItaliaNLP Lab, Pisa
{alessio.miaschi,felice.dellorletta}@ilc.cnr.it

Abstract—Mobile app reviews are a large-scale data source
for software-related knowledge generation activities, including
software maintenance, evolution and feedback analysis. Effective
extraction of features (i.e., functionalities or characteristics) from
these reviews is key to support analysis on the acceptance of
these features, identification of relevant new feature requests and
prioritization of feature development, among others. Traditional
methods focus on syntactic pattern-based approaches, typically
context-agnostic, evaluated on a closed set of apps, difficult to
replicate and limited to a reduced set and domain of apps. Mean-
while, the pervasiveness of Large Language Models (LLMs) based
on the Transformer architecture in software engineering tasks
lays the groundwork for empirical evaluation of the performance
of these models to support feature extraction. In this study, we
present T-FREX, a Transformer-based, fully automatic approach
for mobile app review feature extraction. First, we collect a set of
ground truth features from users in a real crowdsourced software
recommendation platform and transfer them automatically into
a dataset of app reviews. Then, we use this newly created dataset
to fine-tune multiple LLMs on a named entity recognition task
under different data configurations. We assess the performance
of T-FREX with respect to this ground truth, and we complement
our analysis by comparing T-FREX with a baseline method from
the field. Finally, we assess the quality of new features predicted
by T-FREX through an external human evaluation. Results show
that T-FREX outperforms on average the traditional syntactic-
based method, especially when discovering new features from a
domain for which the model has been fine-tuned.

Index Terms—feature extraction, mobile apps, reviews, token
classification, named entity recognition, large language models

I. INTRODUCTION

Mobile app repositories provide valuable access to timely
large-scale datasets of software-related information [1]. These
repositories include heterogeneous, multiple-purpose plat-
forms, from app stores to sideloading repositories and search
engines [2]. One of the most popular contributions across
these platforms is the publication of app reviews, in which
users express multiple facets such as personal opinions or
experiences, bug reports, inquiries or requests [3]. This infor-
mation is relevant to multiple software engineering processes,
including requirements elicitation and prioritization, release
planning, validation analysis and software evolution [3]–[7].

App features are considered a core descriptor for un-
derstanding and categorizing app reviews [8]–[10]. In this
context, a feature is considered as a distinct function or

capability within a mobile application serving a particular
purpose or need [11]. App feature extraction supports feature-
related knowledge generation, in which mobile app developers
can potentially rely on to improve user experience, enhance
app functionality, identify user preferences, and make data-
driven decisions for app development strategies [3], [12], [13].
Consequently, mining large amounts of app reviews to extract
app features has become a relevant task. Nevertheless, mining
features from app reviews presents particular challenges. It
requires the daily analysis of thousands of short documents,
each with a limited length, composed of an average of a few
dozen words per review [14]. Beyond measurable characteris-
tics, user-generated documents tend to present multiple infor-
mal writing styles and vocabulary, including misspelt words,
repetitions or cross-language terminology [15], polarized or
biased information, or even noisy and spam content [16].

Consolidated approaches rely on syntactic pattern-matching
techniques to retrieve features from app descriptions and
reviews [11]. Nevertheless, several challenges emerge from
their applicability, including limited replicability, unavailabil-
ity of data and a lack of user evaluation [11]. Furthermore,
rule-based strategies for knowledge generation can be brittle
to identify complex patterns, domain-specific terminology,
unexpected contents and contextual knowledge, which affects
the generalization of these techniques [17]. To overcome
these challenges, deep learning strategies, and in particular
Large Language Models (LLMs) based on the Transformer
architecture [18], have shown promising results in multiple
software-related data mining tasks. These approaches leverage
the knowledge embedded in these pre-trained models by
extending their capabilities through task-specific supervised
fine-tuning tasks such as sentiment analysis, text classification
or named-entity recognition (NER) [19]–[22].

In this paper, we present T-FREX (Transformer-based Fea-
tuRe EXtraction), a novel approach to support feature extrac-
tion from app reviews using LLMs. Our proposal redefines
the app feature extraction problem as a NER task, a specific
type of token classification in which tokens referring to a
particular entity type (e.g. dates, geopolitical entities, features,
etc.) are labelled as such. Our main contributions are1: (1) a

1GitHub repository: https://github.com/gessi-chatbots/t-frex/

ar
X

iv
:2

40
1.

03
83

3v
1

 [
cs

.S
E

]
 8

 J
an

 2
02

4

https://github.com/gessi-chatbots/t-frex/

Fig. 1. Sample of crowdsourced user annotated features in a software
recommendation platform (https://alternativeto.net/) for the Telegram app.

Transformer-based, fully automatic approach for the extraction
of mobile app features from user reviews; (2) an extensive
evaluation of the performance of multiple Transformer-based
LLMs [18] in different classification scenarios; (3) a reusable
fine-tuned model and a ground-truth dataset of annotated
app reviews, based on crowdsourced annotated app features
extracted from a popular software recommendation platform
and automatically transferred into the corpus of app reviews.

II. BACKGROUND

A. Mobile app features

There are multiple definitions of the term feature within
related literature according to different dimensions: (i) scope:
definitions refer to functionalities [11] (e.g., send message),
quality aspects [23] (e.g., lightweight) or both [24]; (ii) ab-
straction: feature expressions vary from generic, high-level
categories (e.g., communication) to specific, actionable as-
pects (e.g., integrated file sharing) [13]; (iii) formalization:
definitions range from a particular focus on the requirements
engineering field, using terms like logically related system
capabilities and set of functional requirements [25], to a more
user-oriented perspective, referring to a property [26] or char-
acteristic [27] of a mobile app. In the context of grey literature
and industrial applications, both functional and quality features
with different levels of abstraction and formalization are often
presented as descriptors at the same hierarchical level. Figure 1
illustrates the set of crowdsourced user annotated features (i.e.,
collaboratively labelled by multiple users) for a given mobile
app in a software recommendation platform, for which we find
different examples in terms of scope (e.g., portable vs. instant
messaging), abstraction (e.g., channels vs. share videos) and
formalization (e.g., file sharing vs. send file).

To accommodate our research to both scientific and indus-
trial applications, in this research, we define a feature as a
distinct functionality or capability within a mobile application
that serves a particular purpose or provides a specific benefit
to the user. It is a functional component or attribute of the
software designed to perform a well-defined task or address a
particular user need, enhancing the utility of the app.

B. NER using LLMs

Our proposal is based on redefining feature extraction as
a NER task, one of the most common token classification
tasks in the context of natural language understanding (NLU)
and for which LLMs have been largely used in the past few
years [28]. Given a set of app reviews R of size n, the
tokenized representation of a given ri ∈ R is expressed as
T (ri) = [ti1, ti2, ..., tim], where each tij ∈ T (ri) represents
a token from the original review ri. The feature extraction
task consists in identifying sequences of contiguous tokens
Tif ⊆ T (ri) composing the written expression of a feature.
Consequently, features are extracted within the context of a
particular app review. This context dimension is key, as a
particular sequence of tokens Tf might refer to a feature within
a given review for a given app, but the same sequence Tf

might not refer to a feature in another context. To this end,
the dynamic attention mechanism enables LLMs to attend to
crucial contextual information within the context of a review
from a mobile app of a specific category. For example, in the
review sentence “I find that managing my channels is quite
frustrating”, the word channels refers to an actual feature
of a communication mobile app. Contrarily, in the review
sentence “This art app offers diverse channels for unleashing
creativity”, which belongs to a mobile app from the arts and
design category, channels is not an actual feature, despite hav-
ing the same Part-of-Speech (PoS) tag (NOUN) and syntactic
dependency role (direct object). Traditional syntactic-based
approaches lack the potential to determine how contextual
information suits a more fine-grained selection of features.

In token-based classification tasks, the input can range
from a sentence to a paragraph or even an entire document.
Our approach is defined at the sentence level, allowing for
more granular analysis and facilitating efficient processing.
Therefore, tokenization is refined by splitting the reviews into
sentences, T (ri) = [si1, si2, ..., sip], where each sentence is a
subsequence of the original tokenization, sik ⊆ T (ri). Given
a sentence input sik, a token classification model assigns one
unique label to each token, indicating whether the token is the
beginning of a feature named entity (B-feature), an internally
contained element of a feature entity (I-feature), or none (O).
Figure 2 illustrates the NER output on a mobile app review.
For simplicity, this example is architecture-agnostic, meaning
that we consider each word from the original review individu-
ally, ignoring special tokens or multiple tokens referring to the
same word. While numerous models are publicly available for
generic types of NER (e.g., dates, locations, persons, e-mail
addresses...) and for some specific domains (e.g. medical and
legal domains) [29]–[31], to the best of our knowledge there
are no proposals for the identification of app feature entities
exploiting fine-tuned LLMs.

Fig. 2. Example of NER task on a mobile app review.

2

III. RESEARCH METHOD

Our research aims to demonstrate the hypothesis that
Transformer-based LLMs can significantly enhance mobile
app feature extraction tasks by redefining this process as
a token classification problem. Consequently, we conducted
a sample study as defined by Stol and Fitzgerald [32], which
aims at maximizing the generalization of the feature extraction
task over the population of mobile apps publicly available
in mobile app repositories. To this end, we leverage crowd-
sourced annotated data from actual mobile app users, using
AlternativeTo2 as the main source for ground-truth knowledge
generation, as a relevant representative of search engines in
the context of mobile app repositories [33]. This platform
provides, for each mobile app, a list of features which have
been suggested and ranked by real users, while they are being
used for navigating the catalogue of mobile applications (as
illustrated previously in Figure 1). More details on the data col-
lection and annotation processes are depicted in Section IV-A.

To assess the validity of T-FREX, we guide our research
through the following research questions:
RQ1) What is the effectiveness of T-FREX using different
LLMs with respect to crowdsourced user-annotated features?
RQ2) What is the effectiveness of T-FREX compared to
traditional feature extraction methods (i.e., SAFE approach)?
RQ3) What is the effectiveness of T-FREX with respect to
new, undocumented features?

RQ1 is defined to assess the effectiveness of our approach
in terms of functional suitability. We present the design
and development results of an end-to-end pipeline for fine-
tuning and using different types of LLMs under different data
configurations. This analysis will allow us to gain a deeper
understanding of how different LLM architectures behave
under different training datasets. Moreover, RQ1 provides
token-level empirical evaluation results for the overall quality
of the NER (i.e. token classification) task.

RQ2 is intended to compare T-FREX performance at feature
level with respect to a standard baseline method in the field
of feature extraction. We selected the SAFE approach as a
baseline for a comparative analysis [34], as it is considered
the most consolidated approach for mobile app feature ex-
traction in the software engineering field (see Section VII
for more details on related work and comparison with other
approaches). Given that the original study does not provide a
publicly available replication package, we built on the work
of Shahe et al. [17], who conducted a replication study and
distributed a replicated development of the SAFE approach.

Finally, RQ3 is designed to analyse how T-FREX general-
izes and overcomes the constraints of limited, domain-specific
datasets. While the use of data generated and consumed by
real users offers multiple advantages, we have no control in the
extent and representativeness with respect to the complete set
of features exposed by mobile apps. This entails that our model
might predict features that are not included in the ground
truth (i.e., false positive), while this might simply relate to

2https://alternativeto.net/

incompleteness of user annotated data. Hence, we propose to
overcome this limitation while also gaining deeper insights on
generalization of our model by conducting a human evaluation
on new features predicted by our model (i.e., features not
included in the ground truth dataset).

IV. DESIGN

Figure 3 shows an overview of our research. We elaborate
the details in the upcoming subsections.

A. Data Collection and Annotation

While there is related work publishing gold datasets with
expert feature annotations [11], our approach is intended to
leverage real user crowdsourced annotation, as well as to
assess its generalization and applicability in real, practical
uses cases. However, published datasets are typically internally
annotated by human coders, very limited in terms of number
of applications (e.g., between 8-10 mobile apps) and domains,
and focused on productivity and communication apps, exclud-
ing more expert, domain-specific categories like navigation,
sports or weather [11], [13], [17], [34], [35]. Therefore, we
opted to build our own dataset of mobile app reviews with
annotated features generated by real users. We built on the
work of Motger et al. [33], who collected and published
a sample dataset of 639 mobile apps with 622,370 reviews
from multiple categories, to which we applied the following
extensions:

• We extended the mobile app metadata with the official
category from Google Play as gold knowledge for the
category-based analysis of the feature extraction task. The
original dataset included custom defined categories based
on a keyword-based search of domain-related terms.
Instead, we propose to use the taxonomy of categories
defined by Google Play [36], which is considered as the
largest, most relevant mobile app store worldwide [2].

• We limited the mobile apps included in our study to the
10 most frequent Google Play categories in the original
dataset in number of mobile apps, excluding those cate-
gories with a minimal representation (≤ 5 apps) to ensure
relevant statistical inference. Exceptionally, we excluded
“GAME" related categories, considered as a special kind
of mobile apps with a different feature conception [11].

• We extended the annotated features for a given mobile
app using AlternativeTo features as ground truth. These
features are voted by logged-in users of the software
recommendation platform, and they are ranked and sorted
by absolute number of votes. To obtain this data, we
reused the web scraping data collection mechanisms
originally developed by Motger et al. [33].

Table I summarizes the resulting dataset distributed accord-
ing to the Google Play category to which the apps belong
to. It is important to highlight that multiple distinct features
might belong to multiple categories (e.g., video call is a
feature for both SOCIAL and COMMUNICATION mobile
apps). Notice that the last row refers to the total number

3

Fig. 3. Research design overview.

of feature annotations in the complete corpus of annotated
reviews, which we explain in more detail in Section IV-B.

B. Data Pre-processing and Feature Transfer

Let F = {f1, f2, ..., fq} be the set of crowdsourced feature
annotations defined at app entity level. To train and evaluate
our model, these features are transferred into the corpus of
app reviews R. This results in the annotation of all tokens
t ∈ T (r) for each review r ∈ R with the corresponding name
entity label L = {O,B-feature, I-feature}. To this end, we used
Stanza’s neural pipeline [37] to pre-process and transform both
corpus F and R into their correspondent CoNLL-U format
representation [38], which includes for each token t a list
of syntactic and morphological features. We use this format
to facilitate replicability of our approach and reusability of
the resulting dataset. Specifically, the pre-processing pipeline
included: (i) tokenization, (ii) multi-word token expansion,
(iii) PoS tagging, (iv) morphological feature extraction, and
(v) lemmatization. Feature transfer is then applied to exact
matches between the CoNLL representation of a given feature
f and a contiguous sequence of tokens of a given review r
so that f ⊆ T (r) after pre-processing r and f . Given that
not all features f ∈ F relate to actual features in different
contexts, we scoped this label transfer to features originally
extracted from the same application to which the review
belonged to. This means that, for ground truth generation, the
example used in Section II-B for context-dependent features
(i.e., use of channels as a feature from communication apps)
is not considered as an actual feature in the context of a
different app (i.e., the arts and design app). As a result, the
CoNLL-U representation of R is extended with an additional
annotation for each token t, represented by one of the labels
in L = {O,B-feature, I-feature}.

Table I reports the total amount of feature annotations
transferred into the corpus of reviews R (last row).

C. Model Fine-tuning

The pre-processed and annotated corpus R serves as the
primary input for training various LLMs under diverse data
configurations. In this section, we elaborate on the reasoning
behind our choices regarding the selection, preparation, and
training of these models.

1) Model Selection: State-of-the-art LLMs encompass mul-
tiple architectures (e.g., encoder-only, decoder-only, encoder-
decoder), modelling paradigms (e.g., discriminative, gener-
ative), pre-training tasks (e.g., masked language modelling
or MLM, permutation language modelling), size and scale,
among other descriptors [39]. Appropriate model selection
is not trivial and is often neglected or undermined. For our
experiments, we opted for decoder-only models, due to their
better suitability for handling classification tasks. Moreover,
we avoided testing large-scale generative models due to their
considerable dimensions and, therefore, their practical limi-
tations in terms of memory and time constraints. Below we
provide the selection of LLM for our research, including those
features suited for our task and their role in the evaluation.

• BERT, one of the first groundbreaking LLMs, is cel-
ebrated for its bidirectional nuanced contextual under-
standing [40]. Trained on a vast corpus using MLM as
pre-training objective, it excels in capturing context from
both left and right, empowering it for diverse token-level
tasks [41]. Consequently, we select BERT as a baseline
for the use of LLMs in the context of feature extraction.

• RoBERTa is considered a refinement on BERT’s archi-
tecture and training process [42]. It achieves heightened
performance through extended pre-training on a larger
dataset and augmented data, resulting in more robust
language representations. It also uses MLM for pre-
training and outperforms BERT in various scenarios [42],
making it a valuable addition to our model evaluation.

• XLNet combines autoregressive and bidirectional train-
ing by considering all possible permutations of a sen-
tence’s words during pre-training [43]. This methodology
fosters improved contextual understanding and depen-
dency modelling among tokens, surpassing the conven-
tional models. Unlike BERT and RoBERTa, XLNet uses a
permutation-based training objective, allowing it to model
token dependencies differently.

For each of these models, we consider both base and large
versions (i.e., in terms of number of model parameters).

2) Data Preparation: We split the dataset of annotated re-
views (reported in Table I) under different data configurations
to support different analytical perspectives.

• Out-of-domain. The original dataset is split according to
the category to which the app review belongs to. We then
use these data partitions to run 10 different fine-tuning

4

TABLE I
DISTRIBUTION OF MOBILE APPS, REVIEWS AND FEATURES IN THE DATASET, SORTED BY DECREASING ORDER BY NUMBER OF DISTINCT FEATURES.

CATEGORY ABBREVIATIONS REFER TO: PRODUCTIVITY (PROD.), COMMUNICATION (COMM.), PERSONALIZATION (PERS.).

Metric PROD. COMM. TOOLS SOCIAL HEALTH PERS. TRAVEL MAPS LIFESTYLE WEATHER ALL
#apps 137 51 58 14 75 6 19 31 12 65 468
#reviews 7,348 7,003 4,321 819 2,154 112 530 284 344 901 23,816
#sentences 8,604 8,135 5,402 899 2,330 118 602 315 391 984 27,780
#tokens 148,172 134,833 93,395 15,597 40,907 2,022 11,105 5,868 8,044 15,439 475,382
#features (distinct) 77 54 50 26 23 19 17 12 10 7 198
#features (annotated) 9,866 9,800 6,626 1,049 2,524 127 662 333 419 1,037 32,443

processes, using 9 out of 10 categories for training the
model and using the remaining category for testing. This
setup evaluates the model’s capacity to generalize feature
extraction to unfamiliar, new app domains.

• In-domain. The original dataset is split under a 10-fold
cross-validation setup with a balanced distribution of app
reviews from each category, focusing on evaluating the
model’s performance when predicting features within its
domain of expertise. This setup assesses the model’s
proficiency in feature extraction for categories closely
aligned with its training data.

We exclude from all training sets all references to features
included in its corresponding testing set. This allows evalua-
tion of the model’s performance to recognize tokens (extract
features) for which it was not specifically fine-tuned.

3) Training Configuration: For each model (Section IV-C1)
and data setting (Section IV-C2), we configure and run a token
classification fine-tuning process. First, we implement the pre-
processing stage, which includes using a proper tokenizer
according to the model architecture. BERT uses WordPiece to-
kenization and introduces [CLS] and [SEP] tokens for classifi-
cation and separation. In contrast, RoBERTa and XLNet utilize
SentencePiece tokenization, and they use only [SEP] tokens
for separation while omitting the [CLS] token. Additionally,
RoBERTa and XLNet employ a more aggressive subword
tokenization approach, capturing finer linguistic details by
breaking words into smaller subword units. This implies that
a single word in the original review might be transformed
into multiple tokens, which also affects the performance anal-
ysis and accuracy evaluation of the token classification (and
ultimately, feature extraction) method. Second, we define the
evaluation method for reporting and computing quality metrics
(see Section IV-D). Third, in order to adjust the experiments to
the available computational resources and model characteris-
tics, we define the training parameters for each fine-tuning pro-
cess (available in the replication package). Finally, the output
of each fine-tuning process (including checkpoints, predictions
and quality metrics) for the best performing checkpoint (i.e.,
with the lowest evaluation loss) are saved and reported.

D. Evaluation design

We structure evaluation results in alignment with the for-
mulation of research questions (Section III). In this section,
we focus on the design of the evaluation plan.

1) Token-based ground-truth (RQ1): Each fine-tuning pro-
cess depicted in Section IV-C2 uses a token-level evaluation

method for computing quality metrics for token prediction.
This implies that results evaluate the model quality to pre-
dict whether a specific token is the beginning of a feature
expression (B-feature), the inner part of a feature expression
(I-feature) or none of the above (O).

2) Baseline feature extraction (RQ2): Each fine-tuning pro-
cess depicted in Section IV-C2 uses a feature-level evaluation
method for computing quality metrics for feature extraction.
Consequently, instead of computing prediction quality at token
level, in this stage we evaluate the quality prediction of
complete sequences of tokens Tf composing a whole feature
according to the ground-truth data set. We compare the per-
formance of our approach with respect to the baseline method
selected for feature extraction (i.e., SAFE [34]).

3) New features (RQ3): We select the best performing
model to collect all new features predicted by our model.
These features are then submitted to a human evaluation
process to measure the prediction quality of new features. The
human evaluation is composed of three main stages:

• Data preparation. We collect all features predicted by
the best-performing model (based on RQ1 and RQ2) for
each test set under each data configuration scenario, as
depicted in Section IV-C2. We then remove all features
included in the complete ground-truth annotated dataset,
keeping exclusively newly reported features.

• Set up. We iteratively elaborate and refine the guidelines,
the selection of examples and the definition of feature
annotation tasks. A task is defined as a sub set of review
sentences, each one of them with a potential feature
candidate which the annotator can either confirm (Yes),
reject (No), or mark as not clear (I don’t know). Figure 4
shows an example of a feature annotation question.

Fig. 4. Example of a feature annotation question for human evaluation.

5

TABLE II
TOKEN CLASSIFICATION EVALUATION RESULTS.

Analysis Category Metric BERTbase BERTlarge RoBERTabase RoBERTalarge XLNetbase XLNetlarge

Out-of-domain

PROD.
precision 0.799 0.734 0.539 0.287 0.582 0.687
recall 0.343 0.320 0.244 0.062 0.330 0.331
F1 0.480 0.445 0.335 0.102 0.421 0.447

COMM.
precision 0.407 0.502 0.455 0.384 0.438 0.412
recall 0.156 0.202 0.173 0.276 0.261 0.317
F1 0.225 0.288 0.251 0.321 0.327 0.358

TOOLS
precision 0.513 0.570 0.462 0.221 0.423 0.214
recall 0.085 0.138 0.102 0.065 0.204 0.026
F1 0.145 0.222 0.167 0.100 0.275 0.046

SOCIAL
precision 0.606 0.696 0.621 0.610 0.734 0.688
recall 0.513 0.410 0.462 0.462 0.603 0.679
F1 0.556 0.516 0.529 0.526 0.662 0.684

HEALTH
precision 0.482 0.503 0.658 0.584 0.710 0.663
recall 0.179 0.240 0.127 0.224 0.373 0.384
F1 0.261 0.325 0.213 0.323 0.489 0.486

PERS.
precision 0.731 0.955 0.933 0.973 0.972 1.000
recall 0.500 0.553 0.737 0.947 0.921 0.684
F1 0.594 0.700 0.824 0.960 0.946 0.813

TRAVEL
precision 0.773 0.647 0.720 0.682 0.481 0.613
recall 0.708 0.458 0.750 0.625 0.542 0.792
F1 0.739 0.537 0.735 0.652 0.510 0.691

MAPS
precision 0.029 0.120 0.045 0.077 0.560 0.467
recall 0.021 0.063 0.063 0.063 0.292 0.146
F1 0.024 0.082 0.053 0.069 0.384 0.222

LIFESTYLE
precision 0.500 0.400 0.600 0.600 0.800 1.000
recall 0.400 0.400 0.600 0.600 0.800 0.200
F1 0.444 0.400 0.600 0.600 0.800 0.333

WEATHER
precision 0.619 0.642 0.273 0.129 0.571 0.769
recall 0.232 0.607 0.107 0.071 0.500 0.179
F1 0.338 0.624 0.154 0.092 0.533 0.290

Average
precision 0.546 0.577 0.531 0.455 0.627 0.651
recall 0.314 0.339 0.336 0.339 0.482 0.374
F1 0.381 0.414 0.386 0.374 0.535 0.437

In-domain Average
precision 0.596 0.719 0.668 0.688 0.679 0.761
recall 0.488 0.582 0.569 0.509 0.519 0.573
F1 0.532 0.637 0.611 0.571 0.582 0.646

This includes: app name, link to Google Play (for app
context), category, review sentence, question and feature
candidate. In this stage, we used a test task which
is sequentially annotated by internal members of this
research study, until an acceptable agreement is reached.
After each annotation process, the collected feedback is
used for refining the guidelines and list of examples used
for designing the evaluation task.

• Evaluation. The full data set of new features is submitted
for human evaluation through sequential iterations in
different batches. We used Prolific [44] as a crowdsourced
annotation platform to reach users worldwide and Quest-
Base [45] for the creation of the tasks. Each annotator is
limited to participate in a single task. For each task, we
include a subset of 5 control questions using ground-truth
annotated features to reject low-confidence annotators.
On each task, we measure the proportion of features
confirmed (Yes), which relates to the precision of new
features. Additionally, for inter-rater reliability, we report
(1) the average pairwise agreement, and (2) F1, which has
been used in related work as an appropriate and effective
inter-rater agreement measure for the evaluation of text
annotations such as features in app reviews [11].

V. EVALUATION

A. Token-based ground-truth

Table II reports the precision, recall and F1 metrics for all
data configurations and all selected models. Given that we
do not have ground-truth data for non-feature entities (true
negatives), we exclude accuracy from the results.

1) Out-of-domain Feature Extraction: In this configuration,
each block in Table II for a given category C refers to the
quality metrics reported when fine-tuning the specified model
with the set of reviews from all categories from Table I except
C. Metrics refer then to the test set of reviews belonging to C.
For example, the first 3 rows in Table II report the performance
of each model for predicting features included in app reviews
from the PRODUCTIVITY when training the model with app
reviews from all categories except PRODUCTIVITY. In this
scenario, the best precision is reported by BERTbase (0.799),
while the lowest is reported by RoBERTalarge (0.287). The
last 3 rows in the out-of-domain block are the average value
for each metric and each model configuration. For example,
the highest average recall among all categories is reported by
XLNetbase (0.482), followed by XLNetlarge (0.374).

Complementarily, we extend the visualization of the results
in two dimensions. A vertical analysis illustrates the compar-

6

ison between different categories for a given model config-
uration. We use a colour-code pattern to highlight the best
(green) and worst (red) performing category for each model.
For example, for the baseline model (BERTbase), prediction
of PRODUCTIVITY features reports the highest precision
(0.799), while TRAVEL reports the highest recall (0.708), F1
(0.739) and accuracy (0.966). On the other hand, predicting
new features from the MAPS domain reports the lowest
overall accuracy for BERTbase. If we focus on F1, predicting
PERSONALIZATION features under a set-up where the model
was not trained under features of this domain reports the best
results for 5 out of 6 model configurations. Contrarily, predict-
ing MAPS features under the same set-up reports the lowest
overall token-level prediction quality for 4 out of 6 model
configurations. For a better understanding of this phenomenon,
Figure 5 showcases the degree (expressed in % of tokens) of
lexical overlapping of the set of reviews of a given category
(Y axis) with respect to the set of reviews from another
category (X axis). We exclusively considered verbs, nouns and
adjectives. For example, the cell on (0,0) coordinates illustrates
the proportion of tokens from WEATHER apps that are also
present in reviews from the COMMUNICATION app (around
15%). Consistently with our previous results, PERSONAL-
IZATION presents a high overlap with all other categories (30-
35%), which showcases that the training set of reviews used for
this configuration includes a high proportion of lexicon that the
model has also been trained with. PERSONALIZATION apps
often expose extended functions and customization capabilities
to other apps, including widgets, wallpapers, stickers, themes
and optimization tools. On the other hand, MAPS apps report a
very low lexical overlap with respect to all categories (< 5%).
This implies that the training set of reviews used for this setup
did not include any of the category-specific lexicon from the
navigational domain (e.g., GPS, GPX, POI...). Consequently,
out-of-domain prediction of MAPS features becomes a chal-
lenging task. Similar conclusions can be reached by observing
other categories. For example, PRODUCTIVITY apps include
a large sub set of apps with features present in multiple
categories (e.g., calling, note-taking, file-sharing).

In addition, a horizontal analysis in Table II illustrates the
best-performing model for a given category. We use bold-face
style and a special icon to highlight the best model for each
category according to each metric. Additionally, we use the
same strategy to report best average metrics for out-of-domain
and in-domain analysis. Overall, RoBERTa models report the
worst results for all metrics in almost each category, except for
PERSONALIZATION apps when focusing on recall (0.947)
and F1 (0.960). For BERT checkpoints, both base (PRODUC-
TIVITY, TRAVEL) and large (COMMUNICATION, TOOLS)
report the best metrics for precision. Nevertheless, XLNet
variants excel in the majority of categories, especially if we
focus on recall. Specifically, on average, XLNetbase reports the
best recall (0.482) and F1 (0.535), while XLNetlarge reports the
highest precision (0.652), but only by a small difference with
respect to XLNetbase (+0.024).

Given the limitations of the ground-truth generation, preci-

Fig. 5. Lexical overlap between reviews from different categories.

sion results must be interpreted under certain constraints. The
lack of a guarantee of the exhaustivity of the crowdsourced
features annotated by users implies that there might be tokens
predicted by our model that are rejected as tokens from a
feature (false positives), while they might be part of an actual
feature (true positives) that was not indexed in the original set
of features. Given that precision is the proportion of correct
feature tokens with respect to all reported named entities, we
argue that precision values reported above can be interpreted
as the lower threshold of the minimum precision raised by
our approach. On the other hand, recall (i.e., the proportion
of retrieved named entities with respect to all ground-truth
named entities) can be considered as a gold metric for quality
analysis. All in all, for out-of-domain feature extraction, we
argue that the best performing model is XLNetbase.

2) In-domain Feature Extraction: The last rows in Table II
report average results for the 10-fold cross-validation analysis
using the complete dataset in Table I. While features in the test
set for each data partition are not present in the training set (as
explained in Section IV-C2), domain-related features from the
same category are distributed in balance across all data splits.
As expected, average results for all metrics are significantly
higher in the in-domain analysis with respect to the out-of-
domain analysis. This result indicates that language models
enhance their feature extraction capabilities for a specific
category C when their training dataset includes reviews from
that category, even if the predicted features are absent from
the original training dataset. This underscores the relevance of
domain-specific training data for the improvement of model
performance in feature extraction tasks.

XLNetlarge reports the best results for precision (0.761)
and F1 (0.646). In addition, XLNetlarge recall (0.573) is
only slightly below (−0.009) with respect to BERTlarge recall
(0.582). Consequently, we argue that the best performing
model for in-domain feature extraction is XLNetlarge.

B. Baseline feature extraction

Table III reports out-of-domain and in-domain results for
the selected feature extraction baseline method (i.e., SAFE),

7

TABLE III
FEATURE EXTRACTION EVALUATION RESULTS AND COMPARISON WITH BASELINE METHOD.

Out-of-domain In-domain
Method Metric PROD COMM TOOLS SOCIAL HEALTH PERS TRAVEL MAPS LIFESTYLE WEATHER Average Average

SAFE
precision 0.309 0.235 0.299 0.286 0.298 0.195 0.300 0.074 0.500 0.413 0.301 0.193
recall 0.300 0.229 0.292 0.329 0.274 0.229 0.375 0.106 0.500 0.481 0.321 0.215
F1 0.304 0.232 0.295 0.306 0.285 0.211 0.333 0.087 0.500 0.444 0.310 0.199

BERTbase

precision 0.667 0.278 0.392 0.361 0.335 0.895 0.591 0.000 0.500 0.690 0.471 0.575
recall 0.128 0.131 0.222 0.385 0.186 0.447 0.542 0.000 0.600 0.357 0.300 0.419
F1 0.215 0.178 0.284 0.373 0.240 0.596 0.565 0.000 0.545 0.471 0.347 0.485

XLNetbase

precision 0.399 0.479 0.347 0.561 0.494 0.912 0.538 0.200 0.600 0.502 0.503 0.631
recall 0.244 0.145 0.168 0.590 0.402 0.816 0.583 0.188 0.600 0.432 0.417 0.572
F1 0.303 0.222 0.226 0.575 0.443 0.861 0.560 0.194 0.600 0.464 0.445 0.600

our baseline model (i.e., BERTbase) and best-performing model
(i.e., XLNetbase). Due to space constraints, we exclude results
from other models (available in the replication package).
Metrics in Table III are computed using exact matches with the
whole feature (i.e., B-feature tokens followed by none or any
sequence of I-feature tokens). For presentation purposes, we
invert the dimensions of Table III with respect to Table II,
meaning that the horizontal dimensions relate to the com-
parison of categories (green/red), and the vertical dimension
relates to different methods (bold and icon).

On average, both the baseline model (BERTbase) and the
best-performing model (XLNetbase) surpass SAFE’s quality
metrics for out-of-domain and in-domain analyses. The only
exception is the BERTbase recall (0.300), which is slightly
below (−0.021) from SAFE. XLNetbase improves significantly
the performance with respect to BERTbase, especially for recall
(+0.117 for out-of-domain, +0.153 for in-domain). On a
category-level, for the out-of-domain analysis, LLM-based
approaches report a higher precision in all categories, and a
higher recall for 6 out of 10 categories. On a horizontal anal-
ysis, similarly to results in Table II, predicting out-of-domain
features from MAPS reviews reports the worst results in all
scenarios, while the best results are provided by LIFESTYLE
and PERSONALIZATION. If we focus on the categories
for which SAFE outperforms T-FREX on the out-of-domain
analysis, we realize that the original SAFE approach was
designed using feature syntactic patterns from apps belonging
to these domains (PRODUCTIVITY, COMMUNICATION,
TOOLS). Nevertheless, as the out-of-domain configuration
implies that the model was not trained using any reviews from
these categories, certain limitations are expected. However, the
in-domain analysis, which illustrates the performance of T-
FREX discovering new features from a domain for which it
was fine-tuned, reports a substantial improvement for precision
(+0.438), recall (+0.357) and F1 (+0.401).

C. New Features

Table IV reports data and metrics resulted from the evalua-
tion of new features. We discuss this results in alignment with
the evaluation process depicted in Section IV-D.

1) Data preparation: We select XLNetbase as the best
model for out-of-domain feature extraction (focusing on re-
call as the most reliable quality metric). After process-
ing all reviews under each out-of-domain data configura-
tion, we collected a total amount of 1,067 unique new

features (1,956 annotations in total). We excluded 3 out
of 10 categories from this analysis (PERSONALIZATION,
LIFESTYLE, WEATHER) where either 1 or even no new
features were extracted. The whole set of 1,956 review sen-
tences was split into 21 annotation tasks. Each task included
95 new feature annotations (as in Figure 4) plus 5 control
questions, with 100 annotations in total per task. Additionally,
we prepared 2 ground-truth tasks of the same size containing
at least 1 instance of each of the distinct features available in
the crowdsourced data set in Table I. The purpose of these
tasks is to compare the overall precision of undocumented
features with respect to the overall, perceived precision from
users with respect to the ground-truth.

2) Evaluation set up: We conducted up to 3 iterations
of internal (i.e., expert) annotations for the test task. Each
iteration was performed by a different annotator, providing
feedback about the guidelines, the examples, the required
time to conduct the task, and the difficulty. At the end of
each iteration, we refined the guidelines (focusing on reducing
ambiguity), extended the examples (focusing on covering
exhaustively the different kinds of features) and adjusted the
expected resolution time. As a result, we decided to keep task
size to 100 features and an estimated average time of 15’ per
task. On the test task, we report an average pairwise agreement
between internal annotators of 73.3%, and an average F1 of
0.719. Complementarily, for internal evaluation, given that
guidelines and annotators were selected and instructed under
a test set-up, and all of them annotated the same features, we
measured the Fleiss kappa agreement between all annotators,
reporting a substantial degree of agreement (0.718).

3) Evaluation: We set as acceptance criteria for annotators
to reply correctly to 4 out of 5 control questions, and we
ran multiple iterations until reaching 5 accepted annotators for
each task. We recruit participants by taking into consideration
only fluent English speakers and without any language-related
disorders. Each annotator is paid $2 per task (around 15’)
for their participation. Category-level and aggregated results
are reported in Table IV. The gold label for each feature was
assigned using a voting-based approach between all annotators
for each review sentence and feature (any ties were resolved as
‘I don’t know’ to reduce any biases of results). For the whole
dataset, 61.2% of new features were confirmed as true features,
which leads to a precision of 0.612 for new features. Results
are generally balanced across categories with minor deviations,
being TOOLS the category with less accepted features (58.4%)

8

TABLE IV
EVALUATION OF NEW FEATURES

Evaluation (external) Gr. truth (external) Test (internal)

PROD. COMM. TOOLS SOCIAL HEALTH TRAVEL MAPS TOTAL TOTAL TOTAL

#features (annotations) 459 643 560 44 218 8 29 1956 190 95
#features (distinct) 294 383 363 36 155 8 19 1067 144 17
% Yes 68.6% 62.3% 58.4% 63.6% 59.4% 66.7% 58.6% 61.2% 77.0% 70.0%
% No 28.8% 35.0% 41.7% 34.1% 39.3% 33.3% 41.4% 37.0% 23.0% 28.0%
% I don’t know 1.6% 2.7% 1.8% 2.2% 0.6% 0.0% 0.0% 1.9% 0.0% 2.0%
Pairwise agreement 58.5% 58.0% 62.1% 60.2% 62.4% 57.7% 69.7% 58.5% 58.0% 73.3%
F1 0.585 0.566 0.622 0.594 0.631 0.639 0.717 0.613 0.546 0.719

and PRODUCTIVITY the category with more accepted fea-
tures (68.6%). For the ground-truth validation with external
annotators (including only actual features), 77.0% of feature
annotations were accepted as true features, while 23.0% were
rejected. While there is a difference of +15.8% with respect
to the new features, this confirms the cognitive difficulty for
actual users on the formalization of a feature.

VI. DISCUSSION

A. Research Questions

Based on the evaluation results, we consolidate and report
the response to each research question defined in Section III.

RQ1) Table II provides a comprehensive empirical evalu-
ation of the effectiveness of the T-FREX approach at token-
level. Among the different model configurations, XLNet ap-
proaches (benefitting from autoregressive methods to learn
bidirectional contexts) seem to provide better results on av-
erage, especially for the out-of-domain analysis. Concerning
data configurations, T-FREX proves to be significantly ef-
fective for an in-domain setting. Since mobile app markets
are generally stable and the emergence of new domains is
rare, the in-domain configuration is the most practical and
common application for feature extraction tasks. Nevertheless,
out-of-domain extraction also proves effective for certain do-
mains and model configurations, particularly when the domain
lexicon is not highly specialized. These results underscore
T-FREX’s ability to discover new features even from an
unknown domain. Consequently, the results for both in-domain
and out-of-domain analyses highlight the adaptability and
potential generalization of T-FREX across various settings.

RQ2) Table III presents a comprehensive empirical eval-
uation of the feature extraction method compared to the
SAFE approach. On average, LLM-based token classification
consistently outperforms SAFE across all metrics. Notably,
there is a significant performance improvement when tran-
sitioning from the baseline model BERTbase to XLNetbase.
The limitations of a deterministic approach, such as a non-
specialized vocabulary and context-agnostic behaviour, are
particularly pronounced in specific domains or categories. This
holds true even when the LLMs are evaluated in an out-of-
domain setting. Moreover, in an in-domain analysis, LLMs
quickly overcome these limitations and significantly enhance
their performance. They become adept at accurately predicting
new features within domains they have been fine-tuned for.
In addition to leveraging pre-trained LLMs, our supervised

approach can be iteratively refined and tailored to specific do-
mains, serving specialized markets and application categories.
T-FREX enables the collection of recent app reviews and the
integration of up-to-date crowdsourced features, continually
enhancing feature extraction through subsequent fine-tuning
iterations. This approach facilitates effective context integra-
tion, adaptation to new domains, and responsiveness to users’
vocabulary, syntax, and colloquial language—capabilities no-
tably limited in SAFE and other feature extraction techniques.

RQ3) Table IV illustrates in detail the human evaluation
process of new features. Results support the original hy-
pothesis that the ground-truth dataset of features is limited.
Despite these constraints, the human evaluation confirms the
effectiveness of the model in the retrieval of new features.
Furthermore, it is noteworthy that the precision of newly
reported features surpasses the average precision of ground-
truth features in the out-of-domain analysis. As knowledge
from crowdsourced repositories is not typically exhaustive, re-
sults underscore T-FREX’s ability to automatically supplement
feature annotations. Instead of relying on manual user input,
user feedback (i.e., reviews) can serve as a valuable resource
for suggesting features in a streamlined manner, employing a
voting-based mechanism for automatically extracted features.
This setting can potentially address the limitations of manual
annotations and reduce the imbalance in feature representation
across apps with similar user interaction levels.

B. Threats to Validity
We assess the constraints of our study by considering the

validity threats as outlined by Wohlin et al. [46].
Concerning construct and internal validity, we mainly re-

late to the formalization of features, including its definition
(used for the human evaluation in RQ3), exemplification
and analysis. Related work illustrates cognitive differences
in formalizing the limits of a natural language expression
for a given feature (see Section II-A). This includes the
generation of the ground-truth dataset by transferring app
annotations to reviews. To mitigate internal bias, we use
a reliable crowdsourced software recommendation platform
with real user-annotated features that are used in practice
for navigation, indexing, and software comparison. Moreover,
we provide a detailed analysis (see Section II) to consolidate
accepted criteria and descriptors for the formalization of a
feature in the context of mobile apps.

Concerning external validity, delegating the assignment of
ground-truth feature annotations to an external entity leads to

9

a lack of control of the annotation process and the annotators
(i.e, the users). While this entails some risks, we argue that
using annotations from real users in a practical environment
provides significant benefits to an LLM-based feature ex-
traction approach. This becomes especially relevant in the
context of processing reviews generated by users themselves.
Additionally, RQ3 is also designed to overcome and measure
the impact of missing features in the ground truth. Concerning
the latter, the human evaluation process also entails external
validity concerns, especially for the lack of control of the
human annotators and their potential bias. To reduce this
risk, we included control questions to assess the reliability
of each annotation task, and we used a voting-based approach
to consider the most common prediction among all annotators.

Concerning conclusion validity, the main concern is derived
from the interpretation and generalization of the performance
of each evaluation setting. For this reason, we included in this
study two different analytical perspectives (i.e., out-of-domain
and in-domain), each including a detailed perspective on the
performance of all metrics for all selected models. For the
out-of-domain analysis, we also include a detailed perspective
on the performance of each category. Rather than providing
a gold method in a one-fits-all fashion, we aim to provide
researchers with enough information to interpret the strengths
and limitations of each method under each configuration.

VII. RELATED WORK

Dabrowski et al. recently conducted an evaluation and
replication study focusing on mining techniques of app re-
views for multiple tasks, including feature extraction [11].
Related work mainly refers to the SAFE approach as the
most consolidated technique for feature extraction [34]. They
identified and formalized a set of 18 common Part-of-Speech
patterns from app descriptions and app reviews used to express
app features. Through a pattern-matching approach, comple-
mented by semantic similarity and synonymity resolution, they
identify potential feature expressions. Nevertheless, reported
performance in the original study is limited, especially when
applying the technique to reviews, where a lot of noise
features (i.e., false positives) are reported, leading to low
precision. Furthermore, the original code and dataset are
not publicly available. Consequently, replication studies have
reimplemented and built new annotated data sets using ground-
truth from instructed coders [11], [47], reporting lower quality
than originally reported, especially for direct feature match.

Similar conclusions apply to other related works applying
the same syntactic-based strategy, either for early work [13]
or more up-to-date solutions like the ReUS approach [35]. In
addition to previous limitations, evaluation strategies (includ-
ing replication studies [11]) are limited to instructed internal
coders. The lack of the user perspective is key, especially when
analysing user-generated documents (i.e., reviews). Moreover,
they all focus on a reduced set of apps (8-10) and even fewer
domains, and there is no formal evaluation of a category-
oriented analysis for their ability to generalize to new domains.

Nevertheless, they are still used in practice for feature-based
knowledge generation from mobile app repositories [48], [49].

Few works can be found on the application of LLMs for the
task of feature extraction. Similarly to previous studies [13],
[34], [35], the TransFeatEx tool applies PoS patterns by
leveraging the knowledge embedded in a RoBERTa model to
extract syntactic and semantic annotations [50]. Nevertheless,
their contribution is presented as a tool without further evalua-
tion or a concrete proposal for configuring the pattern template
or the sentiment analysis thresholds. KEFE [51] uses features
extracted using PoS patterns as input to a BERT model for
text classification of correct and incorrect features. However,
they focus on the application of this technique for app descrip-
tions, using the extracted features to transfer potential feature
matches with user reviews. Consequently, feature knowledge
is limited to developer-generated documentation.

VIII. CONCLUSIONS AND FUTURE WORK

In this research, we conducted an empirical evaluation of
a token classification-based approach using LLMs to support
feature extraction in the context of mobile app reviews. We
explored and discussed in detail the performance of multiple
models (BERT, RoBERTa, XLNet) under different data con-
figurations (out-of-domain vs. in-domain) from multiple app
categories. The evaluation provides a comprehensive perspec-
tive of the performance of each approach under each data
configuration. Furthermore, ground-truth feature annotations
by real users and external human evaluation contribute to
extending the scope and body of knowledge of the feature
landscape. All in all, our proposal leverages the potential of
LLMs to benefit from contextualized knowledge and to over-
come the limitations of syntactic-based approaches. Research
and industrial applications focusing on software evolution
analysis can benefit from the outcomes of this study, either by
replicating T-FREX as a fully automatic process for feature
extraction (either with different data sets or different models),
by using the ground-truth data set of annotated reviews, or by
using any of the fine-tuned models distributed for replication.

As future work, we are currently working on the potential
of extending the pre-training of the LLMs used for evaluation
with a large data set of app reviews. Evaluation will focus
on token classification and feature extraction metrics with
respect to the original models. Furthermore, we plan to gain
a better understanding of the inner workings of these models
by analysing the embedded knowledge across multiple layers.
To this end, hidden layers can be used as input for probing
classifiers to determine to what extent the given layer embeds
relevant knowledge to support feature extraction.

ACKNOWLEDGMENTS

With the support from the Secretariat for Universities and Research of
the Ministry of Business and Knowledge of the Government of Cat-
alonia and the European Social Fund. This paper has been funded by
the Spanish Ministerio de Ciencia e Innovación under project / fund-
ing scheme PID2020-117191RB-I00 / AEI/10.13039/501100011033.
Alessio Miaschi and Felice Dell’Orletta have also been supported by
the PNRR project FAIR - Future AI Research (PE00000013), under
the NRRP MUR program funded by the NextGenerationEU.

10

REFERENCES

[1] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app
store analysis for software engineering,” IEEE Transactions on Software
Engineering, vol. 43, no. 9, pp. 817–847, 2017.

[2] Authority for Consumers & Markets, “Market study into
mobile app stores (Report ACM/18/032693),” april 2019.
[Online]. Available: https://www.acm.nl/sites/default/files/documents/
market-study-into-mobile-app-stores.pdf

[3] W. Maalej and H. Nabil, “Bug report, feature request, or simply
praise? on automatically classifying app reviews,” in 2015 IEEE 23rd
International Requirements Engineering Conference (RE), 2015, pp.
116–125.

[4] S. Hassan, H. Li, and A. E. Hassan, “On the importance of performing
app analysis within peer groups,” in 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2022, pp.
890–901.

[5] A. Yadav, R. Sharma, and F. H. Fard, “A semantic-based framework for
analyzing app users’ feedback,” in 2020 IEEE 27th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
2020, pp. 572–576.

[6] L. Guerrouj, S. Azad, and P. C. Rigby, “The influence of app churn on
app success and stackoverflow discussions,” in 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2015, pp. 321–330.

[7] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user reviews
for software maintenance and evolution,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2015,
pp. 281–290.

[8] J. Dąbrowski, E. Letier, A. Perini, and A. Susi, “Analysing app reviews
for software engineering: A systematic literature review,” Empirical
Softw. Engg., vol. 27, no. 2, mar 2022.

[9] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data sci-
entists in software engineering,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, p. 12–23.

[10] R. P. L. Buse and T. Zimmermann, “Information needs for software de-
velopment analytics,” in 2012 34th International Conference on Software
Engineering (ICSE), 2012, pp. 987–996.

[11] J. Da̧browski, E. Letier, A. Perini, and A. Susi, “Mining and searching
app reviews for requirements engineering: Evaluation and replication
studies,” Information Systems, vol. 114, p. 102181, 2023. [Online].
Available: https://doi.org/10.1016/j.is.2023.102181

[12] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia, “User reviews matter! tracking
crowdsourced reviews to support evolution of successful apps,” in 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2015, pp. 291–300.

[13] E. Guzman and W. Maalej, “How do users like this feature? A fine
grained sentiment analysis of App reviews,” 2014 IEEE 22nd Interna-
tional Requirements Engineering Conference, RE 2014 - Proceedings,
pp. 153–162, 2014.

[14] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in 2013 21st IEEE International Requirements Engineering
Conference (RE), 2013, pp. 125–134.

[15] C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review analysis for
identifying emerging issues,” in Proceedings of the 40th International
Conference on Software Engineering, 2018, p. 48–58.

[16] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “Ar-miner: Mining
informative reviews for developers from mobile app marketplace,” in
Proceedings of the 36th International Conference on Software Engi-
neering. New York, NY, USA: Association for Computing Machinery,
2014, p. 767–778.

[17] Shah, Faiz Ali and Sirts, Kairit and Pfahl, Dietmar, “Is the SAFE
Approach Too Simple for App Feature Extraction? A Replication
Study,” in Requirements Engineering: Foundation for Software Quality,
Knauss, Eric and Goedicke, Michael, Ed. Cham: Springer International
Publishing, 2019, pp. 21–36.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[19] T. Zhang, B. Xu, F. Thung, S. A. Haryono, D. Lo, and L. Jiang,
“Sentiment analysis for software engineering: How far can pre-trained

transformer models go?” in 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2020, pp. 70–80.

[20] A. Ciborowska and K. Damevski, “Fast changeset-based bug localization
with bert,” in Proceedings of the 44th International Conference
on Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2022, p. 946–957. [Online]. Available:
https://doi-org.recursos.biblioteca.upc.edu/10.1145/3510003.3510042

[21] C. Yang, B. Xu, J. Khan, G. Uddin, D. Han, Z. Yang, and D. Lo,
“Aspect-based api review classification: How far can pre-trained trans-
former model go?” in 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2022, pp. 385–395.

[22] J. Tabassum, M. Maddela, W. Xu, and A. Ritter, “Code and named
entity recognition in StackOverflow,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, jul 2020, pp. 4913–4926.
[Online]. Available: https://aclanthology.org/2020.acl-main.443

[23] N. Jha and A. Mahmoud, “Mining non-functional requirements
from app store reviews,” Empirical Software Engineering, pp. 1–
37, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
174802984

[24] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis feasibility study,” SEI Technical
Report CMU/SEI-90-TR-21, Tech. Rep., 1990.

[25] K. E. Wiegers and J. Beatty, Software Requirements 3. USA: Microsoft
Press, 2013.

[26] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis:
Msr for app stores,” in 2012 9th IEEE Working Conference on Mining
Software Repositories (MSR), 2012, pp. 108–111.

[27] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson,
“Feature-oriented domain analysis (foda) feasibility study,” Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
Tech. Rep. CMU/SEI-90-TR-021, 1990. [Online]. Available: http:
//resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

[28] B. Jehangir, S. Radhakrishnan, and R. Agarwal, “A survey on named en-
tity recognition—datasets, tools, and methodologies,” Natural Language
Processing Journal, vol. 3, p. 100017, 2023.

[29] K. Hakala and S. Pyysalo, “Biomedical named entity recognition
with multilingual BERT,” in Proceedings of the 5th Workshop on
BioNLP Open Shared Tasks. Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 56–61. [Online]. Available:
https://aclanthology.org/D19-5709

[30] A. K. Tarcar, A. Tiwari, D. Rao, V. N. Dhaimodker, P. Rebelo,
and R. Desai, “Healthcare ner models using language model
pretraining,” in HSDM@WSDM, 2019. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:210943047

[31] L. Gu, W. Zhang, Y. Wang, B. Li, and S. Mao, “Named entity
recognition in judicial field based on bert-bilstm-crf model,” in 2020
International Workshop on Electronic Communication and Artificial
Intelligence (IWECAI). IEEE, 2020, pp. 170–174.

[32] K.-J. Stol and B. Fitzgerald, “The abc of software engineering
research,” ACM Trans. Softw. Eng. Methodol., vol. 27, no. 3, sep 2018.
[Online]. Available: https://doi.org/10.1145/3241743

[33] Q. Motger, X. Franch, and J. Marco, “Mobile feature-oriented
knowledge base generation using knowledge graphs,” in New
Trends in Database and Information Systems - ADBIS 2023 Short
Papers, Doctoral Consortium and Workshops: AIDMA, DOING,
K-Gals, MADEISD, PeRS, Barcelona, Spain, September 4-7, 2023,
Proceedings, ser. Communications in Computer and Information
Science, vol. 1850. Springer, 2023, pp. 269–279. [Online]. Available:
https://doi.org/10.1007/978-3-031-42941-5_24

[34] T. Johann, C. Stanik, A. M. Alizadeh, and W. Maalej, “SAFE: A
Simple Approach for Feature Extraction from App Descriptions and App
Reviews,” Proceedings - 2017 IEEE 25th International Requirements
Engineering Conference, RE 2017, pp. 21–30, 2017.

[35] M. Dragoni, M. Federici, and A. Rexha, “An unsupervised aspect
extraction strategy for monitoring real-time reviews stream,” Information
Processing & Management, vol. 56, no. 3, pp. 1103–1118, 2019.

[36] AppTweak, “Google Play Store Categories,” 2022, Accessed 5th
October, 2023. [Online]. Available: https://developers.apptweak.com/
reference/google-play-store-categories

[37] Stanford NLP Group, “Neural pipeline.” [Online]. Available: https:
//stanfordnlp.github.io/stanza/neural_pipeline.html

[38] Universal Dependencies, “CoNLL-U Format.” [Online]. Available:
https://universaldependencies.org/format.html

11

https://www.acm.nl/sites/default/files/documents/market-study-into-mobile-app-stores.pdf
https://www.acm.nl/sites/default/files/documents/market-study-into-mobile-app-stores.pdf
https://doi.org/10.1016/j.is.2023.102181
https://doi-org.recursos.biblioteca.upc.edu/10.1145/3510003.3510042
https://aclanthology.org/2020.acl-main.443
https://api.semanticscholar.org/CorpusID:174802984
https://api.semanticscholar.org/CorpusID:174802984
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
https://aclanthology.org/D19-5709
https://api.semanticscholar.org/CorpusID:210943047
https://api.semanticscholar.org/CorpusID:210943047
https://doi.org/10.1145/3241743
https://doi.org/10.1007/978-3-031-42941-5_24
https://developers.apptweak.com/reference/google-play-store-categories
https://developers.apptweak.com/reference/google-play-store-categories
https://stanfordnlp.github.io/stanza/neural_pipeline.html
https://stanfordnlp.github.io/stanza/neural_pipeline.html
https://universaldependencies.org/format.html

[39] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong et al., “A survey of large language models,” arXiv
preprint arXiv:2303.18223, 2023.

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[41] S. Broscheit, “Investigating entity knowledge in BERT with simple
neural end-to-end entity linking,” in Proceedings of the 23rd Conference
on Computational Natural Language Learning (CoNLL). Hong Kong,
China: Association for Computational Linguistics, Nov. 2019, pp.
677–685. [Online]. Available: https://aclanthology.org/K19-1063

[42] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” 2019.

[43] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding,” Advances in neural information processing systems,
vol. 32, 2019.

[44] “Prolific · Quickly find research participants you can trust.” [Online].
Available: https://www.prolific.com/

[45] “QuestBase.” [Online]. Available: https://questbase.com/en/
home-questbase/

[46] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering, 2014.

[47] F. A. Shah, K. Sirts, and D. Pfahl, “Using app reviews for competitive
analysis: Tool support,” in MAWA 2019, 2019, pp. 40–46.

[48] S. Kumari and Z. A. Memon, “Extracting feature requests from online
reviews of travel industry,” Acta Scientiarum - Technology, vol. 44, 2022.

[49] M. Kasri et al., “A Comparison of Features Extraction Methods for
Arabic Sentiment Analysis,” in 4th International Conference on Big
Data and Internet of Things, 2020.

[50] A. Gállego, J. Motger, X. Franch, and J. Marco, “TransFeatEx: a NLP
pipeline for feature extraction,” in Joint proceedings of REFSQ-2023
Workshops, Doctoral Symposium, Posters & Tools Track and Journal
Early Feedback: co-located with the 28th International Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ
2023): Barcelona, Catalunya, Spain, April 17-20, 2023. CEUR-WS.org,
2023. [Online]. Available: https://ceur-ws.org/Vol-3378/PT-paper1.pdf

[51] H. Wu et al., “Identifying key features from app user reviews,” in
International Conference on Software Engineering, 2021.

12

https://aclanthology.org/N19-1423
https://aclanthology.org/K19-1063
https://www.prolific.com/
https://questbase.com/en/home-questbase/
https://questbase.com/en/home-questbase/
https://ceur-ws.org/Vol-3378/PT-paper1.pdf

	Introduction
	Background
	Mobile app features
	NER using LLMs

	Research method
	Design
	Data Collection and Annotation
	Data Pre-processing and Feature Transfer
	Model Fine-tuning
	Model Selection
	Data Preparation
	Training Configuration

	Evaluation design
	Token-based ground-truth (RQ1)
	Baseline feature extraction (RQ2)
	New features (RQ3)

	Evaluation
	Token-based ground-truth
	Out-of-domain Feature Extraction
	In-domain Feature Extraction

	Baseline feature extraction
	New Features
	Data preparation
	Evaluation set up
	Evaluation

	Discussion
	Research Questions
	Threats to Validity

	Related work
	Conclusions and future work
	References

