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JAHRVIS, a Supervision System for Human-Robot Collaboration

Amandine Mayima1, Aurélie Clodic1,2 and Rachid Alami1,2

Abstract— The supervision component is the binder of a
robotic architecture. Without it, there is no task, no interaction
happening, it conducts the other components of the architecture
towards the achievement of a goal, which means, in the context
of a collaboration with a human, to bring changes in the
physical environment and to update the human partner mental
state. However, not so much work focus on this component
in charge of the robot decision-making and control, whereas
this is the robot puppeteer. Most often, either tasks are simply
scripted, or the supervisor is built for a specific task. Thus, we
propose JAHRVIS, a Joint Action-based Human-aware supeR-
VISor. It aims at being task-independent while implementing a
set of key joint action and collaboration mechanisms. With this
contribution, we intend to move the deployment of autonomous
collaborative robots forward, accompanying this paper with our
open-source code.

I. INTRODUCTION

The supervision component is the binder of a robotic archi-
tecture. Without it, there is no task, no interaction happening,
since it is in charge of controlling the other components of
the architecture. Indeed, what we define as ‘supervision’,
in the context of HRI, is the higher level of control in
the architecture, the process involving real-time decision-
making required for shared human-robot activity execution
and monitoring. It is the robot decisional kernel. Now, for a
robot, collaborating with humans is substantially different
from acting alone or in coordination with other robots.
Indeed, when humans are involved in a joint action [1],
several socio-cognitive mechanisms come into play in order
to conduct and facilitate collaborative activity between two or
several humans. Some of these mechanisms are also triggered
in humans’ minds when they interact with robots, and they
are essential for a successful collaboration. Therefore, it is
important to take these into account when designing and
implementing a software for a collaborative robot. Thus, we
posit that in a human-robot collaborative task, the supervisor
should handle coordination, communication, monitoring, and
repair strategies considering joint action and collaboration
mechanisms such as joint attention [2], common ground
alignment [3], shared representations [4] (including shared
plans [5] and joint goals [6]) and Theory of Mind (ToM) [7].

In this paper, we present the Joint Action-based Human-
aware supeRVISor (JAHRVIS), a supervisor providing the
control of a set of collaboration mechanisms borrowed from
joint action. It is presented in full details in [8]. JAHRVIS is
fully implemented and has been tested with several tasks and
various contexts (see the attached video). One of them will
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be presented in this paper. This contribution is accompanied
by the software open-source code1.

II. RELATED WORK

One can find in the literature numerous contributions
proposing components with some collaborative features. We
briefly mention here those which have been a source of
inspiration to a certain extent. We start with the oldest one,
Shary. It is a component dedicated to supervision for human-
robot interactions, with a strong emphasis on communication,
allowing to execute shared plans and to monitor human and
robot actions [9]. Chaski is a task-level executor, focusing on
coordination and decision-making. It takes as input shared
plans with deadlines and tries to minimize the human idle
time while controlling the plans execution [10]. There is also
Pike, an online executive, that unifies intention recognition
and plan adaptation to deal with temporal uncertainties dur-
ing Shared Plan execution [11]. Görur et al. [12] developed a
robotic system able to handle unexpected human behaviors,
for instance, the human doing an action irrelevant to the task
or not wanting the robot assistance. For this, they developed
a human model which is used to monitor human’s actions
and generate reactive and proactive robot actions. Similarly,
[13] proposed a reactive and proactive robotic system, being
able to help when requested by the human or when detected.
[14] presented a framework which generates and executes
robust plans for service robots. It allows to not explicitly
represent all possible situations the robot would face (e.g.,
low battery means the robot should not navigate) and also
to face unpredicted situations where an action failed with no
alternative solutions. Finally, [15] implemented a supervisor
allowing the robot2 to estimate the human’s beliefs not only
about the state of the environment but also about the state
of the goals, shared plans and actions.

It has been noticed that it is not so often that complete
robotic architectures run autonomously on a real robot and
interact with a human. And, when they do, the supervision
system is frequently “minimal”, the task being scripted,
or is designed for a specific task, preventing it to be re-
used in another context. Moreover, even when task and
context independent contributions are proposed (e.g., [14]),
there is no code or documentation to re-implement their
system, or they do not necessarily implement joint action
or collaboration mechanisms.

1https://github.com/AmandineMa/ld_rjs
2All along the paper, note that we sometimes use the words robot

and supervisor interchangeably. For example here, it is the supervisor
which estimates and not the robot. Such an intermingling cleary shows
the importance of the supervision and that it is the robot decisional-kernel.
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Requir. [9] [10] [11] [12] [13] [14] [15] Ours
1 Yes Yes Yes Yes Yes Yes Yes Yes
2 Yes Yes No Yes No No Yes Yes
3 No Yes Yes Yes Yes No Yes Yes
4 Yes No Yes Yes Yes No Yes Yes
5 No No Yes Yes No Yes No Yes
6 Yes Yes No No No No Yes Yes
7 No No No No No Yes No Yes
8 Yes Yes Yes Yes No No No Yes
9 No No No Yes No Yes Yes Yes

TABLE I: Summary of our requirements for the related work.

III. THE NEEDS AND WANTS OF A SUPERVISION SYSTEM
TO MANAGE HUMAN-ROBOT INTERACTIONS

A. Requirements

Some of the control features presented here are inspired
by [15]. To go further and provide more flexibility, read-
ability and genericity, we developed the Joint Action-based
Human-aware supeRVISor (JAHRVIS)3, a more complete
framework of a supervision component enabling human-
robot collaboration, controlling the robot to bring changes in
the physical environment and to update the human partner
mental states. To implement such a supervisor, we based
ourselves on joint action and collaboration mechanisms [1],
[16], considering among other things that a human and a
robot collaborating together need to rely on a shared plan
representation of the task in order to reach a joint goal.
According to these mechanisms and to our needs, we defined
a list of requirements we consider important for a supervisor
software. We implemented JAHRVIS based on the following
requirements:

1) Be generic. The objectives developed in the rest of
this list are valid for most collaborative tasks. Thus,
it is essential to develop a software not dedicated to a
particular task but able to handle plans for various tasks.

2) Take explicitly into account the human partner. In
HRI, the human and the robot are partners. Partners
perform better when taking each other into account [1].
Thus, by considering human abilities, perspective and
mental states to make decisions, a supervisor makes the
robot a better partner for the human.

3) Leave decisions to the human. In some cases, it is
not useful, even counterproductive that the robot plans
everything beforehand. Indeed, such elements such as
the human action parameters, or who should execute a
given action when it does not matter, or the execution
order of some actions, can be decided at execution time.

4) Recognize human actions. To monitor the plan
progress, the robot should be able to monitor the human
by recognizing their actions.

5) Handle contingencies. The robot has a shared plan, that
is one thing, but executing it and achieving the goal is
another. Indeed, it is not sure that the human has exactly
the same, and errors or failures can happen. Thus, it
should be able to handle a number of contingencies.

3Also almost the acronym for “Just A Rather Very Intelligent System”,
see https://en.wikipedia.org/wiki/J.A.R.V.I.S.

6) Manage relevant communications. Communication is
one of the keys of collaboration [17]. Therefore, it is
important to endow the robot with the ability to manage
relevant communication actions, verbal and non-verbal.

7) Consider the interaction outside collaborative tasks
A robot dedicated to collaborative tasks, in a real-life
context, will interact with humans outside or between
these tasks. We propose to consider this fact by defining
what we called interaction sessions, allowing to take
into account facts from one task/session to another.

8) Adapt to the human experience, abilities or prefer-
ences.

9) Reproducibility, code availability of the software.
Table I shows where we position ourselves compared to the
state of the art. It aims, not to oppose systems but to provides
a reading grid of existing solutions.

B. An architecture for a cognitive and interactive robot
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Fig. 1: Overview of the robotic architecture.

Our supervision software, focus of this paper, is part of a
robotic architecture and relies on the other software of this
latter to work. This architecture in which the supervision is
integrated is shown in Fig. 1 and has been described in [18].
In this section, we give a quick overview of this architecture.

The Supervision is the puppet master of the system,
embedding the robot high-level decisions, controlling its
behavior and trying to react to contingencies, always con-
sidering the human it is interacting with. It relies essentially
on two complementary abilities:

• the human-aware situation assessment, which based
itself on data of the Perceptual Situation Assessment
and of the Knowledge Base,

• the synthesis of human-aware behaviors, thanks to the
human-aware Task Planners and Motion planner.

The Situation Assessment has two roles: 1) to gather
different perceptual information and build a geometric repre-
sentation of the world; the module runs reasoning processes
to interpret this geometric world into a symbolic world [19];

https://en.wikipedia.org/wiki/J.A.R.V.I.S.


2) estimate the human’s perspective and build an estimation
of their world representation.

The Knowledge Base makes use of the information
provided by the Situation Assessment. We use Ontologe-
nius [20], a software allowing to represent the robot knowl-
edge and the estimation of its human partners’ knowledge
separately. Knowledge is stored in the form of an ontology. It
represents the human-robot common ground and the current
symbolic world-state.

According to the task needs and the vicinity and role
of a human, several Motion planners might be pertinent,
e.g., MoveIt4 for object manipulation, or HATEB-2 [21] for
human-aware navigation.

The human-aware Task Planners are used to generate
high-level shared plans in which each agent, human and
robot, has actions assigned to them. We worked with two
human-aware task planners: Hierarchical Agent-based Task
Planner (HATP) [22], and Human Aware Task Planner
with Emulation of Human Decisions and Actions (HATP/E-
HDA) [23] which maintains conditional plans providing for
the potential courses of actions linked to human decisions
about their contribution to the task.

IV. WHICH TOOL TO IMPLEMENT A SUPERVISION?

In this section, we will present the programming frame-
work we chose for our supervision software.

After a comparison considering potential compatibility
with ROS, possible integration with the other software of
our architecture, availability of documentation, users’ feed-
backs, maintenance, and possibility of code modifications,
our choice went to Jason [24] which is a Java interpreter of
AgentSpeak [25]. It has the advantage to be a Belief-Desire-
Intention (BDI) agent-oriented framework which fits with
our architecture and implements a sense-decide-act cycle
allowing goal-based as well as situation-based incremental
task refinement. Hence, it allows to handle contingencies
and events and facilitates management of agents’ – humans
and robot – beliefs. We developed a bridge5 between Jason
and ROS (with different features than the ones proposed
in [26]). We defined a customized class of Jason agent that
we coined a ROS-Jason Agent (RJA), which has an Agent
Node, an action factory and a belief base. An Agent Node
has a ROS node (with the needed services, action clients
and publishers) and a ROS Parameter Tree. It allows to
load YAML parameters from files in which, among other
things, are written services, topics and action server data.
From these parameters, an Agent Node can automatically
instantiate all the needed ROS communication components
(i.e., services, etc.) through its ROS node. An RJA can
receive perception updates – from other components of the
robotic architecture – in its Belief Base through ROS topic
listeners. We customized the Jason belief update function as
we chose to abandon a state-based perception to adopt an
event-based perception (i.e., percepts are updates (additions

4https://moveit.ros.org/
5https://github.com/AmandineMa/rjs

and deletions) from the external Knowledge Base). The RJA
action factory – abstract in the ROS-Jason framework and
instantiated in JAHRVIS – contains the list of actions it can
perform.

V. THE OVERALL STRUCTURE OF JAHRVIS

JAHRVIS is implemented on top of our ROS-Jason frame-
work. We identified five high-level features for JAHRVIS and
implemented their associated processes (in blue on Fig. 2),
based on the objectives discusses in Section III-A. The
other elements of Fig. 2 are the components of the robotic
architecture mentioned in Section III-B.
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Fig. 2: The JAHRVIS processes (in blue) and the interac-
tions between them and with the other components of the
architecture (see Fig. 1).

For each process, we implemented a ROS-Jason Agent
(RJA), with the desired behavior coded in AgentSpeak and
the needed customizations added in Java. Thus, internal
communications between the JAHRVIS processes, and so
RJAs, use Jason messages. External communication with the
other components of the robotic architecture is based on
either ROS messages, services or action clients.

When a shared goal is established (by the Interaction Ses-
sion Manager which is not described here), the shared plan is
handled by the Robot Plan Manager (RPM) (see Section VI-
C.1) and the Human Plan Manager (HPM) (see Section VI-
C.2), i.e., they allow to follow the plan progression, to make
sure that the observed human actions match the ones of the
plan and to decide when the robot should act. Robot actions
to perform are sent to the Action Execution Manager (AEM)
(see Section VI-D) that interfaces with the motion planners
and controllers. As for human actions, they are recognized by
the Human Actions Recognition (HAR) (see Section VI-B).
Finally, the Communication Manager (CM) (see Section VI-
E) is in charge of producing the communication for the
human when requested by another RJA along with the human
communication reception.

https://moveit.ros.org/
https://github.com/AmandineMa/rjs


VI. JAHRVIS INTERNAL MECHANISMS

The examples we will give are based on a collaborative
task, the StackBuildingTask. It has been adapted from [27].
We assume that the human and the robot have the joint goal
to build a stack together as represented in Fig. 3a. At the
beginning of the task, the robot and the human can access
the colored cubes on their side, as illustrated in Fig. 3b.

(a) Goal (side view)

R
O
B
O
T

H
U
M
A
N

(b) One initial set-up (top view)

Fig. 3: Illustration of the StackBuildingTask.

Two placements are set on the table to indicate where to
put the two red cubes which are the base of the stack. Each
agent can perform 3 actions: Pick, Place and Wait. The task
is simple, but still, it involves both agents which will have
to collaborate, and there are potential conflicts and decisions
to take into account. It brings situations where the robot has
to adapt to the human’s needs and preferences. A video is
provided with this paper, showing a PR2 robot – controlled
by the presented architecture – performing this shared task
with a human, coordinating and adapting to various human
decisions and contingencies.

A. Knowledge Representations and Management

When involved in joint actions, humans maintain shared
representations [1] of tasks, actions, goals and have a com-
mon ground [3]. Thus, it is important to equip the robot with
such representations.

During an interaction, JAHRVIS processes use internal
and external knowledge bases. Concerning the first type,
each RJA has its own knowledge base that is called belief
base in Jason vocabulary. It is used for knowledge which
serves to JAHRVIS internal computations only. The exter-
nal knowledge base is managed through Ontologenius (see
Section III-B). Updates from subscription to Ontologenius
facts are received through ROS topics and converted as Jason
percepts to be added to the subscribing RJA belief base.
Table II shows an example of the data circulating between
the JAHRVIS RJAs and Ontologenius.

1) Action Representations: Action representations are
used to allow the robot 1) recognizing human actions,
2) executing actions itself, and 3) communicating about its
actions and the human ones. We defined three different
representations according to these three uses. Action descrip-
tions are loaded during the initialization process. This allows
JAHRVIS core to be task-independent.

Information allowing JAHRVIS to communicate about
actions are loaded and stored in KB Ontologenius (external

RJA subscriptions (ROS
topics) to Ontologenius

RJA requests (ROS ser-
vices) to Ontologenius

HPM isPerceiving(H, R)
isPerceiving(R, H)
isLookingAt(H, R)
isLookingAt(H, Obj)

Class of actions
Existence of action effects
SPARQL to object list

CM isPerceiving(R, H) Verb conjugation
Class of actions and objects
Labels of actions and objects

HAR Moves
ProgEffects
NecessEffects

Class of objects
Exist preconditions
Exist isReachable(Obj)

TABLE II: Example of information circulating between
Ontologenius and the RJAs

storage described in Section VI-A.1.a). This latter represen-
tation is described in the next paragraph. Human actions to
recognize and robot actions to execute are written in an
AgentSpeak file to benefit from Jason reasoning features
(internal storage described in Section VI-A.1.b).

a) Action Representation Stored Externally: To enable
communication, we represented actions, their verbal labels
and their effects in Ontologenius. One of the advantages
of using action model stored in Ontologenius is the class
inheritance: e.g., if it exists multiple classes represent-
ing a Place action, let’s say human_place_cube and
robot_place_cube, both inherit from the properties of
PlaceAction such as the label used for verbalization.

Moreover, a class can have labels. They are used by
JAHRVIS to verbalize agent actions, based on a simple
grammar we defined. For example, in “{Agent} @Place
{Pickable}”, elements between braces are to be instantiated
at execution time by JAHRVIS communication process when
needed. The @ symbol indicates that the word is a verb that
should be conjugated. Verb conjugations can also be found
in Ontologenius. Thus, the communication manager could
process it leading to “I placed the blue cube”.

b) Action Representation Stored Internally: In order to
be able to recognize a human action, we defined it as:

ActH = ⟨Action, PrecondL,MoveL, ProgEffectL,

NecessEffectL⟩

where Action is a predicate in the form of a triplet
ActName(Agent, Params) with ActName the action
name, Agent the class of the agent performing it (e.g.,
Human or Worker) and Params a list of action parameter
classes; PrecondL the list of action preconditions; MoveL
the list of distinctive movements that the human could do
when performing the action; ProgEffectL the list of effects
that we coined progression effects which are action effects,
not enough to rule the action end but allowing the plan
managers to estimate that an action is under progress; and
NecessEffectL the list of effects that we coined necessary
effects which are action effects existing iff the action is over.

Our action model takes the form of Jason beliefs written
in an AgentSpeak file, which is an input of the Human
Action Monitoring process. For example, the action Place
for a human is represented as:



a c t i o n M o d e l ( p l a c e ( Human , [ P i c k a b l e , S u p p o r t ] ) ,
[ i s H o l d i n g ( Human , P i c k a b l e ) ] ,
[ handMovingToward ( Human , S u p p o r t L i s t ) ] ,
[ n o t i s H o l d i n g ( Human , P i c k a b l e ) ] ,
[ isOnTopOf ( P i c k a b l e , S u p p o r t ) ] ) .

The choice to have two kinds of effects has been made
in order to allow the Human Action Monitoring to be robust
to a potentially unreliable perception. Indeed, for example in
the case of a Place action, the perception of an object hold by
a human can be hectic, creating multiple addition/deletion of
the fact isHolding(human 0, blue cube 1). But, if the robot
perceives that the object has been placed on top of a support,
it can assume that the action is really over.

The action representation for robot action execution
allows to match, for a given action, its name and the motion
planner and controller needed to execute it. It is possible
to specify how the action parameters should be fed to the
motion planner and the reaction in case of execution failure.
The example given in Listing 1 shows what functions of the
motion planner and controller to call and how the system
should react in case of failure.

@place [ m a x a t t e m p t s ( 2 ) ]
+! p l a c e ( Params ) : p l a n P i c k ( ” armUsed ” , Arm) <−

. n t h ( 1 , Params , Obj ) ;
headManager ( Obj , e n v i r o n m e n t m o n i t o r i n g , u r g e n t ) ;
p l a n P l a c e ( Obj , Arm ) ;
e x e c u t e ( ” p l a c e ” ) .

−! p l a c e ( Params ) [ e r r o r m s g ( Msg ) ] :
n o t . s u b s t r i n g ( max a t t emp t s , Msg ) <−

+ e r r o r m s g ( Msg ) ;
! p l a c e ( Params ) .

−! p l a c e ( Params ) [ e r r o r m s g ( Msg ) ] :
. s u b s t r i n g ( max a t t emp t s , Msg ) <−

? e r r o r m s g ( Msg ) ;
. f a i l g o a l ( e x e c u t e A c t i o n , [ e r r o r m s g ( Msg ) ] ) .

Listing 1: Example of an internal action definition for a robot
action. The first Jason plan specifies what function to call
to execute the Place action. The second one describes what
should be done in case of failure. The last one is triggered
when the first plan has been tried twice and was requested
for a third time. The failure is signaled to the task level.

2) Shared Plan Representation: As mentioned in Sec-
tion III-B, we represent shared plans using HTN. This
formalism allows to deal with goal-based and situation-
based activities at different levels of hierarchy such as task,
subtasks – abstract tasks using planning vocabulary – and
actions – atomic, primitive tasks – and consequently to
consider different levels of granularity. For example, it may
be useful to JAHRVIS to be able to request a plan for a given
abstract task which failed6. Another advantage is that it is
easy then for the robot to communicate about subtasks and
not only about actions without context.

We define a shared plan as a sequence of primitive tasks
having to be performed by an agent and, abstract tasks. An
abstract task λ is defined as: λ = ⟨idλ, stateλ, nameλ,∆λ⟩
where idλ is an identification number (id) proper to λ, stateλ

6This is future work.

is the task state estimated by the robot, nameλ is the name
of the task and the decomposition id ∆λ = idλ′ with idλ′
the id of the abstract task λ′ that has been decomposed into
other tasks, including λ.

And, a primitive task Π is defined as:
Π = ⟨idΠ, stateΠ, nameΠ, agentΠ, paramsΠ, predsΠ,∆Π⟩

where idΠ is an id proper to Π, stateΠ is the task state
estimation by the robot; nameΠ is the name of the task;
agentΠ is the name of the agent that should perform the
task; paramsΠ is the list of parameters required for the task
execution, predsΠ = idΠ′, ..., idΠ′′ the list of ids of the tasks
Π′, ...,Π′′ needing to be achieved before the task Π can start,
and the decomposition id ∆Π = idλ with idλ the id of the
abstract task λ that has been decomposed into other tasks,
including Π.

We defined nine possible values for an abstract or primitive
task state which are shown in Table III.

State Description

PLANNED needs to be done later
TODO needs to be done now
ONGOING is in progress
EXECUTED is achieved
SUSPENDED needs to be set to UNPLANNED
UNPLANNED is not part of the plan anymore (cond. plans)
NOT STARTING was TODO but took too much time before start
NOT FINISHED was started but has not been achieved
NOT SEEN was achieved but not observed by the partner

TABLE III: The nine possible state values of an abstract or
primitive task.

So, for example, an excerpt of the StackBuildingTask plan
in which the human and the robot place the first blue cube
of the stack and the green cube, generated by HATP/EHDA
is:

λ13 = ⟨13, PLANNED, h place blue cube, 1⟩
Π139 = ⟨139, PLANNED, human place cube, human 0,

[blue cube 2,stick], 138, 13⟩

B. Human Actions Recognition

In order to coordinate properly, humans monitor each other
when they are in a joint action [4]. The robot needs the
same kind of process to be able to assess what the human
is doing and whether it fits with what it expects or not. This
allows to follow the plan progress and to estimate the level
of human engagement. Existing solutions exist to recognize
human actions but none of them matched all our criteria
which are: 1) it should be easy to add a new action that
the robot can recognize, 2) the process should output the
action parameters, 3) the process should give information
about the action progress, i.e., modeling the action start and
progression when possible and not only the end, 4) it needs
to be robust to a potentially unreliable perception, and 5) an
available open-source code.

Thus, we implemented our own simple model-based solu-
tion with an RJA dedicated to Human Actions Recognition



(HAR). It relies on the action model presented in Section VI-
A.1.b which it loads at initiation. We chose to base our action
recognition process on human movements and action effects
that the robot can observe. As it needs to recognize them,
it extracts the predicate types corresponding to those and
subscribes to updates about these facts to Ontologenius.

Continuously, the HAR receives facts and human move-
ments that are present in the action model, and sends to the
Human Plan Manager (HPM) RJA three types of data about
human actions:

• list of actions that may have started that we coined
possibly started actions

• list of actions that may be progressing that we coined
possibly progressing actions

• list of actions that are estimated as finished that we
coined possibly achieved actions

Action states are updated according to the facts defined
in the human action model that the HAR receives. When
the state of an action changes to possibly started, possibly
progressing or possibly achieved, the affected list is updated
and sent to the HPM.

When a Move corresponding to an action is added to
the RJA belief base, the given action is considered as
possibly started. Then, if a ProgEffect corresponding to
this same action is detected, the action state becomes possibly
progressing whereas if it is a NecessEffect, it becomes
possibly achieved. It is the same when an action is in possibly
progressing and that a NecessEffect is detected. When a
NecessEffect appears whereas the action is not in possibly
started or in possibly progressing, the HPM checks if a
human agent may be at the source of the effect (the current
criteria is “was there a human near the object associated
to the effect?”). If so, the action is considered as possibly
achieved, the HPM estimating that it missed the action
execution (because the robot was not looking or a perception
default). It is similar for a ProgEffect, in this case the
action state becomes possibly progressing.

C. Shared Plans Handling

In order to correctly perform collaborative tasks with
humans, the robot needs to know how to perform them.
One way is to have a planner with a domain, computing
a plan at execution time based on its current knowledge
about the environment and interaction. Then, the robot must
be endowed with a way to manage the execution of this
“recipe”. As we place ourselves in the context of joint action,
plans manipulated by the robot are shared plans [5] (to
differentiate from the AgentSpeak plans which code all the
RJA). We chose to assume that the human can trivially decide
which actions they have to do in order to reach the shared
goal (other assumption could be possible). So, we consider
it is not necessary to verbalize it from the outset.

As shown by [15], the robot ability to handle and execute
shared plan is enhanced when the robot is able to estimate,
all along the task, what its human partner knows about the
current state of the world and of the task. It allows the
robot to be aware of false beliefs or beliefs divergence in the

human’s point of view. When such things happen, it can react
appropriately, either by acting or communicating. We gave
the robot such an ability, via two processes: the Robot Plan
Manager (RPM) and the Human Plan Manager (HPM) (see
Fig. 2). Therefore, the first one handles the robot’s beliefs
about the plan and the action execution while the second
handles the estimation of the human’s beliefs about the plan
and the communication with the human.

As we designed JAHRVIS to be as generic as possible, it
can manage different kinds of human-robot plans as input:

• shared plans in which each action is allocated to an
agent as well as action parameters are given objects
(“usual” shared plans)

• shared plans in which actions might not be allocated to
an agent at planning time and parameters might refer to
objects with a semantic query (“Agent X” shared plans)

• conditional plans which anticipate different possibilities
for the human decision/action.

To generate these plans, we worked with the two planners
HATP and HATP/EHDA mentioned in Section III-B7.

a) “Usual” shared plans with HATP and HATP/EHDA:
The first type of shared plans handled are what we could call
“usual” shared plan which are fully instantiated. Each action
is allocated to an agent as well as action parameters are
given objects. Thus, in this kind of plan, no decision is left
to JAHRVIS about who should execute the action or with
which object.

b) AgentX shared plans with HATP: The second type
of shared plans is an extension of the work of [27] about
postponing some decisions from planning time to execution
time about the actor of some actions and some parameters.
We re-implemented her idea of AgentX in our plan managers,
enabling the choice of the agent who should perform the
action at execution time when the planner has computed that
both agents could do it. This a means to specify a goal in
a more abstract way. We enhanced it by having the planner
returning a SPARQL query corresponding to the possible
objects, allowing to have more expressiveness and genericity
in our system and taking advantage of Ontologenius.

c) Conditional shared plans with HATP/EHDA: Fi-
nally, the last type of shared plans we manipulate is con-
ditional plan, generated by Human Aware Task Planner with
Emulation of Human Decisions and Actions (HATP/EHDA).
It is another mean to postpone decision at execution time
about an agent actor or parameters, with plans where branch
junctions concern human decision. Moreover, it gives a better
insight about the human’s choices and decisions as they are
formalized within the plan. For example, in the StackBuild-
ingTask the human has two choices to make during the task.
First, they can choose where to place their red cube or to
wait for the robot to choose for the placement. The second
choice happens for placing the first blue cube of the stack,

7JAHRVIS could be used to execute plans from other HTN planners than
HATP and HATP/EHDA by adding a Java class to format abstract and
primitive tasks as presented in Section VI-A.2 – HATP and HATP/EHDA
have a dedicated Java class each, for action formatting, but their plans are
handled with the same code in the plan managers.



either the human can place it on the stick or leave it to the
robot. Thus, at planning time, the planner does not know the
choice the human will make, but thanks to the conditional
plan, all possible solutions are considered and it is up to
JAHRVIS to “follow” the proper branch depending on the
human action detected during execution.

1) Robot Plan Management: It is in charge of the plan
updates, maintaining the robot knowledge about the ongoing
goal, and deciding which action should be performed by the
robot and when. Moreover, it handles the monitoring of the
human’s actions through the control of the robot head which
also enables a joint attention between human and robot.

2) Human Plan Management: The Human Plan Manager
(HPM) keeps track of the estimated human mental state about
the ongoing shared plan, endowing the robot with Theory of
Mind. The role of this process is central, as it receives the
data about the recognized human actions, deduces what the
human might or might not know about the plan or action
executed by the robot, and requests the communication to
perform to the Communication Manager (CM).

D. Action Execution Management

Not only the robot needs decision-making, but also it
needs to act. Thus, JAHRVIS has a RJA called the Action
Execution Manager (AEM). The AEM is composed of a
generic part managing the general flow of an action execution
and of a task-specific part, specifying the distinctive charac-
teristic of given actions in a separate AgentSpeak file (see
Section VI-A.1.b). Moreover, all actions of the type physical
are realized based on ROS action clients to communicate
with the Motion Planners and Executors (see Fig. III-B)
which allows a fine management of the execution through
feedbacks and error codes. Finally, at execution time, for a
physical action, the AEM selects which object or place the
robot should look at. Communicate actions are sent to the
Communication Manager for execution.

E. Communication Management

The last RJA is the Communication Manager (CM). It is
not dedicated to complex talks with the human but to enable
the robot to perform and interpret communication during
collaborative tasks. This process is based on a software
for Natural Language Processing (NLP), and closely linked
to a domain-specific planner called Referring Expression
Generator (REG) and presented in [28]. It aims, regarding the
current symbolic state of the world, at finding the minimal
set of relations to communicate and allows, when interpreting
a communication, to identify a given entity. For example, if
the robot wants to talk about a green cube on a table but
another green one is on a close shelf and a red cube is on
the table, how can it do? It queries the REG which answers
with a nominal group, e.g., “the green cube on the table”.

1) What information to communicate? How to communi-
cate it and when?: As mentioned previously, the HPM and
the AEM can query the CM to issue a communication to the
human. We focused on the following communicative acts: to
give information about the ongoing task (e.g., “I cleaned the

table”) and to request the human to perform an action (e.g.,
“Can you clean the table?”).

As communication is important, it is essential to minimize
the risk that it gets lost. Thus, when the CM receives a
communication to perform from another RJA, it ensures that
it perceives the human before issuing the communication, so
it has more chance to get the human’s attention.

Moreover, when the robot needs to inform the human
it executed a given action or to ask them to perform one,
it needs to verbalize it properly. Still in the spirit of a
generic system, the algorithm that we developed is not
task/action specific. Action labels (see Section VI-A.1) and
verb conjugation are stored in Ontologenius which can be
manually fed with new ones when needed. At execution time,
each element (subject, verb and parameters) of the action
label is replaced by the proper value, thanks to queries to
Ontologenius and to the REG to refer to the parameters in
an unambiguous way.

2) How to Understand Communications?: Having the
robot able to enunciate or ask information to the human is
important, but to be able to understand communication from
them is as well. The human should be able to communicate
about the plan such as to ask precision about a given action
or to ask the robot to perform an action. We focused on
the latter. When the CM receives a human sentence such as
“Take the green cube”, it queries the NLP which returns the
action name (e.g., “take”), a SPARQL query corresponding
to the parameter (e.g., a SPARQL matching “green cube”),
and a comprehension score. Then, it requests Ontologenius
for the list of objects corresponding to the SPARQL query.
If the human has properly given their instruction, the object
list size should be 1 and the algorithm is over (e.g., if there
was only one green cube). However, for some reason, they
may have been imprecise or absent minded (e.g., they forgot
that another green cube was on the shelf). In this case, the
robot asks more details to the human using the REG to refer
to the objects in a non-ambiguous way: “Do you mean the
green cube on the table or on the shelf?”. Finally, once the
CM isolated an action and a parameter, it sends them to the
AEM (e.g., take(pr2_robot,green_cube)).

VII. CONCLUSION

We have proposed a generic supervision software dedi-
cated to human-robot collaboration, within a cognitive ar-
chitecture, which manages the robot high-level decisions. It
was used to control the robot in different task contexts: the
StackBuildingTask as presented in this paper, the Director
Task [18], a tabletop scenario [28], [29], and a direction-
giving task [30]. Have we fulfilled the requirements listed in
Section III-A?

How does it adapt to human experience, abilities or
preferences? It was not the element on which we focused the
most, but experience can be taken into account with the REG
by referring to past events fed by JAHRVIS to Ontologenius.

How does it consider interaction outside collaborative
tasks? We designed a frame, called interaction session,
endowing the robot with internal states such a greeting, tasks,



goodbyes. Its management by JAHRVIS is still preliminary
and has been used only in some applications [30].

How does it manage relevant communications? Dialog is
not the focus of this work, but it appeared important to us to
consider communicative strategies that could be pertinent to
accompany collaborative task achievement and contribute to
make it more fluid. We focused on the ability of the robot
to communicate about actions, either actions it executes or
those that the human is invited to perform.

How does it handle contingencies? This is only partially
taken into account since we focused essentially on contin-
gencies induced by human presence and not on execution
failures. This will be more investigated in the future.

How does it recognize the human actions? We showed
that JAHRVIS could successfully recognize human actions
involving object manipulations. This feature is model-based
and although being quite simple, it endows the robot with
the ability to recognize a new action and is quite robust to
unreliable perception.

How does it leave more latitude to the human? Two
methods were integrated to JAHRVIS in order to have the
robot flexible and adaptive: the use of an “AgentX” and
object parameters under the form of SPARQL queries, and
the handling of conditional plans.

How does it take the human partner into account? First,
JAHRVIS relies on an architecture incorporating human-
aware components. Then, when performing a plan with
the human, it monitors them and reacts accordingly to the
human’s actions. Also, JAHRVIS maintains and manages an
estimation of the human’s knowledge about the task progress.

How is it generic? We claim that the joint action and
collaboration principles we tried to implement are valid in
a certain number of collaborative contexts. Indeed, in any
task, it is important to estimate the beliefs of the human
partner (e.g., what they know of the environment or what
they think of the task progress). And, communication is
also key. Thus, the core of JAHRVIS does not depend on
a task. Every element which is task dependent is loaded at
initialization. For the rest, it is task-agnostic, the decision-
making processes are task independent since the algorithms
used are the same for different collaborative tasks.

The next steps will be to demonstrate the system with
more scenarios and to perform a user study to evaluate
how humans feel working with a robot performing with
JAHRVIS. Moreover, each of JAHRVIS features can and
should be refined in future work. The challenge for the
current work was to exhibit an effective implementation of
a fully comprehensive system.
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[24] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak Using Jason. Wiley, 2007.

[25] A. S. Rao, “AgentSpeak(L): BDI agents speak out in a logical
computable language,” in MAAMAW. Springer, 1996.

[26] G. R. Silva, L. B. Becker, and J. F. Hübner, “Embedded architecture
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