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Abstract— Recent years have seen the emergence of wireless
cyber-physical systems that must support real-time queries of
physical environments through wireless sensor networks. This
paper proposes Real-Time Query Scheduling (RTQS), a novel
approach to conflict-free transmission scheduling for real-time
queries in wireless sensor networks. First, we show that there
is an inherent trade-off between latency and real-time capacity
in query scheduling. We then present three new real-time
schedulers. The non-preemptive query scheduler supports high
real-time capacity but cannot provide low response times to
high priority queries due to priority inversions. The preemptive
query scheduler eliminates priority inversions at the cost of
reduced capacity. The slack stealing query scheduler combines
the benefits of the preemptive and non-preemptive schedulers
to improve the capacity while meeting query deadlines. We
provide schedulability analysis for each scheduler. The analysis
and advantages of our approach are validated through NS2
simulations.

Index Terms— Query scheduling, schedulability analysis, sen-
sor networks

I. INTRODUCTION

Recent years have seen the emergence of wireless cyber-

physical systems that must support real-time data collection at

high data rates over wireless sensor networks (WSNs). Represen-

tative examples include emergency response [1], structural health

monitoring [2], [3], and process measurement and control [4].

Such systems pose significant challenges. First, the system must

handle multiple traffic classes with different deadlines. For exam-

ple, during an earthquake, acceleration data from sensors mounted

on a building must be delivered to the base station in a timely

manner to detect any structural damage. Such traffic should have

higher priority than temperature data collected for climate control.

Thus, a WSN protocol should provide effective prioritization
between different traffic classes while meeting their respective

deadlines. Second, the system must support high throughput since

sensors may generate a high workload. For example, structural

health monitoring requires numerous accelerometers to be sam-

pled at high rates generating high network loads [2]. Furthermore,

since the system must deliver data to base stations within their

deadlines, it is important for the system to achieve predictable
and bounded end-to-end latencies.

Many cyber-physical systems use query services to periodically

collect data from sensors to a base station over multi-hop wireless

networks. In this paper, we propose Real-Time Query Scheduling
(RTQS), a transmission scheduling approach for real-time queries

in WSNs. RTQS includes three real-time query schedulers that
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exploit the unique characteristics of WSN queries including

many-to-one communication and periodic sampling. We provide

upper bounds on the response times of real-time queries for each

scheduler. A unique aspect of our approach is that it bridges the
gap between wireless sensor networks and schedulability analysis
techniques which have traditionally been applied to real-time

processor scheduling.

This paper makes four contributions: First, we show that real-

time query scheduling has an inherent tradeoff between latency

and real-time capacity. Second, we developed three schedulers:

(1) The nonpreemptive query scheduler achieves high capacity but

cannot provide low response times to high priority queries due to

priority inversions. (2) The preemptive query scheduler eliminates

priority inversions at the cost of reduced capacity. (3) The slack
stealing scheduler combines the advantages of preemptive and

non-preemptive schedulers to improve real-time capacity while

meeting query deadlines. Third, we provide a schedulability anal-

ysis for each scheduler that enables predictable real-time query

services through online admission and rate control. Finally, we

demonstrate demonstrate the advantages of RTQS over existing

contention-based and TDMA-based protocols in terms of both

real-time performance through simulations.

The paper is organized as follows. Section II reviews the related

work. Section III describes the query and network models. Section

IV and Section V detail the design and analysis of RTQS. Section

VII provides simulation results. Section VIII concludes the paper.

II. RELATED WORK

Real-time communication protocols adopt contention-based

or TDMA-based approaches. Contention-based protocols sup-

port real-time communication through probabilistic differentia-

tion. This is usually achieved by adapting the contention win-

dow and/or the initial back-off of the CSMA/CA mechanism.

Overviews of these approaches are presented in [5] and [6]. Rate

and admission control [7], [8], [9] may be used with contention-

based protocols to handle congestion. However, these approaches

are unsuitable for high data rate and real-time application because

(1) they provide highly variable communication latencies due to

their random back-off mechanisms and (2) achieve low throughput

under heavy load to excessive channel contention.

In multi-hop networks, real-time communication may also be

achieved through real-time routing [10], [11]. For example, the

SPEED protocol [10] builds on geographic routing to deliver

packets at an uniform velocity in a multi-hop network. SPEED

was extended to support multiple delivery speeds through multi-

path routing [11] . These protocols usually build upon contention

based MAC protocols and, as a result, inherit their drawbacks.

TDMA protocols can achieve predictable communication laten-

cies and higher throughput than contention-based protocols under

heavy load. Several real-time TDMA protocols were designed
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Symbol Description
l, m, and h Indices for low/medium/high priority queries

Pl Period of query l
Dl Deadline of query l
Rl Response time of query l
Γl[i] Workload of query l on node i
φl Start time of query l
u, v Instance number of a query

Il,u The uth instance of query l
rl,u Release time of instance Il,u
Ll Length of plan of query l
Tl[i] Transmissions in step i in the plan of query l

Tl and Vl The actual and reversed plans of query l
Il,u.i Step number i in the plan of instance (l, u)−→
ab Directed edge from a to b

Fig. 1. Table of symbols

for single-hop networks. The IEEE 802.15.4 standard specifies

Guaranteed Time Slots (GTS) for achieving predictable delays

in single hop networks. A flexible slot reservation mechanism

was proposed [12] where slots are allocated based on delay or

bandwidth requirements.

Several protocols aim at supporting real-time communication in

multi-hop networks. Two papers proposed real-time transmission

scheduling for robots [13], [14]. Both protocols assume that at

least one robot has complete knowledge of the robots’ positions

and/or network topology. While these protocols may work well

for small teams of robots, they are not suitable for queries in

multi-hop WSNs. Implicit EDF [15] provides prioritization in a

single-hop cell. The protocol supports multi-hop communication

by assigning different frequencies to cells with potential conflicts.

However, the protocol does not provide prioritization for transmit-

ting packets across cells. In contrast, RTQS provides prioritization

in multi-hop networks without requiring multiple frequencies.

The adoption of the WirelessHART standard has renewed the

interest in real-time communication. A number of scheduling

protocols have been proposed for effectively scheduling packet

transmissions under the WirelessHART model [16], [17], [18].

These solutions adopt a centralized approach to the construction

of transmission schedules and do not support spatial reuse. As a

result, the scalability of such approaches is limited. In contrast,

RTQS overcomes these limitations by supporting spatial reuse and

provides decentralized query schedulers.

In earlier work we proposed DCQS [19], a transmission

scheduling technique for WSN queries. In contrast to traditional

TDMA protocols designed to support general workloads, DCQS

is specifically designed to exploit specific communication patterns

and temporal properties of queries in WSNs. This allows DCQS

to achieve high throughput and low latency. However, DCQS

does not support query prioritization or real-time communication,

which is the focus of this paper.

III. SYSTEM MODELS

In this section, we characterize the query services for which

RTQS is designed and describe the network model. As we

introduce notations, we will be summarized them in Fig. 1.

A. Query Model

RTQS supports queries in which source nodes produce data

reports periodically. This model fits many cyber-physical systems

that gather data from the environment at user specified rates.

A query l is characterized by the following parameters: a set

of sources, the start time φl, the period Pl, the deadline Dl,

a static priority, and an in-network aggregation function [20].

The primary focus of RTQS is to support the efficient execution

of real-time queries that involve data aggregation. This design

is motivated by the common use of data aggregation functions

such as packet merging [21], data compression [22], or statistical

functions (e.g., average, histogram [20]) in WSNs. When the

user does not specify an aggregation function, RTQS will use

packet merging as the default aggregation function to reduce

communication workloads and energy consumption.

A new query instance is released in the beginning of each

period to gather data from the WSN. We use Il,u to refer to the

uth instance of query l whose release time is rl,u = φl + u · Pl.

For brevity, in the remainder of the paper we will refer to a query

instance simply as an instance. The priority of an instance is the

priority of its query. If two instances have the same priority, the

instance with the earliest release time has higher priority. For each

query a node i needs Γl[i] slots to transmit its (aggregated) data

report to its parent.

The performance of a query service is characterized by two

parameters: throughput and real-time capacity. The throughput

of a query service is
∑

l
1
Pl

. The real-time capacity of a query

service is the maximum throughput for which the query service

does not drop packets and meets the deadlines of all the queries.

Henceforth, we refer to real-time capacity simply as the capacity.

A query service works as follows: a user issues a query to a

sensor network through a base station, which disseminates the

query parameters to all nodes [20]. The query service maintains

a routing tree rooted at the base station. To facilitate data

aggregation each non-leaf node waits to receive the data reports

from its children, produces a new data report by aggregating its

data with the children’s data reports, and then sends it to its parent.

During the lifetime of the application the user may issue new

queries, delete queries, or change the period or priority of existing

queries. RTQS is designed to support such dynamics efficiently.

B. Network Model

RTQS models a WSN as an Interference-Communication (IC)

graph. The IC graph, IC(E,V ), has all nodes as vertices (V )

and has two types of directed edges (E): communication and

interference edges. A communication edge
−→
ab indicates that a

packet transmitted by a may be received by b. A subset of

the communication edges forms the routing tree used for data

aggregation. An interference edge
−→
ab indicates that a’s trans-

mission interferes with any transmission intended for b even

though a’s transmission may not be correctly received by b.

The IC graph is used to determine if two transmissions can be

scheduled concurrently. We say that two transmissions,
−→
ab and−→

cd are conflict-free (
−→
ab ‖ −→

cd) and can be scheduled concurrently

if (1) a, b, c, and d are distinct and (2)
−→
ad and

−→
cb are not

communication/interference edges in E.

The IC graph accounts for link asymmetry and irregular

communication and interference ranges observed in WSN [23].

The IC graph is computed and stored in a distributed fashion:

a node only knows its incoming/outgoing communication and

interference edges. The RID protocol proposed by Zhou et al.

is a practical solution for constructing the IC graphs [23].

IV. REAL-TIME QUERY SCHEDULING

RTQS provides predictable and differentiated query latencies

through prioritized conflict-free transmission scheduling. Our
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approach relies on two components: a planner and a scheduler.

The planner constructs a plan for executing all the instances of

a query. A plan is an ordered sequence of steps, each comprised

of a set of conflict-free transmissions. RTQS employs the same

distributed algorithm as DCQS to construct plans. The scheduler

that runs on every node and determines the time slot in which

each step of a plan is executed. To improve the capacity, the

scheduler may execute steps from multiple instances in the same

slot as long as they do not conflict.

RTQS works as follows: (1) When a query is submitted,

RTQS identifies a plan for its execution. RTQS usually reuses

a previously constructed plan for the new query as multiple

queries may be executed using the same plan (see Section IV-A).

When no plan may be reused, the planner constructs a new

one using the distributed planner. (2) RTQS determines if a

query meets its deadline using our schedulability analysis. The

schedulability analysis is performed on the base station using

information collected during the distributed plan construction.

If the query is schedulable, the parameters of the query are

disseminated; otherwise, the query is rejected. Note that plans are

cached even when the schedulability analysis fails. (3) At run-time

the scheduler running on each node executes all admitted queries

in a distributed fashion.

In contrast to DCQS, the key contribution of RTQS is the

design and analysis of three real-time query schedulers. Each

scheduler achieves a different tradeoff between query latency and

capacity. Nonpreemptive Query Scheduler (NQS) supports a high

capacity but at the cost of priority inversion, while Preemptive
Query Scheduler (PQS) eliminates priority inversions at the

cost of lower capacity. Slack-stealing Query Scheduler (SQS)

combines the benefits of NQS and PQS by improving capacity

while meeting all deadlines.

A. Constructing plans

Plan Properties: A plan has two properties: (1) Each node

is assigned sufficient steps to transmit its entire data report. We

use Tl[i] to denote the set of transmissions assigned to step i

(0 ≤ i < Ll) in the plan of query l, where Ll is the length of the

plan. (2) The plan also must respect the precedence constraints

introduced by aggregation: a node is assigned to transmit in a

later step than any of its children.

We remind the reader that RTQS will use packet merging

as its default data aggregation function. This design decision

is a trade-off between query latency and energy consumption.

The enforcement of the precedence constraints introduced by

packet merging may increase query latency (i.e., length of the

plan) as shorter plans may be constructed when these constraints

are not enforced. However, the use of packet merging has two

key advantages: (1) it reduces the communication workload and

(2) the constructed transmission schedules have long contiguous
periods of activity/inactivity: the node transitions from a sleep

state to the active state just-in-time to receive the data from its

children and transitions back to sleep after it completes collecting

data from its children and relaying it to its parent. Such schedules

are efficient because they reduce the wasted energy in transitions

between sleep and active states.

Distributed Planner: Since a node waits to receive the data

reports from its children, the planner may reduce the query latency

by assigning the transmissions of a node with a larger depth in the

routing tree to an earlier step of the plan. This strategy reduces the

query latency because it reduces the time a node waits for the data

reports from all its children. More sophisticated heuristics may be

developed. For example, we may account for the case when the

routing tree is unbalanced to construct shorter plans. A difficulty

associated with this approach is that the protocol would have to

keep track of the size of the subtrees as the topology changes.

In contrast, our goal is to develop a heuristic that performs well

in realistic scenarios (see Section VII) and allows for a simple

distributed implementation on resource constrained WSN nodes

rather than focusing on the construction of optimal schedules.

A detailed description of the planner may be found in [19];

here, we overview the distributed planner and analyze its com-

munication complexity. The planner works in two stages. In the

first stage the planner constructs a reversed plan (V ) in which a

node’s transmission is assigned to an earlier step than its children.

In the second stage it constructs the actual plan (T ) by reversing

the order of the steps to enforce the precedence constraints.

The planner associates with each node a priority given by the

triple (depth, child count, ID) with the root having the highest

priority. A node n waits until it is the highest priority and

unscheduled node within its one-hop neighborhood. When this

occurs, n collects the local plans of its two hop neighbors that

have higher priority. Using this information, n determines the

steps in which its children will transmit: if n transmits (to its

parent) in step t, each of its children will be assigned in the first

step after t that does not conflict with the transmissions of the

higher priority nodes. A child is assigned in sufficient steps to

meet its workload demand. The first stage completes with node

n disseminating its local plan to its two hop neighbors.

The second stage involves the reversal of the plan which re-

quires nodes to know the length of the plan. This is accomplished

in two steps. By definition, a plan’s length is the maximum step

number in which a node transmits. This value may be computed

at the base station using standard data aggregation with max as

the aggregation function. Next, the plan’s length is disseminate to

all nodes by taking advantage of the already established routing

tree. Once the value of the plan’s length is received by a node, the

reversal of the plan is a local operation. Upon the completion of

the distributed planning process, each node in the network stores

the time step in which it and its children transmit as well as the

length of the plan. Note that the base station does not have a

global view of the network but rather the plans are stored in a

distributed manner.

Fig. 2 shows an IC graph and the actual and reversed plans

constructed by the planner. The solid lines indicate the commu-

nication edges in the routing tree while the dashed lines indicate

interference edges. Node a is the base-station. The plan in Fig.

2 is constructed assuming that the data report generated by a

node can be transmitted in a single step for each instance. The

constructed plan meets the two constraints previously specified:

(1) The planner assigns conflict-free transmissions in each step.

For example, transmissions −→ne and −→po are assigned to step Tl[1]

since they do not conflict with each other. (2) The precedence

constraints introduced by aggregation are respected. For example,

nodes p and q are assigned in earlier steps than their parent o.

The message complexity of the distributed planner is 2(N2 +

N), where N2 is the size of the two-hop neighbors and N is

the number of nodes (i.e., N = |E|). The first stage requires a

node to collect the local plans of its two-hop neighbors and then

disseminate its local plan to the same nodes. This contributes a
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Fig. 2. IC Graph and associated plan

total of 2 · N2 messages. The second stage requires each node

to transmit two packets, one during the computation of the plan

length and the other during its dissemination. This contributes an

additional 2 ·N messages.

The overhead of the distributed planner was evaluated through

simulations in [19]. Simulations results indicate that the cost

of plan construction dominates the overall message overhead

exceeding the cost of constructing the routing tree or the IC

graph. More importantly, the simulations show the distributed

planner scales well: message complexity increases linearly with

the number of nodes when the node density remains constant.

This is consistent with the above analysis.

Plan Reuse: Due to the significant cost associated with con-

structing plans, we must minimize the number of constructed

plans. We observed that the plan of a query l depends on the

IC graph, the set of source nodes, and the aggregation function.

Query instances executed at different times may need different

plans if the IC graph changes. However, to handle dynamics

in channel conditions, RTQS can construct plans that are robust

against certain variations in the IC graph (as discussed in [19]).

This allows instances executed at different times to be executed

according to the same plan. Moreover, note that queries with the

same aggregation function and sources but with different periods,

start times, or priority can be executed according to the same plan.

Furthermore, even queries with different aggregation functions

may be executed according to the same plan. Let Γl[i] be the

number of slots node i needs to transmit its data report to its

parent for an instance of query l. If the planner constructs a plan

for a query l, the same plan can be reused to execute a query h if

Γl[i] = Γh[i] for all nodes i. Examples of queries that share the

same plan are the queries for the maximum temperature and the

average humidity in a building. For both queries a node transmits

one data report in a single step (i.e., Γmax[i] = Γavg[i] = 1

for all nodes i) if the slot size is sufficiently large to transmit a

packet with two values. For the max query, the outgoing packet

includes the maximum value of the data reports from itself and

its children. For the average query, the packet includes the sum of

the values and the number of data sources that contributed to the

sum. We say that two queries belong to the same query class if

they may be executed according to the same plan. Since queries

with different temporal properties and aggregation functions may

share a same plan, a WSN may only need to support a small

number of query classes. This allows RTQS to amortize the cost

of constructing a query plan over many queries and effectively

reduces the overhead.

B. Overview of Scheduling Algorithms

RTQS supports both preemptive and nonpreemptive query

scheduling. NQS controls only the start of an instance: once

an instance starts executing, the scheduler cannot preempt it. In

contrast, PQS will preempt an instance to allow a higher priority

instance to execute when the two cannot be executed concurrently.

The slack stealing scheduler determines dynamically whether to
preempt instances. It avoids preemption to improve capacity when

it can still meet all deadlines, and performs preemption when

needed to meet deadlines.

The scheduler executes a query instance according to the plan

of its query. The scheduler improves the capacity by overlapping

the transmissions of multiple instances (belonging to one or more

queries) such that: (1) All steps executed in a slot are conflict-

free. Two steps of instances Il,u and Ih,v are conflict free (Il,u.i ‖
Ih,v.j) if all pairs of transmissions in Tl[Il,u.i] ∪ Th[Ih,v.j] are

conflict free. (2) The steps of a plan are executed in order:

if step Il,u.i is executed in slot si, step Ih,v.j is executed

in slot sj < si then Ih,v.j < Il,u.i. This ensures that the

precedence constraints required by aggregation are preserved. The

local scheduler running on a node maintains a record of the start

time, period, and priority of admitted queries. Plans are stored

distributedly: each node knows when it transmits/receives packets

and the plan’s length.

The following is a brute-force approach for constructing a

preemptive scheduler: in every slot s, a brute-force scheduler

would consider the released instances in order of their priority

and execute all steps that do not conflict in s. This solution has

a high time complexity since each pair of steps must be checked

for conflicts. We are interested in schedulers that have low time

complexity as they will determine the steps to be in executed

in a slot dynamically. To reduce the time complexity of the

scheduler we introduced the concept of minimum step distance
in [19] (originally named the minimum inter-release time). Let

Il,u.i and Ih,v.j be two steps in the plans of instances Il,u and

Ih,v . We define the step distance between Il,u.i and Ih,v.j as

|Il,u.i − Ih,v.j|. The minimum step distance Δ(l, h) is the

smallest step distance between Il,u and Ih,v such that two steps

Il,u.i and Ih,v.j may be executed concurrently without conflict:

|Il,u.i− Ih,v.j| ≥ Δ(l, h) ⇒ Il,u.i ‖ Ih,v.j

∀Il,u.i < Ll, Ih,v.j < Lh

Ll and Lh are the plan lengths of queries l and h. Thus, to ensure

that no conflicting transmissions are executed in a slot, it suffices

to enforce a minimum step distance between any two steps.

The minimum step distance captures the degree of parallelism

that may be achieved due to spatial reuse in a multi-hop WSN.

Consider the case when L = Lq = Lh. In the worst case, when

Δ(l, h) = L, a single instance is executed in the network at a

time. If Δ(l, h) = L/2, then two instances can be executed in the

network at the same time. A distributed algorithm for computing

Δ(l, h) is presented in [19]. The minimum step distance Δ(l, h)

depends on the IC graph and the plans of l and h. The number of

minimum step distances that a scheduler stores is quadratic in the

number of plans. Two pairs of queries (l, h) and (m,n) have the

same minimum step distance if (l,m) and (h, n) have the same

plan. Therefore, since a small number of plans is sufficient to

meet the communication requirements of an application, then the

number of step distances that must be stored is also small.

For clarity, we first present the scheduling algorithms assuming

that all queries are executed according to a single plan of length

L in this section. In this case, the scheduler maintains a single

minimum step distance Δ. We extend our algorithms to handle

queries with different plans in the next section.
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C. Nonpreemptive Query Scheduler (NQS)

To efficiently enforce the minimum step distance for NQS, we

take advantage of the fact that once an instance is started, it cannot

be preempted. As such, the earliest time at which an instance

Il,u may start (i.e., execute step Il,u.i = 0) is after the previous

instance Ih,v completes step Ih,v.j = Δ− 1 (since |Δ− 0| ≥ Δ).

Since the execution of Il,u and Ih,v cannot be preempted, if we

enforce the minimum step distance between the start of the two

instances then their concurrent execution is conflict-free for their

remaining steps since steps Il,u.i = x and Ih,v.j = x + Δ are

executed in the same slot and |(x +Δ) − x| ≥ Δ. Therefore, to

guarantee that a nonpreemptive scheduler executes conflict-free

transmissions in each slot, it suffices to enforce a minimum step

distance of Δ between the start times of any two instances.

NQS maintains two queues: a run queue and a release queue.

The release queue is a priority queue containing all instances that

have been released but are not being executed. The run queue

is a FIFO queue and contains the instances to be executed in

slot s. Although the run queue may contain multiple instances, a

node is involved in transmitting/receiving for at most one instance

(otherwise, it would be involved in two conflicting transmissions).

A node n determines if it transmits/receives in slot s by checking

if it is assigned to transmit/receive in any of the steps to be

executed in slot s.

NQS enforces a minimum step distance of at least Δ between

the start times of any two instances by starting an instance in two

cases: (1) when there is no instance being executed (i.e., run=∅)

and (2) when the step distance between the head of the release
queue (i.e., the highest priority instance that has been released)

and the tail of the run queue (i.e., the last instance that started)

exceeds Δ. An instance is moved from the release to the run
queue when it starts.

Consider the example in Fig. 5(a) where queries Qh, Qm and

Ql are executed according to the shown workload parameters.

The queries are executed using the same plan of length L = 15

and minimum step distance Δ = 8. We assign higher priority

to queries with tighter deadlines. The upward arrows indicate

the release time of an instance. Il (in the example we drop the

instance count since it is always zero) is released and starts in slot

0 since no other instance is executing (run=∅). The first instances

of Qm and Qh are released in slots 2 and 6, respectively. However,

neither may start until slot 8 when Il completes 8 steps resulting

in priority inversions. Ih then starts at slot 8 since it is the highest

priority instance in release. Similarly, in slot 16, NQS starts Im
after Ih completes Δ = 8 steps. NQS continues to construct the

schedule in figure.

When a new instance is released, NQS inserts it in the release
queue. This takes O(log |release|) time since release is a priority

queue keyed by the priority of instances. In each slot, NQS deter-

mines what instances should start. This operation takes constant

time, since it involves comparing the step distance between the

instances at the head of release queue and tail of run queue with

the minimum step distance. To determine if a node should transmit

or receive, NQS iterates through the run queue. This requires

O(|run|) time if a node maintains a bit vector indicating whether

it transmits or receives in each step of a plan. Thus, the complexity

of the operations performed in a slot is O(|run|).

event: new instance Il,u is released
if (run=∅) then start(Il,u)
else release = release ∪ {Il,u}

event: start of new slot s
if (release �= ∅)

let Il,u be the highest priority instance in release
if (Lastq′,k′ .i ≥ Δ) then

start(Il,u)
Lastq′,k′ = Il,u

for each Il,u ∈ run execute-step(Il,u)
start(Il,u):

run = run ∪ {Il,u}
execute-step(Il,u):

determine if node should send/recv in Il,u.i
Il,u.i = Il,u.i+ 1
if Il,u.i = Lq then run = run \ {Il,u}

Fig. 3. NQS pseudocode

D. Preemptive Query Scheduler (PQS)

A drawback of NQS is that it introduces priority inversions.

To eliminate priority inversions, we devised PQS which preempts

the instances that conflict with the execution of a higher priority

instance. A key feature of PQS is a new and efficient mechanism

for enforcing the minimum step distance that supports preemp-

tion. To enforce the minimum step distance, PQS maintains Lq

mayConflict sets. Each mayConflict[x] set contains the instances

which are in the run queue and conflict with any instance

executing step x in its plan:

mayConflict[x] = {Ih,v|Ih,v ∈ run and |x− Ih,v.i| < Δ}
PQS (see Fig. 4) maintains a run and a release queue keyed

by the priority of instances. When a new instance is released, it

is added to the release queue.

PQS starts/resumes an instance Il,u (Il,u ∈ release) in two

cases: (1) If the next step Il,u.i may be executed concurrently with

all instances in the run queue without conflict, PQS starts/resumes

it. To determine if this is the case, it suffices for PQS to check

if mayConflict[Il,u.i] is empty. When an instance is started or

resumed, it is moved from the release to the run. The membership

of Il,u in the mayConflict sets is updated to reflect that Il,u is

executed in the current slot: Il,u is added to all mayConflict[x]
sets such that |Il,u.i − x| < Δ since the execution of any of

those steps would conflict with the execution of step Il,u.i. (2)

Il,u is also started/resumed if it has higher priority than all the

instances in mayConflict[Il,u.i] since otherwise there will be a

priority inversion. For Il,u to be executed without conflict, all

instances in mayConflict[Il,u.i] must be preempted. When an

instance is preempted, it is moved from the run to the release
and it is removed from all mayConflict sets. As in case (1), Il,u
is added to all mayConflict[x] sets such that |Il,u.i− x| < Δ.

After an instance executes a step, its membership in the may-
Conflict sets must also be updated. Since step Il,u.i is executed

in slot s, in the next slot (when Il,u executes step Il,u.i + 1)

Il,u will not conflict with an instance executing step Il,u.i − Δ

but will conflict with an instance executing step Il,u.i + Δ.

Accordingly, Il,u is removed from mayConflict[Il,u.i − Δ] and

added to mayConflict[Il,u.i+Δ].

Fig. 5(b) shows the schedule of PQS. Il starts in slot 0 since

no other instances have been released (mayConflict[0]= ∅). Im
is released in slot 2. Since mayConflict[0]= {Il} and Im has

higher priority than Il, PQS preempts Il. Consequently, Il is

removed from the run queue and all mayConflict sets, and it is
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6 0          1          2          3          4 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
                                          

Qh         0        8                    0     

                                          

Qm                 0                         

                                          

Ql 0        8                                

8 - 0 = Δ
8 - 0 = Δ

(a) Schedule constructed by NQS

 0          1          2          3          4 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
                                          

Qh       0          10  12                  0     

                                          

Qm   0   3             4        12               

                                          

Ql 0 1              2 3         4         14     

10 - 2 = Δ
10 - 2 = Δ

12 - 4 = Δ

(b) Schedule constructed by PQS
 0          1          2          3          4 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
                                          

Qh           0          10                0     

                                          

Qm   0        8                               

                                          

Ql 0 1                  2            14        

10 - 2 = Δ
8 - 0 = Δ

4 ≤ Sh

(c) Schedule constructed by SQS

 Φ P D L 
Ql 0 30 20 15 
Qm 2 65 28 15 
Qh 6 93 93 15 

(d) Workload

Fig. 5. Schedule examples for NQS, PQS, and SQS (single-class case). Workload described in Fig. 5(d)

event: new instance Il,u is released
release = release ∪ {Il,u}

event: start of new slot s
for each Il,u ∈ release

if (may-resume(Il,u) = true) then resume(Il,u)
for each Il,u ∈ run

execute-step(Il,u)
resume(Il,u):

run = run ∪ {Il,u}; release = release − {Il,u}
add Il,u to all mayConflict[x] such that |Il,u.i− x| < Δ

preempt(S):
run = run − S; release = release ∪ S
remove Il,u from all mayConflict

may-resume(Il,u):
if (mayConflict[Il,u.i] = ∅) then return true
if (Il,u has higher priority all instances in mayConflict[Il,u.i])

preempt(mayConflict[Il,u.i]); return true
return false

execute-step(Il,u):
determine if node should send/recv in Il,u.i
Il,u.i = Il,u.i+ 1
if Il,u.i = L then run = run − {Il,u}
mayConflict[Il,u.i−Δ]=mayConflict[Il,u.i−Δ] − {Il,u}
mayConflict[Il,u.i+Δ]=mayConflict[Il,u.i+Δ] ∪ {Il,u}

Fig. 4. PQS pseudocode

added to the release queue. Im is added to run queue and to

all mayConflict[x] sets where 0 ≤ x < 8. Ih is released in slot

6. Since mayConflict[0] = {Im} and Ih has higher priority then

Im, PQS preempts Im and starts Ih. The mayConflict sets are

updated accordingly. An interesting case occurs in slot 16, when

Ih executes step 10. At this point, mayConflict[2] = ∅ since Im
was preempted and Ih completed 10 steps (|10 − 2| ≥ 8). As a

result, Il may execute step 2 in its plan while Ih executes step

10 without conflict. Ih and Il are executed concurrently until

step 18 because their step distance exceeds the minimum step

distance. In the beginning of slot 18, mayConflict[4]={Il}. Note

that Ih is not a member of this set since |12− 4| ≥ 8. Since the

step counter of Im is 4 and Im has higher priority than Il, PQS

preempts Il and resumes Im. PQS then updates the conflict sets

by removing Il from all of them and adding Im to mayConflict[x]
sets where |x−4| < 8. Il resumes in slot 26 when mayConflict[4]

becomes empty. The example shows that by eliminating priority

inversion PQS achieves lower latencies for Ih and Im than NQS.

However, the capacity is lower because it allows less overlap

in the execution of instances. This shows the tradeoff between

latency and capacity in query scheduling. We will characterize

this tradeoff analytically in the next section.

When an instance is released, it is added to the release queue

which takes O(log |release|) time. In every slot, PQS iterates

through the instances in release to determine if they may be

resumed. If we organize the mayConflict sets as balanced trees

keyed by instance priority, the time complexity of this operation

is O(|release| · log |run|). We note that the complexity of resume
and preempt is at most L. Similar to NQS, O(|run|) is necessary

for a node to determine if it transmits, receives, or sleeps in a

slot. Thus, the time complexity of operations performed per slot

is O(|release| · log |run| · L+ |run|).

E. Analysis of NQS and PQS

Next, we present the worst-case response analyses of PQS and

NQS. The response time of a query is the maximum query latency

of its instances. Our analysis can be used for admission and rate

control at the base station when a query is submitted. We assume

that the deadlines are shorter than the periods. For convenience

we use the slot size as the time unit.

Analysis of NQS. Since NQS is non-preemptive, the response

time Rl of query l is the sum of its plan’s length L and the

worst-case delay Wl that any instance experiences before it is

started: Rl = Wl + L.

To compute Wl, we construct a recurrent equation similar to

the response time analysis for processor scheduling [24]. Consider

an instance Il. Note that for clarity we drop the instance index

from the instance notation in our analysis. Since NQS is a

nonpreemptive scheduling algorithm, to compute the response

time of a query l, we must compute the worst-case interference

of higher priority instances and the maximum blocking time of

l due to the nonpreemptive execution of lower priority instances.

Our analysis is based on the following two properties.

Property 1: An instance is blocked for at most Δ− 1 slots.

Proof: Consider the following two cases based on when an

instance Il is released. (1) If all executing lower priority instances

have completed at least Δ steps, NQS starts Il without blocking.

(2) If a lower priority instance which did not complete Δ steps

is executing, Il is blocked. Note that there can be only one lower

priority instance that blocks Il, because the interval between the

starting times of two consecutive instances must be at least Δ.

Hence, there is only one executing instance that has not completed

Δ steps when Il is released. The longest blocking time occurs

when the low priority instance has completed one step when Il
is released. In this case Il is blocked for Δ− 1 slots.

Property 2: A higher priority instance interferes with a lower

priority instance for at most Δ slots.

Proof: NQS starts the highest priority instance when the

last started instance has completed at least Δ steps. Therefore,

every high priority instance delays the execution of a low pri-

ority instance by at most Δ slots. The worst-case interference

occurs when the lower and higher priority instances are released

simultaneously.

The number of instances of a higher priority query h that

interfere with Il is upper-bounded by �Wl
Ph

�. Therefore, the worst-

case delay that Il experiences before it starts is:

Wl = (Δ− 1) +
∑

h∈hp(l)

⌈
Wl

Ph

⌉
·Δ (1)

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



7

where hp(l) is the set of queries with priority higher than or equal

to l’s priority except itself. Wl can be computed by solving (1)

using a fixed point algorithm similar to that of the response time

analysis [24].

Note that our analysis differs from the classical processor

response time analysis in that multiple transmissions may occur

concurrently without conflict in a WSN due to spatial reuse of

the wireless channel. This is captured in our analysis in that a

higher priority instance may delay a lower priority instance by at

most Δ, which is usually smaller than the execution time of the

instance (i.e., the plan’s length L).

Analysis of PQS. A higher priority instance cannot be blocked

by a lower priority instance under PQS. We observe that after

an instance completes Δ steps, no newly released instance will

interfere with its execution because their step distance would

be at least Δ, allowing them to execute concurrently. Therefore,

we split Il into two parts: a preemptable part of length Δ and

nonpreemptable part of length L − Δ. Higher priority instances

may interfere with Il only during its preemptable part. Thus, the

response time of a query l is the sum of response time of the

preemptable part R′
l and the length of the nonpreemptable part:

Rl = L−Δ+R′
l.

A query h with higher priority than l interferes with l for at

most �R′
l

Ph
� ·Cmax(l, h) slots, where Cmax(l, h) is the worst-case

interference of an instance of h on an instance of l. Thus, worst-

case response time of the preemptable part of l is:

R′
l = Δ+

∑
h∈hp(l)

⌈
R′
l

Ph

⌉
· Cmax(l, h) (2)

After finding the worst-case interference, R′
l may be computed

by solving (2) using a fixed point algorithm similar to the one

used in the response time analysis [24]. Next, we determine the

worst-case interference.

Theorem 1: An instance Il is interfered by a higher priority

instance Ih for at most Cmax(l, h) = min(2Δ, L) slots.

Due to space limitations, we refer the reader to [25] for

the proof of Theorem 1. The generalization of this theorem to

multiple classes case is included in this paper as Theorem 3 and

its proof is included in Section V.

Capacity-Latency Tradeoff: It is important to note that prior-

itization comes at cost: preemption of queries results in reduced

capacity. The reduction in capacity is attributed to the difference

in the worst-case interference introduced by a high priority

instances for the two schedulers. NQS does not use preemption

and has a maximum interference (of a higher priority instance)

equal to Δ, where Δ ≤ L. In contrast, PQS uses preemption and,

as a result, the maximum interference increases to min(2Δ, L),

where min(2Δ, L) ≥ L. The additional interference in the

preemptive case results in a lower degree of concurrency and,

hence, lower capacity. This shows the inherent trade-off between

latency and capacity in RTQS.

F. Slack Stealing Query Scheduler (SQS)

SQS combines the benefits of NQS and PQS: it improves

capacity while meeting all deadlines. SQS is based on the

observation that preemption lowers capacity, and hence, it should

be used only when necessary for meeting deadlines. We define

the slack of a query l (Sl) to be the maximum number of slots that

an instance of l allows a lower priority instance to execute before

preempting it. SQS has two components: an admission algorithm

and a scheduling algorithm. The admission algorithm runs on

the base station to determine the slack and schedulability of

each query when it is issued. The scheduling algorithm executes

admitted queries based on their slacks.

SQS Scheduler: SQS may start an instance Ih,v in any slot in

the interval [rh,v, rh,v+Sh], where Sh is the slack of query h and

rh,v is the release time of the vth instance of h. Intuitively, SQS

can dynamically determine the best time within the interval to

start Ih,v such that Ih,v’s interference on lower priority instances

is reduced. Since a lower priority instance Il,u is not interfered

by Ih,v if Il,u has completed at least Δ steps, SQS postpones

the start of the higher priority instance Ih,v if the lower priority

instance Il,u has completed at least Δ− Sh steps. An advantage

of the slack stealing approach is that it opportunistically avoids

preemption and the related capacity reduction when allowed by

query deadlines.

SQS requires a minor modification to PQS. Specifically, we

change how the release of an instance Ih,v is handled. If

mayConflict[0] is empty, Ih,v is released immediately. If SQS

determines that all the instances in mayConflict[0] have completed

at least Δ − Sh steps, SQS delays Ih,v until the lower priority

instances complete Δ steps in their plans (i.e., when mayCon-
flict[0] becomes empty). All instances whose release is delayed

are maintained in a pending queue. If Ih,v does not have sufficient

slack to allow the lower priority instances to complete Δ steps,

then SQS (1) preempts all instances in mayConflict[0], (2) resumes

the highest priority instance in the release or pending queues

(which is not necessarily Ih,v), and (3) moves all instances from

the pending queue to the release queue.

Fig. 5(c) shows the schedule under SQS with the example

workload. Assume that the admission algorithm of SQS deter-

mined that Qh and Qm have slacks Sh = 5 and Sm = 2,

respectively. Il is released and starts its execution in slot 0. Im
is released in slot 2. SQS preempts Il, because even if Im would

be postponed for Sm = 2 slots, Il would not complete Δ = 8

steps. Ih is released in slot 6. SQS decides to continue executing

Im because in 4 ≤ Sh slots, Im will complete executing Δ = 8

steps, i.e., SQS avoids preempting Im by allowing it to steal 4

slots from Ih. SQS uses preemption in slot 2 but not in slot 6. This

highlights that SQS can adapt preemption decisions to improve

capacity while meeting all deadlines.

Admission Algorithm. The admission algorithm determines

the schedulability and slacks of queries. It considers queries in

decreasing order of their priorities. For each query, it performs a

binary search in [0,Δ] to find the maximum slack that allows the

query to meet its deadline. Note that there is no benefit for a lower

priority instance to steal more than Δ slots from a higher priority

instance since they may be executed in parallel when their step

distance is at least Δ. The admission algorithm tests whether the

query can meet its deadline by computing its worst-case response

time as a function of the slack. If the query is unschedulable with

zero slack, it is rejected; otherwise, it is admitted.

To compute the worst-case response time of a query we split aN

instance into two parts: a preemptable part and a nonpreemptable

part. Under PQS, the preemptable part is Δ slots. In contrast,

under SQS, an instance Il may steal from a higher priority

instance at least ml = minx∈hp(l) Sx steps. Thus, the length of

the preemptable part is at most Δ−ml slots under SQS; the length

of the nonpreemptable part is therefore L−(Δ−ml) slots. Hence,
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the worst-case response time of query l with slack Sl is:

Rl(Sl) = L− (Δ−ml) +R′
l(Sl) (3)

where R′ is the worst-case response of time the preemptable part.

Theorem 2: Under SQS, an instance Il may be interfered by a

higher priority instance Ih for at most Cmax = min(2Δ−ml, L)

slots, where ml = minx∈hp(l) Sx.

Proof: We initially assume L > 2Δ −ml. Similar to PQS

the worst-case interference occurs when a higher priority instance

is released during Il’s preemptable part. In this case, Il either (1)

steals slack from one or more higher priority instances or (2) does

not steal slack from any higher priority instance.

(1) When Il steals slack we consider the following two sub-

cases depending on whether Il successfully steals enough slack

to complete Δ steps.

(1a) Il completes Δ steps without being preempted. In this case

Ih’s interference on Il is zero.

(1b) Otherwise, Il is preempted after executing x steps by a higher

priority instance Im (not necessarily Ih). Next, we show that the

execution of Im does not affect Ih’s interference on Il. As a

result, it would be sufficient to only consider the case when Ih
itself preempts Il. We note that Im must have a higher priority

than Ih since SQS always resumes the highest priority instance

in release when an instance is preempted. Ih’s interference on

Il is not affected by Im if neither Il nor Ih execute while Im
executes its preemptable part (i.e., the relative phasing of Il and

Ih remains the same). Ih cannot execute because it cannot start

before Im completes Δ steps (due to minimum step distance).

Note that Il cannot steal slack from Im as Il is in release. Il
cannot execute as Ih must be started before Il resumes (since

Ih’s next step is 0, Il’s next step is x > 0, and hence the step

distance between Im and Ih is higher than that between Im and

Il). Since, Ih cannot start before Im completes Δ steps, Il also

cannot start before Im completes Δ steps.

We now consider the case when Ih is the instance that preempts

Il. Similar to Theorem 1 we consider sub-cases depending on

whether Ih is preempted. If Ih is not preempted, according to

the proof of Theorem 1, Ih’s interference on Il is C = Δ + x.

However, unlike in PQS where x < Δ, for SQS we have a

tighter bound on x: x < Δ − ml. Hence, Ih’s interference

on Il is Cmax = 2Δ − ml. If Ih is preempted by a higher

priority instance, let y be the number of steps Ih has completed

before it is preempted. We note that y < ml, since ml is the

smallest slack of any query whose priority is higher or equal to

l. Similar to PQS, the worst-case interference in the two cases is:

C(x) = Δ + max(x, y). However, unlike PQS, we have tighter

bounds on x and y: x < ml and y < ml. Thus, the worst-case

interference of Ih on Il is Cmax = 2Δ−ml.

(2) In this case Il is preempted by Ih. This case is handled

similarly to (1b).

Similar to PQS, when L < 2Δ − ml the interference cost is

reduced L. Therefore the worst-case interference of Ih on Il is

min(2Δ−ml, L).

To compute R′
l we must account for the jitter introduced by

slack stealing, i.e., a higher priority instance Ih may delay its

start by at most Sh. Accordingly, R′ is:

R′
l(Sl) = (Δ−ml) + Sl +

∑
h∈hp(l)

⌈
R′
l(Sl) + Sh

Ph

⌉
· Cmax(l, h)

where, Δ − ml is the maximum length (execution time) of the

preemptable part, Sl is the maximum time interval when Il may

be blocked by a lower priority instance due to slack stealing, and

Cmax(l, h) = min(2Δ − ml, L) is the worst-case interference

when slack stealing is used.

V. HANDLING MULTIPLE CLASSES

So far the algorithms and their analyses were presented under

the assumption that queries belong to the same class i.e., they are

executed according to the same plan. In this section, we consider

the case when there are multiple query classes. We define the

minimum step distance between two queries classes c and c′

Δ(c, c′) as the minimum number of slots an instance of class

c′ must wait after an instance of class c started such that there

are no conflicts. Note that Δ is not commutative.

A. Multi-class NQS

When all queries belong to a single query class, NQS only

needs to check if the step distance between the highest priority

instance in the release queue and the instance at the tail of the run
queue exceeds the minimum step distance to guarantee conflict-

free transmissions. However, in the case of multiple classes, to

guarantee that all minimum step distances are enforced, NQS

must check whether the step distance between the highest priority

instance in the release queue and all instances in run queue

exceeds the minimum step distances between their respective

query classes. NQS accomplishes this efficiently by keeping track

of the slot when the last instance of each query class started.

To enforce all minimum step distances it suffices to record the

time when the last instance of each class started. Using this

information, NQS ensures that any new instance that is released is

started only when its step distances to all other instances currently

being executed exceeds their respective minimum step distances.

To handle multiple classes, NQS stores the following additional

information: (1) for each pair of query classes, NQS maintains the

minimum step distances and (2) an integer per query class to keep

track of when the last instance of each class started. The number

of comparisons necessary to enforce the minimum step distances

equals the number of query classes. Therefore, NQS handles

multiple classes without increasing its computational complexity

since the number of classes is a constant (i.e., it does not depend

on the number of instances either in release or in run queues).

Fig. 6 provides examples of the schedulers executing a multi-

class workload consisting of three queries: Qh, Qm, and Ql. The

three queries have the same phases, periods, and deadlines as in

the single-class examples that we previously considered (see Fig.

5). However, consistent with the differences between the single-

class and multi-class cases, query plans may have different lengths

and the RTQS schedulers must enforce pair-wise minimum step-

distances during query execution. The workload parameters are

summarized in Fig. 6(d).

NQS constructs the schedule shown in Fig. 6(a) as follows.

In slot 0, the first instance of Ql is released and NQS starts

its execution as no instances are currently being executed. The

first instance of Qm is released in slot 2, however, NQS will

not execute it until slot 4 when Δ(l,m) = 4. The first instance

of Qh is released in slot 6. Since NQS is nonpreemptive, it will

execute Ql and Qm concurrently until slot 10 when the execution

of first instance of Qh may proceed without conflict as both
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 0          1          2      
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
                           

Qh           0         10      

                           

Qm     0      6       14        

                           

Ql 0    4     10   14            
4 - 0 = Δ(l,m)

6 - 0 = Δ(m,h)

10 - 0 ≥ Δ(l,h)

(a) Schedule constructed by NQS

 0          1          2      
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
                           

Qh       0         10          

                           

Qm   0   3            4   7      

                           

Ql 0 1               2    3      

10 - 2 = Δ(h,l)

4 - 0 = Δ(m,l)

(b) Schedule constructed by PQS

 0          1          2      
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
                           

Qh         0         10        

                           

Qm   0   3   6                  

                           

Ql 0 1                 2        

6 - 0 = Δ(h,m)

10 - 2 = Δ(h,l)

2 ≤ Sh

(c) Schedule constructed by SQS

 Φ P D L 
Ql 0 30 20 15 
Qm 2 65 28 15 
Qh 6 93 93 11 

 
Δ Ql Qm Qh 
Ql 8 4 8 
Qm 4 8 6 
Qh 8 6 8 

(d) Workload

Fig. 6. Schedule examples for NQS, PQS, and SQS (multi-class case). Workload described in Fig. 6(d).

Δ(m,h) = 6 ≤ 6 and Δ(l, h) = 8 ≤ 10. Note that in contrast to

the single-class case when NQS required a single comparison to

determine when it is safe to start executing a new instance, in the

multi-class case, NQS requires O(c) comparisons to ensure that

the pair-wise minimum step distances constraints are satisfied.

Schedulability Analysis: For clarity, in the schedulability

analysis of NQS and subsequent multi-class schedulers we use

interchangeably h and cls(h) in Δ(cls(l), cls(h)) to denote the

minimum step distance between the query classes of l and h.

To extend the schedulability analysis of NQS to the multi-class

case, we must determine the impact of having multiple classes on

the blocking and interference terms (see Property 1 and Property

2, respectively). The maximum blocking time an instance of a

query l suffers due to a lower priority instance of a query m is:

Bl = max
m∈lp(l)

Δ(m, l)− 1 (4)

Proving that the Equation 4 holds follows a similar argument as

the proof of Property 1. The worst-case blocking of an instance

of query l occurs when a lower priority instance of a query m

for which Δ(m, l) = Bm + 1 starts one step before l’s instance

is released.

The multi-class NQS scheduler starts an instance Il after all

instances Ih previously started complete Δ(h, l) steps. Thus, the

worst-case interference of a higher priority instance Ih on Il
is at most Il(h) = maxm∈hp(l) Δ(h,m). Thus, the worst-case

response time of a query l is Rl = Ll + Wl where Ll is the

length of plan of query class l and Wl is the worst-case delay an

instance of l observes before it starts:

Wl = Bl +
∑

h∈hp(l)

⌈
Wl

Ph

⌉
· Il(h) (5)

B. Multi-class PQS

To extend PQS to multiple classes, we need to extend the

definition of the mayConflict sets. We define mayConflict[x][c]
to be the set that contains the instances which are in the run
queue and conflict with any instance executing step x in the plan

of class c:

mayConflict[x][c]={Ih,v ∈ run | x− Ih,v.i < Δ(h, c) and

h is started/resumed earlier than any instance of c}
The functions used by PQS (resume, may-resume, and execute-

step) need to be updated (see Figure 7). In updating PQS to handle

multiple classes, attention must be paid to the order of arguments

used in the minimum step distances since Δ is not commutative.

According to the definition of the mayConflict sets, the multi-

class PQS scheduler determines the instances which may interfere

event: new instance Il,u is released
release = release ∪ {Il,u}

event: start of new slot s
for each Il,u ∈ release

if (may-resume(Il,u) = true) then resume(Il,u)
for each Il,u ∈ run

execute-step(Il,u)
resume(Il,u):

run = run ∪ {Il,u}; release = release − {Il,u}
for each c ∈ C

add Il,u to all mayConflict[x][c] such that
|Il,u.i− x| < Δ(l,c)

preempt(S):
run = run − S; release = release ∪ S
remove Il,u from all mayConflict sets

may-resume(Il,u):
if (mayConflict[Il,u.i][cls(l)] = ∅) then return true
if (Il,u has higher prio. instances in mayConflict[Il,u.i][cls(l)])

preempt(mayConflict[Il,u.i]); return true
return false

execute-step(Il,u):
determine if node should send/recv in Il,u.i
Il,u.i = Il,u.i+ 1
if Il,u.i = L(l) then run = run − {Il,u}
for each c ∈ C

remove {Il,u} from mayConflict[Il,u.i−Δ(l,c)][c]
add {Il,u} to mayConflict[Il,u.i+Δ(l,c)][c]

Fig. 7. Pseudocode of multi-class PQS schedule.

with an instance Il,u executing step Il,u.i by inspecting the

set mayConflict[Il,u.i][cls(l)]. Accordingly, PQS will start/resume

Il,u if either (1) the mayConflict[Il,u.i][cls(l)] set is empty or (2)

all its members have lower priority than Il,u. These changes are

reflected in the may-resume function.

When an instance is started/resumed, it must be added to

the appropriate mayConflict set in the resume function. This

entails adding Il,u to all sets mayConflict[x][c] such that |Il,u.i−
x| < Δ(l, c) and c is a query class. When a step in a plan is

executed, the membership in the mayConflict sets is updated in

the execute-step function. For any given class c, when an instance

Il,u completes executing a step, it is removed from mayCon-
flict[Il,u.i−Δ(l, c)][c] and added to mayConflict[Il,u.i+Δ(l, c)][c].

The multi-class PQS scheduler maintains
∑

c∈C L(c) mayCon-
flict sets, where L(c) is the length of the plan for class c. Since c

is a constant, the time complexity of the multi-class PQS is same

as in the single class case.

Fig. 6(b) shows the schedule constructed by PQS in the multi-

class case. The schedule is constructed similar to single-class

case with the important distinction that mayConflict sets are

constructed to recognize the pairwise minimum step distance

requirements. For example, in slot 16, step 10 of Qh and step

2 of Ql may be executed concurrently since their minimum step

distance constraint is satisfied: Δh,l = 10− 2 = 8 ≥ 8.
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Schedulability Analysis: To extend the analysis to the multi-

class case, we follow the same approach as in the single query

class case. We start by observing that once a query executes more

than El = maxm∈hp(l) Δ(l,m), no other query instance may

preempt its execution. We split the execution of a query in two

parts, a preemptable part of length El and a non-preemptable part

of length Ll −El. Thus, the response time of a query is the sum

of the response time of the preemptable part R′
l and the length

of the non-premptable part: Rl = Ll − El +R′
l

The response time of the preemptable part is:

R′
l = El +

∑
h∈hp(l)

⌈
R′
l

Ph

⌉
· Cmax(l, h) (6)

Theorem 3: An instance Il is interfered by a higher priority

instance Ih for at most Cmax(l, h) = min(Δ(h, l) +Δ(l, h), Ll).

Proof: We analyze Ih’s interference on Il in three cases:

(1) If Ih is released while Il is executing its nonpreemptable part,

the interference is zero.

(2) Ih is released no later than Il, then Ih’s interference on Il
is at most Δ(h, l), since Il may start when Ih completes Δ(h, l)

steps. Thus, C(l, h) = Δ(h, l).

(3) If Ih is released while Il is executing its preemptable part, Ih
preempts Il. Let x be the number of steps Il has completed, when

Ih preempts it. We note that x ≤ Δ(l, h) since Il otherwise both

Il and Ih may be executed concurrently without conflict. There

are three sub-cases to be considered: (a) Ih is not preempted by a

higher priority instance, (b) Ih is preempted by a higher priority

instance and Il is not resumed before Ih, and (c) Ih is preempted

by a higher priority instance and Il is resumed before Ih.

(3a) If Ih is not preempted by any higher priority instance, then Il
will be resumed after Ih completes Δ(h, l)+x steps to enforce the

minimum step distance between Il and Ih. Thus, the interference

is C(l, h) = Δ(h, l) + x ≤ Δ(h, l) + Δ(l, h).

(3b) If Ih is preempted by Im after it completes y steps and

Il cannot be resumed before Ih is. We know that y < Δ(h, l)

since otherwise Il and Ih may be executed concurrently. The

earliest time when Il may be resumed is when Im completes

at least Δ(m, l) + x steps and Ih completes Δ(m,h) + y steps.

Depending on the relationship between x and y there are two

possible interference patterns as shown in Figure 8. If x ≥ y

(see case 3b-i), then the interference is C(l, h) = y ≤ Δ(h, l),

since y ≤ Δ(h, l). If x < y (see case 3b-ii), then the interference

C(l, h) = Δ(h, l) + x ≤ Δ(h, l) + Δ(l, h) since x ≤ Δ(l, h).

(3c) If Ih is preempted by Im, PQS may resume Il before Ih
since it resumes a lower priority instance as soon as it does not

conflict with any higher priority instance. As such, the earliest

time Il may be resumed, is after Im completes Δ(m, l)+x steps.

Il will be executed until step x′ when Ih may be resumed without

conflicting with Im i.e., after Im completes executing Δ(m,h)+

y steps. We note that x′ < Δ(l, h) since otherwise Il and Ih
may be executed concurrently without conflict. In this case, the

interference of Ih is C(l, h) = Δ(h, l) + x′ ≤ Δ(h, l) + Δ(l, h).

From all the above cases, Ih’s worst-case interference on Il is

Cmax(l, h) = Δ(h, l)+Δ(l, h). However, when L(h) < Δ(h, l)+

Δ(l, h), Ih finishes before Il reaches Δ(h, l)+Δ(l, h); in this case

the interference is only L(h). Thus, Ih’s worst-case interference

on Il is Cmax(l, h) = max(Δ(h, l) + Δ(l, h), L(h)).

Due to space constrains we omit the proof of the theorem.
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Case (3b-i) If (m,l) + x  (m,h) + y and x  y
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Case (3c) If (m,l) + x < (m,h) + y  
C(l,h)= [(y-1)+1] + [( (h,l) + x' - 1) - y + 1] = (h,l) + x'  

(h,l)+x'

x' + 1x'

y

(m,h)+y

l

h

m

(m,l)+x

x-1

y-1

(m,h)+y

y

x

Case (3b-ii) If (m,l) + x  (m,h) + y and x < y
C(l,h)= (h, l) + x < (h,l) + (l,h)

l

(h,l)+xh

m (m,l)+x

Fig. 8. Interference of Ih on Il under multiclass PQS.

C. SQS Multi-class Scheduler

Similar to the single class case when we built the SQS

scheduler by modifying the PQS scheduler, the multi-class SQS

scheduler is built upon the multi-class version of the PQS

scheduler. However, rather than allowing an instance Il,u to steal

steal slack from a higher priority instance Ih,v if Il,u completed

at least Δ − Sh steps, in the multi-class case we allow Il,u to

steal slack only if it completed at least Δ(l, h)−ml steps, where

ml = minh∈hp(l) Sh. This ensures that if Il,u starts stealing slack,

then it will always succeed. The extension of SQS to multiple

classes does not increasing the time complexity.

The admission algorithm follows a similar approach to the

single-class case. We divide the execution of a query l into a

preemptable and a non-preemptable part. The length of the pre-

emptable part is at most El−ml, where El = maxh∈hp(l) Δ(l, h)

and ml = minh∈hp(l) Sh. Accordingly, the length of the non-

preemptable part is Ll − (El −ml). The worst-case interference

of a higher priority instance on a given instance is:

Theorem 4: An instance Il may be interfered by a higher

priority instance Ih for at most Cmax = min(Δ(h, l) +Δ(l, h)−
ml, Ll).

As we proved the worst-case interference for the single class

SQS scheduler starting from the PQS interference result, it is

straight forward to prove Theorem 4 starting from the results for

the interference of multi-class PQS and recognizing that in the

case of slack stealing there is a tighter bound on the variable x

in Theorem 3 (x < Δ(l, h)−ml rather than x < Δ(l, h)).

To compute R′
l we must account for the jitter introduced by

slack stealing, i.e., a higher priority instance Ih may delay its

start by at most Sh. Accordingly, R′ is:

R′
l(Sl) = (El −ml) + Sl +

∑
h∈hp(l)

⌈
R′
l(Sl) + Sh

Ph

⌉
· Cmax(l, h)

where, Δ − ml is the maximum length (execution time) of the

preemptable part, Sl is the maximum time interval when Il may

be blocked by a lower priority instance due to slack stealing, and

Cmax(l, h) = min(Δ(h, l) + Δ(l, h) − ml, Ll) is the worst-case

interference when slack stealing is used.

An example of the schedule constructed by SQS is included

in Fig. 6(c). In slot 6, an instance of the highest priority query

is released while an instance of the medium priority query Qm

is executing. Unlike PQS, SQS does not preempt its execution

but rather uses slack stealing to allow it to execute for an
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additional two slots. In slot 8, the instance of Qh can be executed

concurrently with Qm as their pairwise minimum step distance

requirement Δ(h,m) is satisfied.

VI. PRACTICAL CONSIDERATIONS

Topology Changes: Topology changes can negatively affect

the performance of RTQS: due to changes in the routing tree,

the plans would have to be consistently updated introducing a

significant overhead. We propose two mechanisms to address this

challenge: route diversity and retransmissions.

The routing tree algorithm may be adapted to allow for a

child to have multiple parents, in effect providing route diversity.

Accordingly, a node would be allowed to change its parent in the

routing tree as long as the new parent is selected from a predefined

set of potential parents. Our goal is to construct plans that are

insensitive to a node changing its parent under the constraint that

the new parent is in the set of potential parents. To this end, we

introduce the concept of virtual transmissions. Although node

n actually transmits to a single potential parent, we construct

the plan and compute the minimum inter-release times as if

n transmits to all potential parents. We trade-off some of the

throughput in favor of better tolerating topology changes. This

trade-off is similar to other TDMA algorithms designed to handle

topology changes [26] [27]. Simulation results presented in [19]

indicate that increasing the number of parents to two or three

leads to throughput reductions of 9.8% and 12.6%, respectively.

This suggests that route diversity is an effective mechanism for

improving reliability without significantly lowering throughput.

Wireless links are known to have variable quality as environ-

ment change. During the computation of the workload demands

for each node, the user must allocate sufficient time slots for

potential packet transmissions to ensure reliability. RTQS already

provides some robustness against changes in link quality by hav-

ing multiple parents among which a node may switch. However,

RTQS may also account for variations in link quality through

a different mechanism. RTQS can accommodate such changes

by increasing the workload of a link based on its quality. For

example, the link layer commonly computes the expected number

of transmissions (ETX) require to transmit packets successfully.

RTQS could allocate a node to transmit up to ETX times a packet

to ensure reliable delivery.

Time Synchronization: RTQS requires that all nodes within

the interference range be time synchronized. The sensor network

community has proposed several efficient time synchronization

protocols [28]. For example, FTSP has an average time synchro-

nization error of 1.4 μs per hop with minimal communication

overhead. TDMA protocols handle time synchronization errors

by using guard intervals on each slot. The guard intervals must

exceed the size of synchronization error, which are on the order

of 2μs for typical protocols such as FTSP [28]. This introduces

a small constant overhead in each slot. In our simulation setup,

our slot is 8.3 ms and, as a result, the addition of guard interval

of 2μs would add minimal overhead.

Supporting Other Traffic: RTQS is optimized for improving

the performance of periodic queries. However, other types of

traffic may also exist (e.g., data dissemination, aperiodic queries).

A solution for handling these transmissions is to periodically

dedicate slots for their transmission. Transmissions during these

slots are done using typical CSMA/CA techniques. This approach
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Fig. 9. Response time of baselines, PQS, and NQS

reserves a portion of the bandwidth for traffic types. It is straight-

forward to account for these additional slots in our analysis.

VII. SIMULATIONS

We implemented RTQS in NS2. Since we are interested

in supporting high data rate applications such as structural

health monitoring we configured our simulator according to the

802.11b settings having a bandwidth of 2Mbps. This is reasonable

since several real-world structural health monitoring systems use

802.11b interfaces to meet their bandwidth requirements. An

overview of these deployments may be found in [3]. At the

physical layer a two-ray propagation model is used. We model

interference according to the Signal-to-Interference-plus-Noise-

Ratio (SINR) model, according to which a packet is received

correctly if its reception strength divided by the sum of the

reception strengths of all other concurrent packet transmissions

is greater than a threshold (10 dbm in our simulations).

In the beginning of the simulation, the IC graph is constructed

using the method described in [23]. The node closest to the

center of the topology is selected as the base station. The base

station initiates the construction of the routing tree by flooding

setup requests. A node may receive multiple setup requests from

different nodes. The node selects as its parent the node that has

the best link quality indicator among those with smaller depth

than itself. We determined the slot size as follows. We set the

slot size to 8.3ms, which is large enough to transmit 2KB of

data. In our simulations, all queries are executed according to the

same plan as every node sends its data report in a slot.

For comparison we consider three baselines: 802.11e, DCQS

[19] and DRAND [29]. We did not use 802.15.4 as a baseline,

since the standard is designed for low data rate applications and

hence is unsuitable for our target high data rate applications.

802.11e is a representative contention-based protocol that sup-

ports prioritization in wireless networks. In our simulations we

use the Enhanced Distributed Channel Access (EDCA) function

of 802.11e since it is designed for ad hoc networks. EDCA prior-

itizes packets using different values for the initial backoff, initial

contention window, and maximum contention window of the

CSMA/CA protocol. We configured these parameters according to

their defaults in 802.11e. We used the 802.11e NS2 module from

[30]. DRAND is a recently proposed TDMA protocol. DCQS is

a query scheduling algorithm that constructs TDMA schedules
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Fig. 10. Data fidelity of baselines, PQS, and NQS

to execute queries. However, neither DCQS nor DRAND support

prioritization or real-time transmission scheduling.

We use response time and data fidelity to compare the perfor-

mance of the protocols. The response time of a query instance is

the time between its release time and completion time, i.e., when

the base station receives the last data report for that instance.

During the simulations, data reports may be dropped preventing

some sources from contributing to the query result. The data
fidelity of a query instance is the ratio of the number of sources

that contributed to the aggregated data reports received by the

base station and the total number of sources.

In the following we compare the performance of NQS and

PQS with the baselines (Section VII-A) and evaluate the RTQS

algorithms under different workloads and validate our response

time analysis (Section VII-B). In all settings, we set the deadlines

of the queries to be smaller or equal to the period as to match the

conditions under for which we derived the schedulability analysis.

A. Comparison with Baselines

The presented results are the average of five runs on different

topologies. The 90% confidence interval of each data point is also

presented. In all experiments 100 nodes are deployed as follows:

an area of 750m ×750m is divided into 75m × 75m grids in

which a node is placed at random within each grid. We simulate

three queries with high, medium and low priorities. The query

priorities are determined based on their deadlines: the tighter the

deadline, the higher the priority. The ratios of the query periods

QH :QM :QL are 1.0:2.2:4.7. Deadlines are equal to periods.

Figs. 9 and 10 show the average response time and data fidelity

of different protocols as the total query rate is increased from

1.43Hz to 2.87Hz. 802.11e EDCA provides prioritization between

queries: when the total query rate is 1.43Hz, the average response

times of QH and QL are 0.34s and 0.74s, respectively (see Fig.

9(a)). However, 802.11e EDCA has poor data fidelity for all

queries (see Fig. 10(a)). The poor performance of 802.11e EDCA

is due to high channel contention, which results in significant

packet delays and packet drops. This shows the disadvantage of

contention-based protocols for high data rate queries.

The TDMA protocols, DCQS and DRAND (see Figs. 9(b) and

10(b)), have significantly higher data fidelity than 802.11e EDCA.

The data fidelity results indicate that DCQS provides a higher

capacity than DRAND. Moreover, DCQS provides lower response

time than DRAND (see Fig. 9(b)). DCQS performs better because

it exploits the inter-node dependencies introduced by queries in

WSNs. However, neither protocol provides query prioritization

since all queries have similar response times.

In contrast to DCQS and DRAND, PQS provides query prioriti-

zation as seen in their response times. For instance, when the total

query rate is 2.51Hz, PQS provides an average response time of

0.38s for QH , which is 75% lower than the average response time

of 1.48s for QL (see Fig. 9(c)). PQS achieves the same capacity as

DRAND, but lower than DCQS due to the high cost of preemption

(see Section IV-E). PQS achieves close to 100% fidelity when

the total query rate is lower than 2.51Hz (see Fig. 10(c)). For

higher query rates, the fidelity drops because the offered load

exceeds PQS’s real-time capacity (the schedulability test failed at

these rates). NQS also provides query prioritization (the y-axis

has a log scale), but the differences in response times are smaller

than in PQS due to the priority inversions of non-preemptive

scheduling (see Fig. 9(d)). In contrast to PQS, NQS has almost

100% data fidelity for all queries when the total query rate is as

high as 2.87Hz. Therefore, NQS achieves higher capacity than

PQS. This comparison shows the tradeoff between latency and

capacity predicted by our analysis.

B. Comparison of RTQS Algorithms

In this subsection we compare the performance of all RTQS

algorithms and validate their response time analysis. We consider

four queries Q0, Q1, Q2, and Q3 in decreasing order of priority.

The ratios of their periods Q0:Q1:Q2:Q3 is 1.0:1.2:2.2:3.2. In this

experiment, we fix the rates of the queries and vary the deadline

of the highest priority query.

To evaluate the RTQS algorithms under a broad range of

workloads, we perform three experiments. In the first experiment,

we fix the deadlines of the queries and vary their rates. In the

second experiment, we fix the query rates and vary the deadline

of the highest priority query. In the last experiment, we evaluate

the performance of the RTQS algorithms for multiple classes.

Experiment 1: Figs. 11(a) - 11(c) show the measured and

the theoretical maximum response times of NQS, PQS, and SQS

under different total query rates. The dotted horizontal lines

indicate the query deadlines. NQS meets all deadlines when the

total query rate is within 2.85Hz. In contrast, PQS supports a

lower query rate since Q3 misses its deadline when the total query

rate is 2.23Hz. The long response time of Q3 is due to the high

preemption cost suffered by the low priority queries under PQS.

This indicates that PQS is unsuitable for workloads in which the

low priority queries have tight deadlines.

Similar to NQS, SQS can support a higher query rate than PQS

without missing deadlines. In this experiment, the deadlines are

lax and hence preemption is not necessary for meeting them. As

such, SQS dynamically avoids preemption and the associated real-

time capacity reduction. SQS achieves a slightly lower real-time

capacity than NQS because it is limited by the conservative re-

sponse time analysis. When the admission algorithm decides that

the queries are unschedulable, it cannot find a slack assignment

for the queries. Therefore we cannot run SQS at a rate beyond its

theoretical bound. In contrast, we may increase the rate further

under NQS, which achieves a higher real-time capacity than its

theoretical bounds because its response time analysis is derived

based on worst-case arrival patterns which do not always occur

in our simulations.
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(c) SQS response time

Fig. 11. Response time of queries when workload is varied by changing rates. All queries belong to the same class.
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Fig. 12. Response time of queries when workload is varied by changing the deadline of Q0.
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Fig. 13. Response time of queries when workload is varied by changing the deadline of Q0.

Experiment 2. In this experiment we increase the deadline of

the lowest priority query and vary the deadline of the highest pri-

ority query Q0. This experiment evaluates the RTQS algorithms

when the low priority queries have lax deadlines.

Figs. 12(a) - 12(c) show the maximum response times of NQS,

PQS, and SQS, respectively. For clarity, only Q0’s deadline is

plotted since in this experiment the other queries always meet

their deadlines. PQS meets Q0’s deadline when it is 0.39s. In

contrast, NQS meets its deadline only when Q0’s deadline is

bigger then 0.69s. NQS misses Q0’s deadline when it is tight

due to the priority inversion under non-preemptive scheduling.

This indicates that NQS is unsuitable for high priority queries

with tight deadlines. Interestingly, under SQS, the response time

of Q0 changes depending on its deadline (Fig. 12(c)). As the

deadline becomes tighter, the response time of Q0 also decreases

and remains below the deadline. We also see an increase in the

response times of the lower priority queries as Q0’s deadline

is decreased. This is because as Q0’s deadline decreases the

lower priority queries may steal less slack from Q0. This shows

that SQS adapts effectively based on query deadlines. Moreover,

note that SQS provides smaller latencies for the lower priority

instances than PQS. This is because SQS has a higher real-

time capacity than PQS since it uses preemption only when it

is necessary for meeting packet deadlines.

Experiment 3. In this experiment, we compare the perfor-

mance of the RTQS algorithms in the presence of multiple classes.

We create different query classes by varying the sources of the

queries. For each query class we select at random a fraction

of the leaf nodes as data sources. We note that if a node has

as descendent a selected leaf node, then it also participates in

that query class since it must forward the leaf’s data to the

base-station. Similar to the previous experiments, data merging is

performed as data is routed to the base-station. In this experiment

there are two classes: c0 includes 100% of the leaf nodes while

c1 includes 60% of the leaf nodes. The queries Q0 and Q2 belong

to class c0 while Q1 and Q3 to class c1.

Figs. 13(a) - 13(c) show the maximum response times for NQS,

PQS and SQS when the deadline is varied. In each graph we also

plot the deadline of Q0. Similar to the previous experiment, PQS

schedules the workload for tighter deadlines of Q0 than NQS.

This is because in contrast to NQS, PQS does not introduce any

priority inversions. From the Figs. 13(a) and 13(b) it is clear that

neither algorithm changes its behavior as Q0’s deadline is varied.

In contrast, SQS adapts its behavior to meet Q0’s deadline. In all

experiments, the measured response times of all RTQS algorithms

are lower than the analytical worst-case response times.

VIII. CONCLUSIONS

High data rate real-time queries are important to many wireless

cyber-physical systems. This paper proposes RTQS, a novel

transmission scheduling approach designed real-time queries in

WSNs. RTQS bridges the gap between wireless sensor networks

and schedulability analysis techniques which have traditionally

been applied to real-time processor scheduling.

We first analyze the inherent tradeoff between throughput

and prioritization under conflict-free query scheduling. We then

present the design and schedulability analysis of three new real-

time scheduling algorithms for prioritized transmission schedul-

ing. NQS achieves high throughput at the cost of priority in-

version, while PQS eliminates priority inversion at the cost of
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query throughput. SQS combines the advantages of NQS and

PQS to achieve high query throughput while meeting query

deadlines. NS2 simulations demonstrate that both NQS and PQS

achieve significantly better real-time performance than represen-

tative contention-based and TDMA protocols. Moreover, SQS

can maintain desirable real-time performance by adapting to

deadlines. Real-time query scheduling provides an promising

approach to provide predictable real-time queries in WSNs.
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