University

of Glasgow

Bob, R. and Storer, T. (2019) Behave Nicely! Automatic Generation of
Code for Behaviour Driven Development Test Suites. In: 19th IEEE
International Working Conference on Source Code Analysis and
Manipulation (SCAM 2019), Cleveland, OH, USA, 30 Sep - 01 Oct 2019,
pp. 228-237. ISBN 9781728149370 (d0i:10.1109/SCAM.2019.00033).

This is the author’s final accepted version.

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/192036/

Deposited on: 08 August 2019

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/SCAM.2019.00033
http://eprints.gla.ac.uk/192036/
http://eprints.gla.ac.uk/

Behave Nicely! Automatic Generation of Code for
Behaviour Driven Development Test Suites

Ruxandra Bob
School of Computing Science
University of Glasgow
Glasgow, United Kingdom
2126189B @student.gla.ac.uk

Abstract—Behaviour driven development (BDD) has gained
widespread use in the software industry. System specifications
can be expressed as test scenarios, describing the circumstances,
actions and expected outcomes. These scenarios are written in
a structured natural language (Gherkin), with each step in the
scenario associated with a corresponding step implementation
function in the underlying programming language.

A challenge recognised by industry is ensuring that the natural
language scenarios, step implementation functions and underly-
ing system implementation remain consistent with one another,
requiring on-going maintenance effort as changes are made to a
system. To address this, we have developed behave_nicely, a tool,
for automatically generating step implementation functions from
structured natural language steps, with the intention of eliminat-
ing the need for maintaining step implementation functions.

We evaluated our approach on a sample of 20 white box and 50
black box projects using behaviour driven development, drawn
from GitHub. Our results show that behave_nicely can generate
step implementation functions for 80% of the white box and 17 %
of black box projects. We conclude that (a) there is significant
potential for automating the process of code generation for BDD
tests and (b) that the development of guidelines for writing tests
in Gherkin would significantly improve the results.

Index Terms—Behaviour driven development, code generation

I. INTRODUCTION

Behaviour driven development (BDD) was first introduced
by North in 2006 [1] as a means of expressing system
specifications as test scenarios in a structured natural language,
Gherkin. Each scenario describes the circumstances of the test
from the perspective of a user role, the action that the user
takes on the system and the expected observable changes. Each
of the statements within the scenario can be linked to a step
implementation function (step function) in the target system’s
programming language. This linking enables the collection of
scenarios written for the system specification to be used as
an executable a test suite. Several authors have advocated the
benefits of this approach. Carrera et al [2] advocate for BDD as
a means of fostering communication between customers, users
and developers. Keogh [3] argues that BDD encourages devel-
opers to focus on delivering features of value to users, whilst
also forcing the elaboration of poorly understood requirements.
Solis & Wang [4] argue that the combination of features
enables a traceable integration between a readable system

Tim Storer
School of Computing Science
University of Glasgow
Glasgow, United Kingdom
timothy.storer @ glasgow.ac.uk

specification on the one hand and executable acceptance tests
and implementation on the other.

BDD has been widely adopted in the software industry.
Software tools to support the process have been developed for
a wide variety of programming languages, including Python
[5], Java [6], Ruby [7] and .NET [8] amongst many others.
A recent survey estimated that more than a fifth of teams
were employing behaviour driven development [9]. A second
survey reported that approximately three quarters of the (self-
selecting) respondents planned to use BDD as either a key tool
or as an optional tool in future projects. Half of the respondents
also described BDD as either very important or important as
a tool within their projects [10].

Despite this popularity, there is growing recognition that
adoption of BDD incurs significant maintenance costs. The
same survey of software industry practitioners described above
reported that 20% of respondents reported that use of BDD
reduced team productivity. The respondents also stated that
BDD tests can be hard to change as the system requirements
evolve, as one respondent observed “Changes required to be
done in more than one place.” This problem arises because
existing BDD practice requires development teams to maintain
two versions of their tests (the Gherkin scenario and the cor-
responding step functions) and ensure they remain consistent
with one another. This may be further complicated if a step
is used in more than one test scenario, as changes to the
step to satisfy a change to one scenario may cause another
to fail. The authors of the survey conclude that there is a
significant opportunity to “Investigate automated test repair
for BDD specifications”.

This paper addresses this maintenance challenge. To do
so, rather than focusing on test case repair, we investigate
whether step functions can be automatically generated from
the structured natural language steps in the source Gherkin
scenario. If step functions can be automatically generated from
the scenarios, then this would reduce the need for the step
functions to be manually defined and maintained alongside
the Gherkin scenarios. Our hypothesis is therefore:

Hypothesis Test code step definition functions can be cor-
rectly generated from scenarios expressed in the Gherkin
structured natural language.

Our approach to investigating this hypothesis exploits the
use of Natural Language Processing (NLP) to extract the
core features of a step function from a Gherkin scenario.
We anticipate that NLP will be of use this purpose for two
reasons. First, the steps in a Gherkin scenario are explicitly
labelled according to their purpose, either to establish the
pre-conditions for a test (Given steps), perform a user action
on that fixture (When steps) or confirm that a post-condition
has been satisfied by the system (Then steps). Therefore,
we anticipate that if a Gherkin scenario has been expressed
correctly, the purpose of each step in the corresponding step
functions should be explicit and restricts the possible code that
should need to be implemented to realise it. Second, individual
scenario steps are typically terse and explicit, allowing for the
identification of critical information.

Contribution: Three contributions are made in this work.
First, we develop and present an implementation of our ap-
proach, behave_nicely [11], targeting the Python language and
behave BDD package. We demonstrate that behave_nicely
can be used to successfully generate step functions for Python
based only on the content of Gherkin language scenarios.
Previous efforts at code generation from Gherkin focused on
Java and leveraged the static type system to infer the details
of step functions. Second, we develop a novel method for
evaluating the reliability of code generation for test suites
using mutation testing [12]. Finally, we perform the first
significant evaluation of step function generation. To date,
attempts at code generation from Gherkin scenarios have been
limited to case studies of single projects [13]. In contrast, we
evaluate behave_nicely against a sample of 20 white box and
50 black box open source projects employing behave and
retrieved from the GitHub open source project repository [14].
We demonstrate that behave_nicely was able to successfully
generate step functions for 80% of the white box and 17% of
black box projects.

The paper is structured as follows: Section II presents
an overview of the BDD workflow, including an illustrative
example of both Gherkin and a suite of step function im-
plementations. Section III describes related previous work
on test code generation from formal requirements specifica-
tions and other approaches, and code generation from natural
language requirements. Section IV provides an overview of
the tool we developed and Section V describes the design
of our experiment to evaluate behave_nicely using our novel
approach to comparing generated code using mutation testing.
Section VI presents the results of our experiments and Section
VIII section VII discusses the implications of the results and
identifies potential future work.

II. BEHAVIOUR-DRIVEN DEVELOPMENT AND GHERKIN

This section provides a brief tutorial on the BDD workflow.
The examples are presented using the behave package for
Python [5], although the approach is similar for other target
programming languages. The overall workflow is shown in
Figure 1. In some respects, Behaviour Driven Development
mimics the workflow for Test Driven Development [15], in

Software
Implementation

Requirements Scenarios Code Steps

>

Fig. 1: Conventional Behaviour driven development workflow

Feature: balance management
As a customer
I want to perform transactions on my bank
account
So that I can manage my finances

Scenario:
Given a bank account with initial balance of 0
When I deposit an amount of 100 into the bank

account

And I withdraw an amount of 50 from the bank
account

Then the balance of the bank account should
be 50

Fig. 2: Example Gherkin Scenario

that developers write tests that initially fail, before proceeding
to implementation.

The first stage in BDD is for system specifications to be
expressed as user stories with associated test scenarios using
the structured natural language, Gherkin. An example of a
user story and associated test scenario is given in Figure
2. The figure shows a user story for managing money in a
banking application. In addition, a single test scenario is shown
including some transactions on a bank account. The scenario
comprises three types of steps:

e Given steps describe the pre-conditions that must be
satisfied before any user action can proceed, including
the fixture to the tested that must be created.

e When steps describe the actions taken by a user on the
system.

e Then steps describe the post-conditions that should be
satisfied if the system meets the specification.

In addition, And steps are continuations of the previous type

of step.

Gherkin scenarios are stored in a plain text file with .feature
extension within the project test suite. Behave, like many
BDD implementations, searches for these files during the
execution of the test suite. Once all the scenarios have been
discovered, the tool then searches the project code base for
functions that have been annotated with the names of scenario
steps contained in the Gherkin file. In behave these functions
are conventionally stored in a steps.py file within the test
suite. In the second step in the BDD workflow, this code must
be implemented and maintained by the developer, although
many BDD tools support automatic generation of empty stub
functions.

Figure 3 illustrates the implementation of step functions
given in 2. The figure shows four step_impl step functions,
annotated with the steps defined in the scenario. Notice that
the implementation is characteristic of the Gherkin statement

from behave import given, when, then

from banking import BankAccount

@given (’a bank account with initial balance of 07)
def step_impl (context) :
context .bank_account = BankAccount (0)

@when (' I deposit an amount of 100 into the account’)
def step_impl (context) :
context.bank_account.deposit (100)

@when (I withdraw an amount of 50 from the account’)
def step_impl (context) :
context.bank_account.withdraw (50)

@then (’the balance of the bank account should be 50’
def step_impl (context) :
assert context.bank_account.balance == 50

Fig. 3: Step functions implemented in behave for Python

class BankAccount (object) :

def _ init_ (self, balance):
self.balance = balance

def deposit (self, amount):
self.balance = balance + amount

def withdraw(self, amount) :
self.balance = balance - amount

Fig. 4: Complete implementation of bank account example

type. Given steps are implemented by the creation of a fixture
(in this case a bank account). When steps perform actions on
the fixture (credits and withdrawals) and Then steps contain
assertions. Each Gherkin statement in a test scenario with a
matching function is executed in turn within the test. If no
matching function is found for a statement, or the statement
has been stubbed then the test scenario fails.

Finally, the developer creates the implementation of the
application code to satisfy the test scenarios. Figure 4 illus-
trates the implementation of the example BankAccount class
from the banking application. At this stage the suite of test
scenario can be executed again using behave and should pass.
Development may now proceed to new features.

Note, however, that should detail of the implementation
change, then the step functions and possibly the Gherkin
scenarios may also need to be updated. Similarly, if the
Gherkin scenario changes then so may the step functions and
application. For example, if a decision is made to refer to
‘savings account‘ specifically, then the nomenclature through-
out the Gherkin scenario, step functions and implementation
all need to be manually updated. This work is more difficult
than other forms of refactoring because the work must be
undertaken across languages (Gherkin and Python). In the

next sections we detail related work concerning the mitigation
of this maintenance task and then our approach to test code
generation.

III. RELATED WORK

Test case generation and maintenance has been recognised
as a source redundancy by a number of researchers, requiring
the manual translation of user requirements for a system into
executable acceptance tests.

Much of the work on test code generation has concerned
deriving test suites from formal specifications of system be-
haviour. Dick and Faivre [16] attempt test-case generation
from formal mathematical specifications. They describe a
process of detecting individual operations in order to automate
them by creating a sequence of operations that handles all the
tests needed for a system. Their process used the results of
mathematical analysis of the specification to construct a Finite
State Automaton (FSA). Tests were scheduled by identifying
paths in the FSA. Kim et al [17] suggest generating test cases
from state-diagrams in Unified Modelling Language (UML).
They generate test-cases that use flow analysis to verify the
correctness of the implementation code by checking if newly
generated classes have the same control and data flow as it
was shown in the UML diagram specification. Ismail et al [18]
proposed a technique that uses intelligent searching techniques
to identify which previously stored keywords match use-case
diagrams generated from textual specifications, and generates
test-cases based on those keywords. While these approaches
seem promising, they still introduce an additional intermediate
step of diagrams, which would still need to be changed if
changes would occur to the requirements themselves.

Other test-case generation approaches include property-
based testing and crowd-sourcing tests. Property-based testing
involves making assumptions about the output of a piece
of code based on the input. Tests are run repeatedly with
different generated input and their output is validated against
the expected output to determine if they were passed success-
fully or not. Fink et al [19] introduce property-based testing
as a new testing approach meant to help developers keep
track of common mistakes that occur during the design and
implementation stages of the software development process in
the form of formal specification that would map to tests and
be generic enough to be automated

Crowd-sourcing of tests [20] is a technique used in the
software development industry to bring together the knowledge
of developers from different teams and different locations
with the aim of taking advantage of multiple perspectives
and various levels of expertise to improve test coverage by
generating new test-cases. While it does show promising
results, one potential problem may be that organisations may
be reluctant to reveal user stories and scenarios that describe
commercially valuable features to a crowd of workers.

Several researchers have investigated the potential for nat-
ural language processing to be used for requirements analysis
and application code generation. Fatwanto [21] proposed a
method of transitioning natural language requirements to a

scenario-based formal language through different stages of
parsing, in order to use the scenario representation to po-
tentially generate various other representations. However, the
resulting method did not have a clear way of mapping between,
natural language elements and formal language concepts.
Other research in the field includes using NLP techniques for
defect detection in textual requirements, to detect ambiguity
or to check if the requirements match a certain template [22],
[23].

Groen et al [24] investigated whether there was an actual
need for NLP in requirements engineering as opposed to
taking a usual manual approach. They performed an expert-
based manual analysis of natural language requirements and
compared the performance with that of an automated analysis
on the same data set. Their results showed that automated
requirements analysis using NLP scaled significantly better
than manual analysis. This suggests that there is indeed a need
to make use of NLP techniques in requirements engineering.

With recent improvements in NLP techniques and a growth
in interest from industry, Ferrari [25] outlined the issues that
could arise from applying these techniques in industry, such
as a need for large data sets for the NLP algorithms to work
properly, a need for individuals with domain experience to
take part in the process which might be a problem due to
confidentiality and the fact that the context differs among
companies so a functioning general solution might not exist.

To our knowledge, test code generation directly from natural
language has not appeared in the peer-reviewed literature.
However, Wang et al [26] explored automatic test case gen-
eration from structured formal specifications, with a focus
on extracting behavioural information from the specification
text in the context of safety critical systems. They achieve
this by combining NLP techniques with constraint solving.
In order to generate the test cases, they enforce the use of a
formal specification language called RUCM. Their research is
pursuing a similar goal to the work presented here, however
the formal language they propose to use for requirements
representation lacks the natural language aspect of BDD
scenario descriptions.

In the most closely related previous work, Kamalakar [13]
proposed eliminating step implementation entirely by using
NLP techniques to analyse BDD user stories, then mapping
them to existent implementation code and generating the test
implementation by using properties from the project code the
user story refers to. There are two limitations to Kamalakar’s
work. First the approach is limited to projects that have already
been implemented, thus not allowing for the full use of a BDD
approach. Second, the evaluation was limited to a single case
study in which the author made modifications to a software
project to assist the code generation mechanism. Thus, to
date, there has not been a study of the reliability of test code
generation techniques for multiple and/or unseen projects.

IV. DESIGN OF BEHAVE_NICELY

This section describes the design of our approach to test
code generation for behave. Figure 5 illustrates the desired

Scenarios

; Software
Requirements | —>-
\L Implementation
auomatically
generated
code steps

Fig. 5: Desired BDD Workflow

workflow for the tool. In the approach, user stories and test
scenarios are still written and maintained in Gherkin. Simi-
larly, application code is still developed in Python. However,
in contrast to the workflow illustrated in Figure 1 for conven-
tional workflows, step functions are generated automatically
whenever the BDD test suite is executed.

Figure 6 illustrates the overall architecture for be-
have_nicely. The tool comprises of three main components:

o The Change Detector: detects changes made to the
project API or the scenario specifications and notifies that
the step functions need to be regenerated again. Natural
language processing can be computationally expensive,
so it is convenient to limit the number of times this
task must be performed, particularly if code generation
is incorporated into a continuous integration pipeline, in
which it is desirable to keep processes fast [27].

e The Parsing component: performs part-of-speech tag-
ging and shallow semantic parsing on each statement
in the Gherkin scenarios. This component employs a
combination part-of-speech (POS) tagging implemented
using NLTK [28] and Semantic role labelling (SRL)
implemented using AllenNLP [29].

o The Generating component: generates step function code
using the information from the parser and stores them
into a steps.py file. Currently, the generating component
targets the behave BDD library for the Python program-
ming language.

POS provides syntactical information about the structure of

a sentence, whilst SRL provides greater information about the
meaning of a sentence. When generating test cases, we take a

Parsing
Component

Iy

Generating
Component

$

Change
Detector

) Code Step
Scenarios Implementations

Fig. 6: Overview of the architecture of behave_nicely

different approach for each type of code step - Given, When
or Then:

e Given statements should identify a test fixture to be
constructed. Therefore, the first noun in a given statement
is considered to be a fixture. Subsequent nouns are parsed
as arguments to the fixture. In the example given in Figure
2, the ‘bank account’ is parsed as a fixture and the balance
of ‘0° is parsed as an argument.

¢ When statements are expected to perform an action on a
fixture by invoking one of its methods. Good software
development practice states that methods should be iden-
tified by verbs [30]. In the two example When statements
given in Figure 2, the verbs ‘deposit’ and ‘withdraw’
indicate the methods to be invoked in the step function.
A scenario may comprise more than one fixture, so all
the nouns in the scenario are extracted and compared to
fixtures already declared in Given steps. In this case,
the ‘bank account’ is again identified as the fixture to be
executed. Finally, any remaining noun phrases are treated
as parameters to the method to be executed in the order
they are declared in the statement.

o Then statements are expected to verify that a post condi-
tion holds. The fixture to be checked is extracted as for
When statements. Similarly, the property to be checked is
the first non-literal (number, quoted string etc.) noun in
the statement. Finally the expected value of the property
is the last literal (number, quoted string etc.) in the
statement.

A complicating factor for behave_nicely is that Gherkin
supports the use of parameters and tables of examples inputs
and expected outputs. Parameters are indicated by identifiers
enclosed in angle brackets, for example <balance>. As well
as being incorporated into the body of the step function, these
parameters must also be declared in the function parameters.

V. EXPERIMENTAL DESIGN

This section presents our experimental design for evalu-
ating behave_nicely. The experimental design comprises the
construction of a data set of open source projects that employ
BDD using the behave framework. Separately, the mechanism
for comparing the step functions generated by behave_nicely
with the reference functions in the original projects is de-
scribed.

A. Open Source Project Data Set

Two data sets of open source projects were created. The
data sets were created by searching GitHub for projects that
used the behave framework using the search term “bdd” and
“behave”. The search was filtered for forks to reduce the
possibility that duplicate or similar features would be included
in the data set. The top 70 search results were cloned and
divided into two data sets as follows.

o A white box data set of 20 projects was used to support
the development of behave_nicely. When behave_nicely
failed to generate the correct step function for a sce-
nario in this data set, the project code was inspected

to understand the reason why. Hence, we worked to
maximise behave_nicely’s support for these projects and
we anticipated that final overall performance for this
category of project would be high.

e A black box data set of 50 open source projects (again
taken from GitHub). These projects were used to pro-
vide a measure of behave_nicely’s performance against
unseen Gherkin feature files. Hence, we anticipated that
behave_nicely’s performance against this data set would
be substantially lower than for the white box data set.

All projects were cloned from GitHub between the 30th and
31st of January 2019. Tables I and II in Section VI list the
projects used for white box and black box testing, respectively.
The two data sets both provide insights as to the feasibility
of generating set functions from Gherkin scenarios. On the
one hand, black box testing provides an assessment of the
reliability of behave_nicely as it is currently implemented.
Conversely, undertaking a white box evaluation gives an
indication of the likely future reliability of this code generation
approach, as more examples of variations in uses of Gherkin
are incorporated into the tool.

B. Evaluation Using Mutation Testing

The step functions generated by behave_nicely were com-
pared with the implementations found within the open source
projects in the data sets. Our goal was to determine whether
each generated step function performed the same as the
equivalent step function in the original project. Determining
whether two programs are functionally equivalent is, in gen-
eral, undecidable. To address this, an approximate measure
of equivalence between step functions was developed using
mutation testing [12].

Mutation testing is a technique to measure the effectiveness
of test suites in detecting bugs. In the approach, a number of
‘mutants’ of an application are created using code manipu-
lation tools. Examples of mutations include the replacement
of logical and mathematical operators with alternatives, nega-
tion of logical expressions and replacement of arguments to
function call with null references. The intention is to simulate
the introduction of defects to a project. The test suite for the
project is then executed against each mutant. Mutants that pass
all the tests in the suite are said to be ‘survivors’, with a
high mutant survival rate indicative of a test suite with poor
coverage.

Mutation testing was used slightly differently for the pur-
poses of evaluating behave_nicely. The mutation tool Mutmut
[31] was used to generate mutants for the target project. The
original test suite of Gherkin scenarios and step functions was
then used to test the mutant and the scenarios that passed or
failed as a result was recorded.

Next, behave_nicely was executed on the Gherkin scenarios
to generate new step functions. The generated functions were
then inspected and minor inconsistencies such as variable
name mismatches were corrected manually. The test suite
was then re-run using the step functions generated by be-
have_nicely and the scenarios that passed or failed were

@given ("br-init is run with {location}’)
def step_impl (context, location):
context.location_param = None if \
location == ’'no parameters’ else location
project_folder = context.location_param or \
" features’
context.project_created_dir = \
os.path.join(os.getcwd (), project_folder)

Fig. T

behave-restful.

Example of non-explicit step function from

also recorded. The outcome for each scenario was compared
against the outcome for the original project.

The code generation by behave_nicely was considered to
be successful for a Gherkin scenario if step functions could
be successfully generated for the scenario and the outcomes
of the execution of the test scenario on the mutated project
matched for the original step function implementation and the
generated step function (i.e. pass and pass, or fail and fail).
Overall results for the comparison are reported in the next
section.

VI. RESULTS
A. White Box Projects

Table I summarises the results for the white box testing
projects used during the development of behave_nicely. The
table lists the project title, URL on GitHub and the number
of Gherkin scenarios found in each project.

In addition, the table shows the number of scenarios for
which step functions were successfully generated by be-
have_nicely. As described above, a scenario was considered
to be successful if all step functions were generated and the
same test/fail behaviour was observed for the test scenario as
compared to the original scenario when subjected to mutation
testing. As can be seen, all scenarios were successfully gen-
erated for 16 (80%) of the 20 projects and 74 (82%) of the
91 scenarios that they contained. On further inspection, where
behave_nicely could successfully generate step functions, the
resulting scenario would also pass the mutation testing evalu-
ation.

behave_nicely was unable to generate step functions for 4
of the 20 white box projects. On inspection, these projects
contained step functions that did not conform with the ex-
pected uses of the different Gherkin step types, or were too
ambiguous to be translated into code. For example, the project
behave-restful contains the step function shown in Figure
7. The figure shows that much of the necessary functionality
for the code step is not explicit in the corresponding Gherkin
statement. The trade off between implicit and explicit detail
expressed in Gherkin is discussed further in Section VIIIL.

B. Black Box Projects

Table II summarises the results of the same evaluation
procedure for the black box projects. As was anticipated,
behave_nicely was able to successfully generate step functions

for far fewer projects in the black box data set compared to
those used for white box testing. In total, it was possible
to generate step functions for 15 (30%) of the 50 projects.
Of these, step functions were successfully generated for all
scenarios for 13 (26%) projects and partially successful for
2 projects. Overall, behave_nicely was able to successfully
generate step functions for 92 (17%) of the 530 scenarios
found in the black box data set of projects.

A lightweight review of the black box projects was con-
ducted after the evaluation in order to understand factors for
the success and failure of step generation. As for the white box
projects, it was evident that where features contained explicit
descriptions of actions to be undertaken on the system API
it was possible for behave_nicely to automatically generate
the step function. However, where a Gherkin step abstracted
multiple actions undertaken in the step function (i.e. the
Gherkin step does not explicitly describe a single action on
the application API), behave_nicely failed to generate the
code correctly. Separately, one project, transcend (47) was
discovered after evaluation to be implemented in Portuguese,
meaning that the scenarios could not be parsed. The results
from the white and black box evaluation are discussed further
in Section VIII.

C. Limitations

There are two limitations to the mechanism for evaluation
of behave_nicely that we adopted.

First, both the white and black box evaluation is limited to
a data set of 70 open source projects drawn from GitHub.
The size of the data set, whilst substantial, is still limited
relative to the extent of practice of BDD [9]. The size of
the evaluation suite was restricted by practical considerations
of conducting the experiment. Further, the decision to focus
on open source projects may have introduced bias. Many of
the software projects in the data set appear to be ‘toy’ or
‘tutorial’ projects. Although more than 600 Gherkin scenarios
were evaluated with behave_nicely, only 3 of the white box
and 10 of the black box projects had test suites containing 10
or more Gherkin scenarios. A focus on open source projects
was necessitated by the need for a sizeable set of projects
that use BDD in order to undertake an empirical evaluation.
However, this focus may have led to the selection of projects
that were less complete or less well maintained than projects
developed and maintained within commercial settings.

Second, the need to make minor manual adjustments to gen-
erated step functions introduced an element of subjectivity into
the evaluation. As described, minor adjustments were made
where there was a mismatch between the naming conventions
within the Gherkin statement and the implementation details
in the step function. Adjustments were not made if the step
function required significant alteration such as the introduc-
tion of control structures or other alteration to the function
structure. Without the manual adjustments, the performance
of behave_nicely would have inevitably been lower, however,
the adjustments were necessary in order to assess the extent

TABLE I: List of projects comprising the white box set and mutation testing comparison results. Shaded projects contain at
least one unsuccessfully generated scenario.

Project URL Scenarios éuccess_f ul
eneration

1 | algorithms https://github.com/downquark/algorithms 1 1
2 | Banking-BDD https://github.com/rbob96/Banking-BDD 3 3
3 | BDD-Behave-Example https://github.com/rifferreinert/BDD-Behave-Example 3 3
4 | Behave https://github.com/mmguzman/Behave 4 4
5 | behave-calc https://github.com/AlberTajuelo/behave-calc 2 2
6 | behave-demo https://github.com/rsavalagi/behave-demo 2 0
7 | behave-example https://github.com/j-bennet/behave-example 6 0
8 | behave_parallel_demo https://github.com/vishalm/behave_parallel_demo 15 15
9 | behave-restful https://github.com/behave-restful/behave-restful 6 0
10 | behave-testlink https://github.com/jframos/behave-testlink 3 3
11 | behave_web2 https://github.com/timbortnik/behave_web2 3 0
12 | ci-jenkins-tox-example https://github.com/Enforcer/ci-jenkins- tox-example 1 1
13 | cucumber-python https://github.com/dev-lusaja/cucumber-python 5 5
14 | DataSet Verification https://github.com/VONLY-LLC/DataSetVerification 6 6
15 | Python Gherkin Demos https://github.com/AndreasAugustin/Gherkin-Demos-python 5 5
16 | Learning Selenium and BDD in python | https://github.com/rajadavidh/learning-selenium-behave-python 2 2
17 | PythonBDD https://github.com/kazune- br/PythonBDD 3 3
18 | Python_BehaveBDD https://github.com/NVKPAVANKUMAR/Python_BehaveBDD 4 4
19 | vending-machine https://github.com/SpenserHardin/vending-machine 13 13
20 | Testing Strategy https://github.com/peter-evolent/python-testing-examples 4 4
91 74

to which step functions could be generated within a realistic
context.

VII. DISCUSSION

The results from both the white box and black box evalua-
tions demonstrate that the ability of behave_nicely to success-
fully generate step functions that are equivalent to the original
implementations in the data sets is strongly influenced by three
factors:

o The extent to which a step function implementation in the
reference project conforms with the expected pattern for
the step function type. There were multiple examples of
violations of this assumption, particularly in the black box
data set. For example, some step functions had not been
fully implemented in the reference project, containing a
single pass statement, or raising an unimplemented step
exception. Table III summarises the number of steps in
the black box projects that fell within these categories.

o The extent to which the naming conventions within the
Gherkin feature files matched those within the underlying
application. For example, if a feature file was discovered
to refer to a ‘bank account’ as a fixture within a Given
statement, then behave_nicely assumes that a class called
BankAccount exists within the project API. However, if
the class has been named SavingsAccount, or Account,
then behave_nicely will not generate the step function
correctly. This problem is perhaps exacerbated by the
limited support for cross-language refactoring in many
development environments.

o The explicitness of the Gherkin step relative to the
corresponding implementation in the step function. For
example, projects contained examples of substantial im-
plicit work undertaken in the step function that was not
explicitly described in the corresponding Gherkin step.

This meant it was not possible to generate step functions
in these cases.

All three of these issues limited the ability of behave_nicely
to correctly generate step functions, particularly for the black
box suite. A consequence of these difficulties was the need to
make subjective decisions as to what constituted a ‘minor’
alterations to generated step functions in order to perform
mutation testing comparison.

There appears to be little that can be done about the first
issue and its impact on the results for behave_nicely, since in
these cases, it seems unlikely that the original step functions in
the data sets represent the ‘correct’ implementation as intended
by the authors. It may be argued that these steps should have
been excluded from the evaluation, however, this would have
had the effect of reducing the ‘realism’ of the approach to
testing and would have required a more detailed review of
the black box data set in particular before commencing the
evaluation.

The second and third issue in particular raise questions as
to the establishment of good practice guidelines for BDD and
for describing specifications and scenarios in Gherkin. There
is an extensive guidance discussing different aspects of code
hygiene for application programming languages, with several
texts being very popular on the topic [32]-[34]. However,
practical guidance for maintaining clean test code is rather
limited [35], and we were unable to discover any research
concerning best practice for maintaining acceptance tests in
Gherkin. Existing applicable best practice is largely focused
on API naming conventions, emphasising that these should
reflect the domain of concern for an application, rather than
implementation details [32]. However, these do not address
cross-language consistency and code generation would be
eased if this was encouraged.

The guidance that is available for writing maintainable tests

TABLE II: List of projects comprising the black box data set. Dark shaded rows are for projects that behave_nicely did not
generate any scenarios. Light shaded rows are for partially successful projects.

Project URL

Successful

Scenarios .
Generation

1 | 59_effective

https://github.com/Jyotiranjan767/59_effetctive

2 2

Brewerslabng https://github.com/allena29/brewerslabng
6 lehess | hupsu/sithubcommasthemanichess

11 | demo
12 | D-I-N-K-Y
13 | Docker Start to Finish

https://github.com/7ep/demo
https://github.com/kowalcj0/dinky
https://github.com/machzqcqg/docker-for-all

liste-della-spesa https://github.com/slug-it/liste-della-spesa

hips:/ithub.com/mas | /MMP I —
NYU Devops Class https://github.com/ilanasufrin/nyu-devops-homework- 1 8 8

PyBazaarBot https://github.com/marcoplaisier/PyBazaarBot

room5 StudyCase https://github.com/kmlsim/room5StudyCase
hitps/github com/mielanjlolshoptest

39 | software_testing https://github.com/fatalruin/software_testing 3 3
40 | Speedwagon https://github.com/UIUCLibrary/Speedwagon 10 6

huups:/github.com/pen/irc

530 92

in general recommends that they should be both explicit and
short [32]. For the Gherkin test scenarios these requirements
present a trade-off. If Gherkin scenarios are kept short, this
often necessitates abstracting much of the detail of the imple-
mentation of the test within the corresponding step function,
limiting test explicitness. On the other hand if all the details
of the test are maintained within the Gherkin feature, the
description of the scenario may become very long, making
the purpose of the test harder to understand.

A further limitation of behave_nicely is that the code
generation method assumes that step functions target a Python
language API. However, some projects employ Gherkin to

drive user acceptance testing via other interfaces such as a
user interface or a REST APIL In these cases, the current
implementation of behave_nicely will not correctly generate
the step functions. This limitation is more feasible to address
directly within the implementation of behave_nicely, since all
that is required is an alteration to the expectations of how to
use the information gathered during step parsing. The extent to
which BDD specifications should support user interface testing
and concepts is a subject of some debate amongst practitioners
(see North for example [36]), although we are unaware of
investigation in the research literature, beyond the survey of
Binamungu et al [10].

TABLE III: Summary of code step implementations that
behave_nicely could not correctly generate within the black
box set of 50 projects.

Category Count
All Steps reviewed 941
Steps that only contained "pass" in the implementation 44
Given or when steps containing asserts 122
When and Then steps containing fixture constructor calls 21
Steps only containing not implemented exceptions 58

VIII. CONCLUSIONS

This paper has described and evaluated behave_nicely, a
step function generation tool using natural language processing
(NLP). The tool exploits the intended purpose of each of the
different types of steps in BDD scenarios to ease the task
of translating natural language statements into executable step
functions, reducing the need for manual code maintenance.
The paper also presents a novel method for evaluating code
generation for test suites using mutation testing and uses it
to evaluate the efficacy of the described approach. The results
from the experiments are promising, suggest that automatic
generation of step functions for BDD is feasible and estab-
lishes a baseline for future improvements.

There are several directions for further research resulting
from the reported limitations of the experimental approach
and the discussion of results. Most immediately, further work
is needed to investigate the scalability of the code generation
technique for larger behaviour driven development specifi-
cations. The largest project in our test set consisted of the
150 scenarios in the behave project itself, which may not
be representative of scale specifications maintained for more
larger applications with many different features. However,
preliminary work will also need to be undertaken to extend the
work of Binamungu et al [10] to understand what constitutes
a typical scale behaviour driven development specification in
commercial settings. In addition, to support a wider range
of projects for evaluation, the set of target platforms and
programming languages supported by behave_nicely could be
expanded. This would extend the range of projects in the
evaluation that could be supported by the approach.

There may also be a variety of approaches possible for
increasing the fidelity of the NLP of the Gherkin scenarios.
For example, inspection of the test data sets suggests that the
range of sentence structures used for the different types of
Gherkin statement could be relatively limited. This suggests
that it might be possible to create a suite sentence structure
templates using a tool such as Spacy [37]. Each template could
be tagged with the likely location of information necessary
to implement a code step. This suite of sentences could be
extendable or even approximated using a machine learning
approach.

A more radical approach to employing NLP in BDD would
be for the purpose of enforcing or enhancing code hygiene
between Gherkin scenarios and step implementations. Static
analysis tools such as lint are used by practitioners to enforce

program language conventions such as PEPS for Python. These
tools are useful because they can enhance the standardisation
of implementation styles amongst different developers within a
team or project, with the intention of improving readability and
reducing maintenance costs over the long term. An alternative
use case for behave_nicely would be to support the identifica-
tion of inconsistencies between terminology used in Gherkin
scenarios and that used in the target application API. Static
analysis could also be used to identify where implementation
details that have been included in a step function could be
transferred to the target application, improving the overall
design. As a final step in this direction, behave_nicely could
be used to identify opportunities for refactoring of Gherkin
scenarios and step functions, an area that remains unaddressed
[10]. Further research is needed to investigate how users of
BDD would interact with and benefit from this approach.

Behaviour driven development (BDD) represents a trade-
off between approaches that enable test cases to be automat-
ically generated from formal specifications at the expense of
the ease of communication amongst non-expert stakeholders
and the development team; and informal specifications that
support ready communication, but lack a tight integration
between system specifications and executable test suites. The
compromise in BDD requires that the association between
individual natural language statements in test scenarios and the
corresponding step function that implements them be manually
maintained by the development team. The research described
in this paper therefore begins the investigation of the extent
to which a combination of improved natural language pro-
cessing and encouragement of consistency and formalisation
of language in Gherkin specifications can mitigate the effort
required to support this compromise.

REFERENCES

[1] “Introducing bdd,” https://dannorth.net/introducing-bdd/.

[2] A. Carrera, C. A. Iglesias, and M. Garijo, “Beast methodology: An agile
testing methodology for multi-agent systems based on behaviour driven
development,” Information Systems Frontiers, vol. 16, no. 2, pp. 169—
182, April 2014.

[3] E. Keogh, “Bdd: A lean toolkit,” in Processings of Lean Software &
Systems Conference, 2010.

[4] C. Solis and X. Wang, “A study of the characteristics of behaviour driven
development,” in 2011 37th EUROMICRO Conference on Software
Engineering and Advanced Applications, Aug 2011, pp. 383-387.

[5] “Behave,” https://behave.readthedocs.io/en/latest/.

[6] “Jbehave,” https://jbehave.org/.

[7] “Cucumber,” https://docs.cucumber.io/.

[8] “SpecFlow,” https://specflow.org.

[9] CollabNet VersionOne, “13th annual state of agile report,” https://www.

stateofagile.com, May 2019.

L. P. Binamungu, S. M. Embury, and N. Konstantinou, ‘“Maintaining

behaviour driven development specifications: Challenges and opportuni-

ties,” in 2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER), March 2018, pp. 175-184.

“Behave nicely repository,” https://gitlab.com/rbob96/behave_nicely.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data

selection: Help for the practicing programmer,” I[EEE Computer, vol. 11,

no. 4, pp. 3441, 1978.

S. Kamalakar, “Automatically generating tests from natural language

descriptions of software behavior,” Master’s thesis, Faculty of the

Virginia Polytechnic Institute and State University, Blacksburg, Virginia,

2013.

Microsoft Corporation. http:/github.com.

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

K. Beck, Test Driven Development by Example, ser. Signature. Addison
Wesley, November 2002.

J. Dick and A. Faivre, “Automating the generation and sequencing of
test cases from model-based specifications,” in FME '93: Industrial-
Strength Formal Methods, J. C. P. Woodcock and P. G. Larsen, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 268-284.

Y. G. Kim, H. S. Hong, D. H. Bae, and S. D. Cha, “Test cases generation
from uml state diagrams,” IEE Proceedings - Software, vol. 146, no. 4,
pp. 187-192, August 1999.

N. Ismail, R. Ibrahim, and N. Ibrahim, “Automatic generation of test
cases from use-case diagram,” in Proceedings of the International
Conference on Electrical Engineering and Informatics Institut Teknologi
Bandung, Indonesia June 17-19, 2007, January 2007.

G. Fink and M. Bishop, “Property-based testing: A new approach to
testing for assurance,” SIGSOFT Softw. Eng. Notes, vol. 22, no. 4, pp.
74-80, Jul. 1997.

“Crowdsourced testing,” https://www.rainforestqa.com/blog/
2016-08- 17-what-is-crowdsourced-testing/.

A. Fatwanto, “Software requirements specification analysis using natural
language processing technique,” in 2013 International Conference on
QIR, June 2013, pp. 105-110.

C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated
checking of conformance to requirements templates using natural lan-
guage processing,” IEEE Transactions on Software Engineering, vol. 41,
no. 10, pp. 944-968, October 2015.

J. Kocerka, M. Krzeslak, and A. Galuszka, “Analysing quality of textual
requirements using natural language processing: A literature review,” in
23rd International Conference on Methods & Models in Automation
& Robotics, MMAR 2018, Migdzyzdroje, Poland, August 27-30, 2018.
IEEE, 2018, pp. 876-880.

E. C. Groen, J. Schowalter, S. Kopczynska, S. Polst, and S. Alvani,
“Is there really a need for using NLP to elicit requirements? A
benchmarking study to assess scalability of manual analysis,” in Joint
Proceedings of REFSQ-2018 Workshops, Doctoral Symposium, Live
Studies Track, and Poster Track co-located with the 23rd International
Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ 2018), Utrecht, The Netherlands, March 19, 2018., ser.
CEUR Workshop Proceedings, K. Schmid, P. Spoletini, E. B. Charrada,
Y. Chisik, F. Dalpiaz, A. Ferrari, P. Forbrig, X. Franch, M. Kirikova,
N. H. Madhavji, C. Palomares, J. Ralyté, M. Sabetzadeh, P. Sawyer,
D. van der Linden, and A. Zamansky, Eds., vol. 2075. CEUR-WS.org,
2018.

[25]

[26]

(27]

(28]
[29]
[30]

(31]
[32]
(33]
[34]

[35]

[36]

[37]

A. Ferrari, “Natural language requirements processing: From research to
practice,” in 2018 IEEE/ACM 40th International Conference on Software
Engineering: Companion (ICSE-Companion), May 2018, pp. 536-537.
C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Igbal, “Automatic
generation of system test cases from use case specifications,” in Pro-
ceedings of the 2015 International Symposium on Software Testing and
Analysis, ser. ISSTA 2015. New York, NY, USA: ACM, 2015, pp.
385-396.

P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality, ser. Addison Wesley Signature Series. New
Jersey: Addison Wesley, June 2007.

“Natural language toolkit,” https://www.nltk.org/.

“Allennlp,” https://allennlp.org/.

T. C. Lethbridge, “Priorities for the education and training of software
engineers,” The Journal of Systems and Software, vol. 53, pp. 53-71,
2000.

“Mutmut,” https://mutmut.readthedocs.io/en/latest/.

R. C. Martin, Clean Code. A Handbook of Agile Software Craftsmanship,
ser. Robert C. Martin Series. Prentice Hall, 2009.

A. Hunt and D. Thomas, The Pragmatic Programmer. Addison Wesley,
October 1999.

S. McConnell, Code Complete: A Practical Handbook of Software
Construction. Microsoft Press, June 2004.

A. van Deursen, L. M. Moonen, A. van den Bergh, and G. Kok,
“Refactoring test code,” CWI (Centre for Mathematics and Computer
Science) Amsterdam, The Netherlands, Amsterdam, The Netherlands,
The Netherlands, Tech. Rep., 2001.

D. North, “Whose domain is it anyway?” https://dannorth.net/2011/01/
31/whose-domain-is-it-anyway/, January 2011.

“Spacy,” https://spacy.io/.

