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Abstract 
In this paper we present a formal language for specify- 
ing and reasoning about cryptographic protocol require- 
ments. We give examples of simple sets of requirements 
in that language. We look at two versions of a proto- 
col that mi ht meet those requirements and show how 
to specify t tem in the language of the NRL Protocol 
Analyzer. [Mea911 [Mea921 We also show how to map 
one of our sets of formal requirements to the language 
of the NRL Protocol Analyzer and use the Analyzer to 
show that one version of the protocol meets those re- 
quirements. In other words, we use the Analyzer as a 
model checker to assess the validity of the formulae that 
make up the requirements. 

Introduction 
The past few years have seen a proliferation of formal 
techniques for the specification and analysis of crypto- 
graphic protocols. That these techniques can be use- 
ful has been shown by the fact that several (includ- 
ing BAN logic BAN891, the NRL Protocol Analyzer 
Mea911 [Mea92\, and the Stubblebine-Gligor model 
ISG921) have been used to find flaws in open literature 
protocols that were previously believed to have been se- 
cure. Thus the use of formal methods for the analysis of 
cryptographic protocols has begun to attract attention 
as a promising way of guaranteeing their correctness. 
Less attention, however, has been paid to the question 
of what exactly constitutes the correctness of a cryp- 
tographic protocol. Yet, we see that what constitutes 
correctness can vary widely with the application. In a 
key distribution protocol guarantee of secrecy and guar- 
antee against replay attacks and impersonation are of 
the most importance. For a protocol used to guarantee 
the security of banking deposits, secrecy may or may 
not be important, although guarantee against replay 
attacks and impersonation definitely will be. Guaran- 
tee of timeliness may also be important, as well as the 
guarantee that messages are processed in the order that 
they are sent. (For example, a malicious intruder could 
cause somebody to overdraw his account by causing a 
deposit message and a withdrawal message to processed 
out of order.) For a protocol used to distribute rights 
by proxy, not only is it necessary to guarantee against 
impersonation, but also to guarantee the entire pedigree 

of a message. 
Protocols may also differ in the amount of trust that 
is placed in each individual. For example, Burrows, 
Abadi, and Needham, in their logic of authentication, 
make the assumption that the parties trying to authenti- 
cate each other are honest and will follow the rules of the 
protocol.' For other protocols, this may not necessar- 
ily be the case. In the Burns-Mitchell resource sharing 
protocol [BM90], it is assumed that the party attempt- 
ing to obtain the resource may be trying to cheat the 
resource supplier into giving him a resource that he has 
not paid for at the same time he is trying to guarantee 
the the resource supplier is not cheating him. In a vot- 
ing protocol, we make the assumption that individuals 
may try to find out other individuals' votes, that they 
may try to cast their votes more than once, and that 
they may be willing to divulse their votes to a small 
group of individuals if this will help them subvert the 
goals of the protocol. 
Even when we restrict ourselves to the analysis of key 
distribution protocols, it is not always clear what con- 
stitutes the appropriate requirements. For example, in 
[BANSO], Burrows, Abadi, and Needham describe the 
various orders of belief that a protocol can achieve, but 
make no recommendations. For example, a protocol 
may achieve first order belief, in which A believes that 
K is a good key for communication with B, and vice 
versa, but neither has any belief about the beliefs of the 
other, or it may achieve second order belief, in which 
not only does each believe in the key, but each believes 
the other believes in the key, or it may achieve some 
yet higher order of belief. In [SyvSl Syverson discusses 

appropriate. 
Confusion and vagueness about requirements and as- 
sumptions has also contributed to much of the con- 
troversy about the various techniques. For example, 
in [NesSO], Nessett points out an alleged flaw in the 
Burrows-Abadi-Needham logic by using it to prove that 
a protocol in which keys are distributed in an obviously 
unsafe way is secure. The response of Burrows, Abadi, 
and Needham [BANSO] was that in their logic they make 
the assumption that principals do not divulge their keys; 

'Honesty assumptions are relaxed in the version of BAN pre- 
sented in [AT91]. 

the various orders of belief and w E, ere each would be 
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since in this protocol the principals do divulge their 
keys, it does not satisfy the original assumption. But 
one can also argue that the use of an unsafe key distri- 
bution method is not the same as knowingly divulging 
your key. 

The degree to which requirements and assumptions can 
vary, and the controversy that can be caused by a lack 
of precise understanding of what the requirements are, 
suggests that we need to pay more attention to under- 
standin and stating them in a precise way. Once we 
have a cfear and precise statement of what the goals and 
assumptions of a protocol are, we can attempt to prove 
it satisfies these goals with a high degree of confidence 
that we know what we are about. 

In this paper we attempt to make it easier to state 
and reason about requirements in a precise manner by 
providing a requirements specification language for the 
NRL Protocol Analyzer. The NRL Protocol Analyzer 
has the advantage that it is tied to no particular set of 
assumptions about the kind of protocol it is used to ver- 
ify. The specifier of a protocol can use it to prove that 
an insecure state is not reachable, or that an insecure 
sequence of events cannot occur; it is up to the specifier 
to  decide what these states and sequences are. How- 
ever, until now the user of the Analyzer had to specify 
the undesired states and sequences in terms of the pro- 
tocol specification itself. Thus the requirements had to 
be rewritten for each protocol specification, even when 
the aims of the protocols were identical. With the re- 
quirements specification language, it is possible to spec- 
ify a set of requirements for a class of protocols, and 
then map them to a particular instantiation. It is also 
possible to reason about the requirements in isolation 
without concerning ourselves with particular protocol 
instantiations. 

The remainder of this paper is organized as follows. In 
section 1 we present the requirements language and give 
the interpretation of the language in the model of com- 
putation used by the Analyzer. We also give motivat- 
ing examples of requirements of a simple authentication 
protocol. In section 2 we describe the NRL Protocol 
Analyzer and give the specification of the authentica- 
tion protocol in the language used by the Analyzer. We 
then map the requirements specified in section 1 to the 
specification via responses to Analyzer queries. In sec- 
tion 3 we present our conclusions. 

1 The Language 

In this section we set out our formal requirements lan- 
guage. In eneral, our syntax is based on that of tempo- 
ral logic (c!. LGo1921 or [vB91 ) and in particular was mo- 
tivated by t e language of []Lam901 and [AbaSO]; how- 
ever, the intended meaning of the syntax is somewhat 
different than in those works. We be in with a simple 
example of the type of things we woAd like to express 
in our langua e. Then we give the general lingusitic 
constructs a n d  finally the interpretation thereof in the 
model of computation. 

1.1 An Example 
In order to make clearer the abstract constructs we de- 
scribe in this paper we set out some specific protocols as 
examples. We will return to these protocols throughout 
the paper to illustrate the formalisms and techniques 
described herein. The protocols we present are variants 
on an IS0  draft version of a two pass one-sided message 
authentication protocol. [ISO91] That is, using two 
messages this protocol is intended to authenticate to one 
principal, B ,  that a message is current and from prin- 
cipal A. To make it slightly more interesting we have 
modified the original IS0  protocol so that the confiden- 
tiality of the message is protected as well. We present 
two versions of the protocol, one using shared keys and 
one using public keys. The original IS0  protocol uses 
only public keys and does not protect the confidentiality 
of the message. 

Example 1.1 Shared Key Version 

B sends to A: B ,  Nb 
A sends to B:  B ,  No , Nb, {No ,  Nb, MeSSage}K,, 

Here Nb is a nonce, a random number, generated by 
B ,  No is a nonce generated by A, and Koa is a key 
shared between A and B .  The last field of the second 
message indicates that No, Ne and A’s message have 

0 been encrypted together using Koa. 

Example 1.2 Public Key Version 

B sends to A: B,Nb 
A sends to B: B ,  No,  Nb, { { N o ,  Nb, Message}K;l}K, 

Here No and Nb are nonces as before, K;’ is A’s private 
key, and Kb is B’s public key. Thus, the last field of the 
second message indicates that No,  Nb, and A’s message 
have been signed together using A’s private key and 

0 then encrypted using B’s public key. 

1.2 Requirements 
One of the disadvantages of currently available logical 
languages for cryptographic protocol analysis is that for 
the most part each protocol has its own specification. 
Our approach goes some way towards a remedy by al- 
lowing a single set of requirements to  specify a whole 
class of protocols. This has the advantage that a proto- 
col analyst can lar ely identify the goals of any protocol 
in this class with t i a t  one specification, which seems to 
be a fairly intuitive way to view things. For instance 
one might want evaluate a protocol for two party se5 
sion key distribution using ordinary public or shared key 
cryptography. While many of these protocols have spe- 
cial features and requirements, there are a number of 
requirements they all s h a r e f o r  example, that the dis- 
tributed key be known only to the two principals and 
the server if there is one. We can express in our lan- 
guage general requirements for protocols for distributing 
session keys to two parties via a server. This specifica- 
tion should also satisfy protocols with no server, i.e., 
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where one of the participants is the server. It should 
also work for interdomain communications. Although 
there are undoubtedly further requirements to be spec- 
ified for servers from different domains to authenticate 
each other, that process should not affect the require- 
ments for the two end parties in relation to whoever 
produces the key. While this is probably the type of 
protocol of broadest use and interest, for purposes of il- 
lustrating our requirements language and analysis tech- 
nique it is clearer to stick to a simpler example than 
this. 
What are the general security requirements for the type 
of authentication protocol given by our examples above? 
That is, if B were to accept the message from A, what 
need hold to preclude security violations? First of all, 
we need to make the distinction between an honest and 
a dishonest A. If A is dishonest, then we assume that A 
may violate any or all of the rules of the protocol, and 
is in collusion with the hostile intruder who we assume 
is trying to subvert the goals of the protocol. This does 
not mean that we may not put any requirements upon 
interchanges involving a dishonest A, but if we do, the 
requirements may be different than the requirements we 
put upon an honest A. 
Now we consider a set of requirements. First, the pen- 
etrator (denoted in our requirements language by P), 
must not learn the content of the message. Second, A 
must have actually sent the message, and she must have 
done so after B’s ‘query’. We must assume that A is 
honest, since if A is dishonest we assume that the pene- 
trator can learn the message as soon as A creates it and 
that A can send a message at any time. 
In our formal language we express the requirements by 
indicating the temporal order in which these actions 
must occur. We use ‘4’ to represent the standard condi- 
tional, ‘A’ to represent conjunction, and ‘0’ to represent 
a temporal operator meaning at some point in the past. 
We assume that principals can keep track of rounds of 
protocols from their perspective via local round num- 
bers, where a round number local to a principal iden- 
tifies all actions pertaining to a single session as far as 
that principal is concerned. Thus accept(B, A, Mes, N )  
means that B accepts the message Mes as from A during 
B’s local round N, learn(P, Mes) )  means the penetra- 
tor P learns the word Mes, send(A, B,  (Query ,  Mes ) )  
means that A sends B Mes in response to query 
Query, and request(B, A ,  Query, N ) )  means that B 
sends query Query to A. Precise descriptions of the 
meaning of the syntactic expressions will be given later 
in the paper. For now we are simply trying to present 
realistic but also fairly intuitive examples of formulae in 
the language. We can then represent our requirements 
as follows: 

Requirements 1.3 

-.(gaccept(B, A, Mes)  A +learn(P, M e s ) )  

0 acce t (B ,  A, Mes ,  N )  -+ 

+&nd(A, B,  (Query,  Mes ) )  A 
+request(B, A, Query, N ) )  

0 

In order to be secure a protocol must satisfy the con- 
junction of the requirements. They must both hold; 
although, it helps keep things clear if we list them sepa- 
rately. It will also facilitate application of the NRL Pro- 
tocol Analyzer. Note that the request must come from 
B even though the protocols we are looking at provide 
no authentication of the first message. This may seem 
odd since A thus has no way of being sure who sent 
the request. Nonetheless, the request must come from 
B even if A does not know this: B will know whether 
or not the message is in response to his request when 
he decrypts it and checks the nonce. If the message is 
in response to anyone else’s request, the nonce will not 
correspond to the one B used, and B should not accept 
the message as appropriate. 
This also indicates that we have here just one of many 
possible sets of requirements. Perhaps it is not neces 
sary that A sent the message in response to B’s query, 
only after B’s query. For example, B may be requesting 
the value of some sensor, and it may only be important 
that the sensor value be from after B’s request rather 
than a response specifically to it. We can capture this 
with the following simplification of the first set of re- 
quirements. 

Requirements 1.4 

0 l (gaccept(B,  A, Mes)  A glearn(P,  M e s ) )  

accept(B, A, Mes, N )  -+ 

.$(send(A, B,  Mes) A +request(B, A, N ) )  

0 

Alternatively, it might only be important that the mes- 
sage from A be recent. We may require that the message 
be recent by B’s judgement (so that B will not accept 
a message that arrives too late after he requested it), 
or recent by A’s judgement (so that B will not accept a 
message that arrives too late after A sent it), or both. 
We here represent the case in which both are required. 

Requirements 1.5 

0 T(+accept(B, A, Mes)  A glearn(P,  M e s ) )  

accept(B, A, Mes, N )  + 
@(“(A, B,  Mes) A erequest(B, A, N ) )  

0 accept(B, A ,  Mes, N )  4 

+(send(A, B,  Mes) A l(+time-out(B, N ) )  A 
i(+time-out(A, M e s ) )  

U 

Another possibility is that we need to guard against 
replay in the sense that if B accepts a message as 
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from an honest A ,  then it must never have been ac- 
cepted previously by another honest principal. Or, we 
can make the stron er requirement that if B accepts 
a message as from 6, then it never was accepted pre- 
viously, whether or not A was honest or dishonest. 
In this case, since we are dealing with both honest 
and dishonest principals it is helpful to make a nota- 
tional distinction between them. We designate an hon- 
est user A by user(A, honest), a dishonest user A as 
user(A, dishonest , and a user who may be honest or 
dishonest as user)A, Y ) ,  where Y is a variable that may 
take on the value "honestn or "dishonest". The case 
in which we require that if an honest B accepts a mes- 
sage as coming from an honest A ,  then it was never 
accepted previously by any other honest user, would be 
represented as follows: 

Requirements 1.6 

-.eaccept(user(B, honest), user(A, honest), Mes) 

e acce t(user(B, honest), user(A, honest), Mes, N 

V leleam(P, Mes)) 

-, ersend(user(A, honest), user(B, honest), 
A grequest(user(B, honest), user(A, 

e accept(user(B, honest), user(A, honest), Mes) + 
-oaccept(user(C, honest), user(D, Y ) ,  Mes) 

0 

Note that our requirement says that the message must 
not have been previously accepted by any honest user 
as coming from anybody, whether honest or dishonest. 
Note also that it does not matter whether the proto- 
col uses public or shared key cryptography. Nor do we 
specifically require that non- be used. For some of the 
above sets of requirements it may or may not be more 
natural to have protocols using timestamps or sequence 
numbers. These points should provide some indication 
of the generality with which requirements can be stated 
even when being formal. We will return to look at the 
last of these sets of sample requirements below, after we 
have precisely set out the language and its interpreta- 
tion. 

1.3 Syntax 
Our langua e contains a denumerable collection of con- 
stant singufar terms, typically represented by letters 
from the beginning of the alphabet. We also have a 
denumerable collection of variable terms, typically rep- 
resented by letters from the end of the alphabet. We 
also have, for each n 2 1, n-ary function letters tak- 
ing terms of either type as arguments and allowing us 
to build up functional terms in the usual recursive fash- 
ion. (We will always indicate whether a term is constant 
or variable if there is any potential for confusion.) We 
have a denumerable collection of n-ary action symbols 
for each arity n 2 1. These will be written as words in 
typewriter scrypt (e.g., acce t ) .  The first argument of 
an action symbol is reserved &r a term representing the 
agent of the action in question. 

An atomic formula consists of an n-ary action symbol, 
e.g., 'act' followed by an n-tuple of terms. We have the 
usual logical connectives: 1, A, V, +, and ++, and also 
one temporal operator: 0. Complex formulae are built 
up from atomic formulae in the usual recursive fashion. 
Since we have already seen examples of formulae, we 
proceed directly to their interpretation. (Note that this 
is only a formal language, not a logic; hence there are 
no axioms or inference rules.) 
1.4 Interpretations 
The key notion to understand is that of an action. For 
us actions are transitions from one state to another. We 
represent these semantically by ordered pairs of the form 
(8, SI) ,  where 's' represents the state prior to the action 
and 's" represents the state subsequent to the action. 
The precise way this works is given in the definition of 
an interpretation. 

Definition 1.7 A state space is a non-empty set S, and 
each s E S is a state. We represent time digitally us- 
ing the integers. A trace is a sequence U of elements 
of S that is infinite in both directions, for example, 
. . . , Si-1, S i ,  Si+l , .. .. We can thus equate a trace with 
a function from times to states. I f s  is the value of u(t), 
we will generally adopt the notational convenience of 
representing this by 's t ' .  Let a and p be formulae. An 
interpretation is a function I from atomic formulae of 
the language to subsets of S x S, i.e., I (a)  C S x S for 
any atomic formula a. 
A model is an ordered Ctuple, (S, I, U, t )  such that S is 
a state space, I is an interpretation, U is a trace, and 
t is a time. The sotisfaction relation, I=, is a relation 
between models and formulae. It is our way of speci- 
fying which formuale are true: given a formula a and 
a model S I U t ) ,  '(S, I, U, t k a' means that a is 
true at (d, i, c, t ) .  It IS define a as the smallest relation 
between models and formulae satisfying the following: 

Given a class of models IC, we say that a formula a has a 
rc-model or is rc-satisfiable if there exists (S, I ,a , t )  E IC 

such that (S, I, u , t )  a .  We say that a is rc-valid if 
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(S, I, U, t a for all (S, I, U, t) E IC. This is written 
bK a. 4 hen IC is clear from context or when IC is the 
class of all models we drop explicit reference to it in 
these expressions. 0 

1.5 Models of Computation 
We will not be looking at the class of all models for 
purposes of protocol analysis. We now set out the class 
we will be using. We begin by describing some of the 
technical machinery we need. Our description of states 
and actions is motivated primarily by the formalisms 
operated on by the NRL Protocol Analyzer. (Recall 
that our goal is to use the Analyzer as a model checker 
to see if a given protocol meets a set of requirements.) 
The model used by the Protocol Analyzer is an exten- 
sion of the Dolev-Yao model [DY83]. We assume that 
the participants in the protocol are communicating in a 
network under the control of a hostile intruder who may 
also have access to the network as a legitimate user or 
users. The intruder has the ability to read all message 
traffic, destroy and alter messages, and create his own 
messages. Since all messages pass through the intruder’s 
domain, any message that an honest participant sees 
can be assumed to originate from the intruder. Thus a 
protocol rule describes, not how one participant sends 
a message in response to another, but how the intruder 
manipulates the system to produce messages by causing 
principals to receive certain other messages. 
As in Dolev-Yao, the words enerated in the protocol 
obey a set of reduction rules bhat is, rules for reducing 
words to simpler words), so we can think of the proto- 
col as a machine by which the intruder produces words 
in the term-rewriting system. Also, as in Dolev-Yao, 
we make very strong assumptions about the knowledge 
gained when an intruder observes a message. We assume 
that the intruder learns the complete significance of each 
message at the moment that it is observed. Thus, if the 
intruder sees a string of bits that is the result of encrypt- 
ing a message from A to B with a session key belonging 
to A and B, he knows that is what it is, although he 
will not know either the message or the key if he has 
not observed them. 
A specification in the Protocol Analyzer describes how 
one moves from one state to another via honest partici- 
pants sending data, honest participants receiving data, 
honest participants manipulating stored data, and the 
intruder’s manipulation of data sent by the honest par- 
ticipants. Dishonest participants are identified with the 
intruder, and so are not modeled separately. The send- 
ing and receipt of messages by the intruder is not mod- 
eled separately, since it is automatically assumed that 
any message sent is received by the intruder, and any 
message received is sent by the intruder, even if it is 
only passed on by the intruder unchanged. Thus every 
receipt of a message by an honest principal implies the 
sending of a message by the intruder, and every sending 
of a message by an honest principal implies the receipt 
of a message by the intruder. 
Given this, we look at the notion of a state more closely. 
One of the primary components of a state is a learned 

fact. Each honest protocol participant possesses a set 
of learned facts. Each learned fact is relevant to a given 
round of the protocol. A learned fact is described using 
an lfact function, which has four arguments. The first 
identifies the participant A for whom it is a learned 
fact. This will give us the agent of an action. The 
second identifies the round of the protocol via a round 
number that is local to the principal denoted by the 
first ar ument. This will allow each principal to attach 
each refevant action to a particular round of a particular 
protocol. The third indicates the nature of the fact. 
Generally this will indicate the action that the agent 
is taking. The fourth gives the present value of A’s 
counter. In effect, this gives us a local clock value. The 
value of the lfact is either a list of words that make up 
the content of the fact, or if the fact does not have any 
content, it is “[ I ” ,  the empty list. 
One way we represent actions semantically is via 
changes in learned facts; however, we do not allow ar- 
bitrary changes in the value of lfact. A nonempty list 
can be the value of lfact for a given principal, round, 
and action, at the principal’s local time T only if the 
value of lfact for that principal, round, and action, at 
the time immediately prior to T was [ 1. 
Thus, for example, suppose that A has attempted to 
initiate a conversation with B during local round N at 
time T. This can be expressed by the action (8, s‘) where 
the difference between s and s’ is that in s, 

lfact (user( A,honest ) ,N ,init-conv,T) = [ ] 

and in s’, 

lfact (user( A,honest) ,N ,init-conv,T+ 1) = [user( B)] 

At any time prior to T, the value of the lfact would also 

It is also useful to allow certain actions to be ‘forgotten’. 
This is accomplished by having a transition in which the 
value of lfact goes from a nonempty list to [ 1. 
Another component of a state is the intruder’s knowl- 
edge, represented as a monotonically nondecreasing 
function of time. It is necessary to represent this in 
a manner distinct from the learned facts because the 
Analyzer represents the intruder in a different way than 
it represents ordinary principals. There are two kinds of 
actions associated with intruder knowledge that we al- 
low. In the first of these, the intruder learns some word, 
that is, a string of symbols. For instance, suppose that 
A sends a message W to B at time t l ,  and the intruder 
intercepts (and thus learns) W at time t2 .  According to 
what we have set out above, this can be represented by 
(s,s’), where in s, 

be [ I .  

lfact(user(A),N,send-to-BIT) = [ ] 

and in s’, 

lfact(user(A) ,N ,send-to-B,T+ 1) = [W] 
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Then, the intruder learning of this action is given by 
(s',~''), where the only change from s' to  stt is that in 
s'' we have 

intruderknows(t1) = intruderknows(t2) U { [ W ] }  

where intruderknows(t) is the set of words known by 
the intruder at the global time t, and t l  and t2 are 
the global times corresponding to  A's local times T and 
T + 1, respectively. 
The second way the intruder may increase his knowledge 
is by performing some available internal operations on 
things he already knows. In other words, assuming w is 
some n-ary operation of which the intruder is capable, 
if {WI,. . . , Wn} C intruderknows(t), then 

intruderknows t2 = intruderknows(t1) U 
~w(iJ1,. . ., Wn)), 

where tl and t2 are again global times. 

Definition 1.8 The four types of actions just given will 
be called 'basic actions'. A basic model is one in which, 
for any given trace U, one basic action may occur per 
unit time, and these specify the only allowable differ- 
ences between a state and its successor. 0 

While basic models provide us with a simple model of 
computation in which to interpret the expressions of our 
language, they are too simple to be practical in most 
cases, especially as a basis for analysis using the NRL 
Protocol Analyzer. What we would like is a model in 
which state transitions can be complex enough to be 
useful but simple enough to provide assuranc9 that our 
model is a reasonable one. To this end we introduce 
compressed models. 

Definition 1.9 A compressed model is a model M for 
which there exists a basic model M' satisfying the fol- 
lowing: 

0 The state space and interpretation for M and M' 

0 The trace U in M is a subtrace of U', the trace in 

is the same. 

M' 

0 

In particular, this means that for every transition 
(st,st+l) in U, there exists a subsequence of U', 
(<(i), . . . , u'(i + n)), such that st = u'(i) and st+1 = 
U (i + n). Now that we have the essentials of our se- 
mantics worked out, we can look at the satisfaction of 
the requirements that we mentioned above. We focus 
on requirements 1.4 for example. 
Recall the two formulae constituting the requirements: 

-(eaccept(B, A, Mes)  A elearn(P, Mes))  

0 accept(B, A ,  Mes, N )  -+ 
e(send(A, B ,  Mes) A erequest(B, A, N ) )  

We can give a very simple description of the compu- 
tational truth conditions of these requirements. For 

a send or receive action should be immediately clear, 
an accept action is somewhat complex. Thus, while 
we can present a model with such a simple interpreta- 
tion, we need to give a more detailed interpretation of 
an accept action if we are to  get any use out of it. 

It would be hopeless to  give general truth conditions 
for an accept action. Fortunately, at this point we can 
turn to the protocol in question to see what would con- 
stitute a reasonable interpretation of accepting a mes- 
sage. Accepting a message is what occurs when all the 
relevant checks have been verified by the accepting prin- 
cipal. Thus, for the protocol of example 1.2 we would 
have as part of the first state of the accept action that 
the nonce of the second message be verified as the same 
nonce that was sent in the first message. There are other 
things to verify as well, and different protocols gener- 
ally have different sets of checks to verify as conditions 
on an acceptance of a message. Of course the atomic 
actions and their interpretations can be quite different 
when we move to  an entirely distinct class of protocols, 

key distribution protocols. The exact details of this 
wi 1 be set out below when we describe how to specify 
the protocol for the Analyzer. 

Once we have set an interpretation for all of the expres- 
sions used in the statement of requirements and have 
specified the protocol itself, we are in a position to de- 
termine whether or not the protocol meets the require- 
ments. Given a fixed state space S and interpretation 
I, we consider the class K of all models (S, I, U, t) for 
which U is a trace of the protocol specification. To see 
if the protocol meets the requirements we simply see if 
the formulae that constitute the requirements are valid 
in K .  Of course, while the check is very simple in theory, 
it is rather difficult in practice. This is where the NRL 
Protocol Analyzer comes in: it helps us to make the 
determination. That is, to see if the protocol meets the 
requirements we present the Analyzer with the require- 
ments and the interpretation of atomic actions therein. 
We then ask it to determine if the models in K are a sub- 
class of those that make the requirements true. We will 
show how to do this below for the sample protocol and 
sample requirements presented above. The analysis is 
primarily conducted in the language of the Analyzer, 
which for us amounts to a semantic description lan- 
guage. Thus, we present a description of the Analyzer 
and its language before further examining our sample 
protocol with respect to our sample requirements. 
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2 The NRL Protocol Analyzer 
2.1 The Specification Language Used by 

the NRL Protocol Analyzer 
A specification in the NRL Protocol Analyzer consists 
of four sections. The first section consists of transi- 
tion rules governing the actions of honest principals. It 
may also contain rules describing possible system fail- 
ures that are not necessarily the result of actions of the 
intruder, for example, the compromise of a session key. 
The second section describes the operations that are 
available to the honest principals and possibly to the 
intruder, e.g., encryption and decryption. The third 
section describes the atoms that are used as the basic 
building blocks of the words in the protocol. The fourth 
section describes the rewrite rules obeyed by the oper- 
ations. 
A transition rule has three parts. The first part gives 
the conditions that must hold before the rule can fire. 
These conditions describe the words the intruder must 
know (that is, the message that must be received by 
the principal), the values of the lfacts available to the 
principal, and any constraints on the lfacts and words. 
At the moment, the syntax of the constraints on words 
is somewhat restricted; they can only say that words 
must or must not be of a given length or that they 
must or must not be equal to other words. The second 
part describes the conditions that hold after the rule 
fires in terms of words learned by the intruder (that is, 
the message sent by the principal and any new values 
taken on by lfacts. Each time a ru 1‘ e fires, the principal’s 
local time is incremented; this is also recorded in the 
preconditions and postconditions of the rule. The third 
part of the rule consists of an event statement. It is used 
to record the firing of a rule and is useful for indicating 
what the rule does. It is derived from the first two parts 
of the rule. The event statement describes a function 
with four arguments. The first gives the name of the 
relevant principal. The second gives the number of the 
protocol round. The third identifies the event. The 
fourth gives the value of the principal’s counter after 
the rule fire. The value of the event is a list of words 
relevant to the event. 
An example of a rule is the following. Suppose we are 
at the point in the IS0  protocol in which an honest 
principal, user(honest,B), has decided to request a mes- 
sage from another principal, user(A,Y), and sends him 
a nonce. This can be modeled by the following rule: 

If: 
count(user(B,honest)) = [MI, 
lfact(user(B,honest),N,recwho,M) = Cuser(A,Y)l, 
not(user(A,Y) = user(B,honest)), 
then: 
count(user(B,honest)) = Cs(M)l, 
intruderlearns([user(B.honest), 

lf act (user(B, honest) ,N,recsendsnonce ,s (M) ) = 
[rand(user(B,honest) ,H)], 
EVENT : 
event(user(B,honest),N,requestedmessage,s(M)) = 

[user( A, Y) ,rand(user (B ,honest) ,M)] . 

rand(user(B.honest) ,M)l) , 

In this rule the recwho lfact is used to hold the name 
of the user user(B,honest) is trying to talk too, and 
the recsendsnonce lfact holds the random nonce that 
user(B,honest) sends to user(A,Y). The event statement 
going with this rule is denoted by “requestedmessage” 
and holds the words used in this rule: namely, the name 
of user(A,Y) and the nonce. 
The second section of the specification defines the oper- 
ations that can be made by honest principals and by the 
intruder. If an operation can be made by the intruder, 
the Analyzer translates it into a transition rule similar 
to the above, except that the relevant principal is the 
intruder instead of an honest principal, and no lfacts are 
involved. An example of a specification of an operation 
is the following, describing public key encryption: 

fsdl:pke(X,Y):length(X) = 1: 
length(pke (X, Y) ) = length(Y) :pen. 

The term “fsd” stands for “function symbol descrip- 
tion.” The next term gives the operation and the ar- 
guments. The third gives conditions on the arguments. 
In this case, we make the condition that the key be a 
certain length, which in this case we make a default unit 
length one. The next term gives the length of the r e  
sulting word, which in this case is the length of Y. The 
last field is set to “pen” if we are assuming that the 
penetrator can perform the operation, and “nopen” if 
we are assuming that he can’t. Thus the decision to 
put “pen” or “nopen” into the last field may vary with 
our assumptions about the environment in which the 
protocol is operating. 
Some operations are built into the system. These are: 
concatenation, taking the head of a list, taking the tail 
of a list, and id-check, which is used by an honest prin- 
cipal to determine whether or not two words are equal. 
The third section describes the words that make up the 
basic building blocks. We call these words “atoms”. Ex- 
amples would be user names, keys, and random num- 
bers. Again, we indicate whether or not the word is 
known to the intruder in the last field of an atom spec- 
ification, it is “known” if the intruder knows it initally, 
and “notknown” if the intruder doesn’t know it initially. 
The last section describes the rewrite rules by which 
words reduce to simpler words. An example of a rewrite 
rule would be one which describes the fact encryption 
with corresponding public and private keys cancel each 
other out: 

rri: pke(privkey(X),pke(pubkey(X),Y)) => Y. 
rr2: pke(pubkey(X) ,pke(privkey(X) ,Y)) => Y. 

One queries the Analyzer by asking it to find a state that 
consists of a set of words known by the intruder, a set of 
lfacts, and a sequence of events that must have occurred. 
One can put conditions on the words, lfacts and events 
by putting conditions on the words that appear in them. 
One can also put conditions on the results by specifying 
that certain sequences of events must not have occurred. 
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The Analyzer then matches up output of each rule with 
the specified state, if possible, by performing substi- 
tutions on the output that make it reducible, via the 
reduction rules, to the state specified. It may match 
either the entire state or some subset. The input of the 
rule together with any part of the state then becomes a 
new state to be queried. 
The way in which the Analyzer interprets rules allows 
considerable freedom in how the matching is done. Vari- 
ables are local to rules, and, each time a rule is applied, 
a new set of variables is generated. This allows the An- 
alyzer, for example, to develop scenarios involving mul- 
tiple instantations of protocol rounds, as well scenarios 
in which the same principal plays more than one role. 

2.2 An Example Specification 
In this section we give the specification of the modi- 
fied IS0 protocol in example 1.2. The protocol con- 
sists of two messages. In the first message, a principal 
who wishes to receive a message sends a nonce to the 
principal he wishes to receive a message from. In the 
next message the sender sends a message, the receiver's 
nonce, and his own nonce, signed and encrypted. The 
specification is given below. 
In the first two transitions, an honest user, 
user B,honest), sends a request for a message to 
user[A,Yk who may or may not be honest. In the 
first, user B,honest) chooses user(A,Y); in the second, 
he sends t e request. 

/*user(B,honest) chooses sender of message*/ 

rule(%) 
If: 
count (user(B, honent 1) = [MI, 
then: 
count(user(B,honest)) = Cs(M)l, 
lf act (user(B ,honest) ,M,recwho, s (M) ) = 

EVEIT : 
event(user(B,honest) ,M,chosewho,s(M)) = 

/*user(B,honest) sends random number*/ 

rule(2) 
If: 
count(user(B,honest)) = [MI, 
lfact(user(B,honest),I,recwho,M) = 

not(user(A,Y) = user(B,honest)), 
then: 
count(user(B,honest)) = Cs(M)l, 
intruderlearns( Crand(user(B,honest) ,M)]), 
lfact(user(B,honest),IY,recsendsnonce,s(M)) = 

Crand(user(B,honest) ,MI], 
EVEIT : 
event (user (B ,honest) ,I, request edmess 

= [user(A,Y) ,rand(user(B, hones8 ,MI] . 

[user(A,Y)l, 

Cuser(A,Y)l. 

Cuser(A,Y>], 

e, s ( M )  ) 

In the third transition, user(A, honest recieves a re- 
quest for a message from user(B,X), w h o may or may 

not be honest. He sends an encrypted, signed, message 
to user(B,X), including the token that was sent. He 
checks that the len th of the word is 1 (since this unit 
length is the lengt% specified for these random num- 
bers in the later part of the specification) and he also 
checks that user(B,X) is not the same as user(A,honest) 
(since if that were the case the use of this protocol and 
the cancellation properties of public-key cryptography 
would result in an unsigned, unencrypted message be- 
ing sent. He sends an encrypted, signed, message to 
user(B,X), including the token that was sent. 

/*User A sends out signed message with random 

rule(3) 
If: 
count(user(A,honest)) = [MI, 
intruderhous( [user(B,X) ,Wl]), 
len th(U1) = 1, 
not $ user (B , X) = user (A ,  honest ) ) , 
then: 
count(user(A,honest)) = Cs(M)l, 
intruderlearns( [rand(user(A,honest) ,M) , 

number attached*/ 

Ul,user(B,X), 
pke (pubkey (us er (B , X) ) , 
pke(privkey(user(A,honest) 1, 

(rand(user(A,honest) ,HI, 
Ul,user(B,X), 
mess(user(A,honest),M))))l), 

EVEIT : 
event (user (A ,  honest) ,I, sentsignedmess , s (MI = 

[rand( user (A, honest ) , M) ,Vi, user (B , X) , 
mess (user (A, honest) , M) 1 . 

In the next two transitions, user(B,honest) receives the 
message and checks it. If it passes the tests, he accepts 
it as coming from user(A,Y). 

/*User B receives message and verifies it*/ 

rule(4) 
If: 
count(user(B,honest)) = [RI, 
intruderknows( [Tl,Ul,user(B,honeat) ,Mesl), 
lf act (user(B, honest) ,M,recwho ,R) = 

lfact(user(B,honest),M,recsendsnonce,R) = 

then: 
count(user(B,honest)) = Cs(R)I, 
lfact(user(B,honest),M,recmessage,s(R)) = 

Cuser(A,Y)l, 

cull, 

Ct ail (t ail (t ail ( 

Mes)))))], 

pke (pubkey (user (A ,honest ) ) , 

lf act (user(B,honest) ,M, checkaddress ,s(R) ) = 

pke(privkey(user(B,honest)) , 

[id,check(head(tail (tail ( 

Mes)) 1) 1, 

pke(pubkey(user(A,honest)), 
pke(privkey(user(B,honest)), 

user(B,honest))], 
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lfact(user(B,honest),M,checknonce,s(R)) = 
Cid-check(head(tail( 
pke(pubkey(user(A,honest)), 
pke (privkey (user(B ,honest) ) , Hes) ) ) ) , 
W1)I 3 

EVENT : 
event (user(B , honest) ,M,recsignedmess ,s (R) ) = 

CMesl . 
In the above rule, “head” is used to denote the first 
element of a list, and “tail” denotes what is left af- 
ter the first element is removed. Thus, for example, 
head(tail((a,b,c))) = b. 

/*User B accepts message if check succeeds*/ 

rule(5) 
If: 
count(user(B,honest)) = [RI , 
lfact(user(B,honest),Msrac~ho,R) = 

lf act (user (B , honest) ,M,recsendsnonce ,a) = 

lfact(user(B,honest)sM,checkaddresssR) = 

lfact(user(B,honest) ,M,checknonce,R) = [or] , 
lfact(user(B,honest) ,M,recmessage,R) = [Si] , 
then : 
count(user(B,honest)) = Cs(R)l , 
lfact(user(B,honest) ,M,recaho,s(R)) = C I , 
lf act (user (B , honest ) , H , recmes sage , s (R) ) = 

lfact(user(B,honest),M,recsendsnonce,s(R)) = 

lfact(user(B,honest),Msaccept,s(R)) = 

EVENT : 
event(user(B,honest)sMsacceptmess,s(R)) = 

[user(A.Y)l , 

[Nonce] , 
Cokl , 

c 1, 
c 1, 
Cuser(A,Y) ,S11 , 

Cuser(A,Y) ,SI1 . 
The remainder of the specification describes the way 
words are enerated and operations the intruder can 
perform. Tiey are listed below. The functions symbol 
specification describes the function symbol pke desig- 
inating the public key encryption function. The atom 
specification describes the various basic words produced 
by the system such as user names and private and public 
keys. Finally, the reduction rule section describes the 
various reduction rules that operate: in this case, we 
make the assumption that encryption with correspond- 
ing public and private keys cancels out. 

fsdl:pke(X,Y):length(X) = I: 

atoml:user(A,X):l:knoun. 
atom2:mess(user(A,dishonest),N):l:known. 
atom3:mess(user(A,honest),N):l:notknown. 
atom4:privkey(user(A,honest)):l:notknoan. 
atom5:privkey(user(A,dishonest)):l:kno~n. 
atom6:pubkey(user(A,X):l:knovn. 
atom7:rand(user(A,honest),N):l:notknoan. 

length(pke(X ,Y) ) = length(Y) :pen. 

atom8:rand(user(A,dishonest),B):l:knovn. 

rrl: pke(privkey(X),pke(pubkey(X),Y)) => Y. 
rr2: pke(pubkey(X) ,pke(privkey(X) ,Y>) => Y. 

2.3 Mapping the Requirements to the 
Specification 

In this section we describe how the statements in re- 
quirements 1.6 would be mapped to the protocol so that 
they could be verified using the Protocol Analyzer. We 
also show in detail how one of the statements is verified 
using the Analyzer. 
When we present a query to the Analyzer, we have sev- 
eral options. We can ask it to find a set of lfact values, 
a set of words the intruder knows, a sequence of events 
that occurred, or some combination of the above. We 
can also put conditions on the results it finds. We can 
require that words have certains properties, and require 
that certain sequences of events do not occur. 
We use the Analyzer to attempt to prove a state is un- 
reachable. Thus we must translate each requirement 
into a description of an unreachable state. This is done 
in two parts. First, each requirement R is translated 
into an equivalent requirement of the form not(R’). 
Secondly, the actions described in the requirement are 
translated into the corresponding event statement used 
by the Analyzer, transforming RI into a state descrip- 
tion R” that can be presented to the Analyzer. The 
Analyzer is then used to prove R“ unreachable. If this 
can be done, it has been proved that the requirement 
holds. 
We begin by mapping action statements that describe 
actions of honest principals to event statements. Again, 
we note that this mapping depends on the context of the 
protocol. We begin by finding the point at which we de- 
cided that an honest user accepts a message and map- 
ping the accept statement to the corresponding event 
statement. Thus the action statement 

accept(user(B, honest), user(A, honest), Mes) 

maps to the event statement 

event (user B,honest) ,M,acceptmess,Tl) = 
!user( A, honest) ,Mes] . 

Likewise, we find the point at which user(A,honest) 
sent the messa e to user(B,honest). Thus we have 
the action sendfuser(A, honest), user(B, honest), Mes) 
mapped to the event statement 

event(user A honest),M,sentsi nedmess,Ql) = 
[R:W,user( B , honest7 ,Mes] 

and the action request(B, A,  N) to the event statement 

event (user( B, honest) ,N ,requestedmessage,Q2) = 
[user(A,honest),Rl]. 
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Mapping intruder actions to the protocol specification is 
trickier, since intruder actions, which consist of learning 
words, do not map to specific transitions, but instead 
to any transition which can produce a word of the a p  
propriate form. However, we recall that, in querying 
the Analyzer, we can ask it to produce a state in which 
the intruder knows a word or word. This corresponds 
to asking it to  find a state in which the intruder learned 
that word in the past. If all we wish to  prove is that 
the intruder learned that word in the past, and we are 
not concerned about ordering, then this is sufficient. In 
most cases, we are mainly concerned with proving that 
an intruder never learns a word; for example, we want 
to  prove that the intruder never learns a key, not that 
he does not learn it before or after it is used. Thus, in 
most cases, the way in which the Analyzer is queried 
will be sufficient. In cases in which it is not, we sim- 
ply discard the output in which the events occur in the 
wrong order. 
We now show how we would present the various require- 
ments to the Analyzer. The Analyzer is used by specify- 
ing an insecure state and showing that it is unreachable, 
so we use the Analyzer by specifying the negation of the 
requirement and showing that it is unreachable. We be- 
gin with the requirement 
-(gaccept(user(B, honest , user A,  honest), Mes) 

/\ole-(b, Mesh 
This requirement it presented to  the Analyzer by askin 
it to find all cases in which the accept event occurre% 
and the word was learned. 
The second requirement is 

It says that, if the accept event occurred, then some 
sequence of events must have occurred. Thus, in order 
to prove that this requirement is satisfied, we must prove 
that the state in which the accept event occurred and 
the previous events did not occur. Thus, we ask it to 
look for the case in which 

event(user(B,honest),I,acceptmess,M) = 
Cuser(A,honest) ,Me81 

occurred, but the sequence of events 

event(user(B,honest),I,requestedmessage,Hl) = 

event(user(A,honest),P,sentai nedmess,Q) = 
[user (A, honest 1 , R l l  

[R,U,user(B, honest) ,Mesf 

did not occur. 
The third requirement is 

accept(user B ,  honest), user(d, honest), Mes) --f 
-gaccept{user(C, honest), user(D, Y ) ,  Mes) 

It says that, if the accept event occurred, then an accept 
event for the same message did not occur in the past. In 
this case, we ask the Analyzer to  look for the sequence 
of events 

event(user(C,honest),li,recsignedmess,Ml) = 

event (user(B, honest), M,recsignedmess ,MI = 
Cuser(A1,Y) ,Me81 

[user(A,honest) ,Me81 

We now examine the second requirement in detail. The 
proofs of the other two are similar, but more lengthy. 
Before we began presenting the requirements to the An- 
alyzer, we did a syntactic analysis in which we proved 
that a number of trivial states were unreachable. For 
example, we proved that certain words were unobtain- 
able under certain conditions. We also proved that some 
lfacts were reachable only if certain conditions held. The 
results of this syntactic analysis were then fed into the 
Analyzer, which automatically checked for these condi- 
tions every time it produced a solution. If the condi- 
tions were not satisfied it either rejected the solution, 
or, if some more specific case of the solution satisfied 
the conditions, substituted the more specific case for 
the general one. 
We began by asking for a complete description of all 
states in which the accept event occurred but the cor- 
responding send and request events did not occur. A 
transcript follows. User input is preceded by “-:” 

?- begin. 

if any. 
Give the number of the parent solution, 

I :  

What words is the intruder looking for? 
I :  
What state variable values is the intruder 
looking for? 
I :  

List the sequence of events that you want 
to have occurred. 
I : event(user(B,honest) ,I,acceptmess,M) = 

[user(A, honest) ,Mesl 
I :  
What conditions do you want to put 
on all of these? 
I :  

List the sequences of events that you 
don’t want to have occurred. 

Enter a list 
I : event(user(B,honest) ,I, 

Cuser?A,honest) , R f  

[RI ,Wi,user(B,honest) ,Me81 

re uestedmessa e,Mi) = 

I :  event(user(A,honest),P,sentsignedmess,q) = 

I :  
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Enter a list 
I :  

user(~425l,honest),~4264)))~. 
The lists of events to avoid are 

HI = event(user(-425l,honest), C-42531 , 
Cuser(-4262,honest) ,-4763!. 

H2 = event(user(-4262,honest) , C-47761, 
~-4778,-4780,user(-42Sl,honest), 

requestedmessa e,,4751) = 

sentsignedmess,-4771) = 

-42643. 

Input words a r e :  

U1 = -4326 
U2 = rand(user(-425l,honest) ,-4314) 
U3 = user(-425i,honest) 
U4 = pke(pubkey(user(-425l,honest)), 

pke(privkey(user(-4262,honest)), 

One solution is produced: 

Solution number 1 

The events that occurred a r e  
RI = event(user(~l0416,honest) , c-104183, 

acceptmess,s(,iO421)) = 
~user(-i0425,honest) ,,10427]. 

H1 = event(user(~10416,honest) , C-104181, 
requestedmessage,-l0654) = 

[user(-l0425,honest) ,-106661. 
E2 = event(user(-l0425,honest) , C-106793 , 

sentsignedmess,-l0674) = 
C~10681,,10683,user(~10416,honest), 

The lists of events to avoid are 

-104273. 

Input state variables are: 

SI = 
s2 = 

s3 = 

s4 = 

s5 = 

S6 = 

count(user(~l0416,honest)) = -10421. 
lfact(user(~l0416,honest). C-10418l , 

recwho,-l0421) = 

lfact(user(~l04i6,honest) , [-I04181 , 
[user(-l0425,honest)]. 

recsendsnonce,~l0421) = 
~rand(user(~l0416 ,honest) ,-10476)1. 

lfact(user(~l0416,honest), ~ ~ 1 0 4 1 8 ~ ,  
checkaddress,~10421) = Cokl . 

lfact(user(~l0416,honest) , [,10418], 
checknonce , -10421) = Cokl . 

lfact(user(~l0416,honest), [,I04181 , 
recmessage,,10421) = [-104273. 

Rule number 5 was used. 

We try to find out if this state is reachable by asking the 
Analyzer how to find the state in which the the lfacts 
S2, S4, S5, and S6 hold. The Analyzer attempts to 
match every subset of these lfacts. It turns up only one 
solution, the following, matching S4, S 5 ,  and S6. S2 is 
thus required to be part of the intput state. 

Solution number 1.1 
The events that will occur a r e :  

FI = event(user(-4251 ,honest), C-42533 , 
[user (-4262 , honest 1 , -42641 . 

R I  = event(user(-425IDhonest) , 1-42631, 

pke(pubkey(user(~4251Dhonest)), 

acceptmess,s(s(-4258))) = 

The events that occurred are 

recsignedmess,s(-4258)) = 

pke(privkey(user(_4262,honest)), 
(-4307 , 
rand(user(~425l,honest),~4314), 

[user(-4262,honest), 

(-4307 
rand(user (-4251 , honest ) , -43 14) , 
user(-425l,honest),,4264))) 

Input state variables a r e :  

Si = count(user(-425l,honest)) = -4258. 
S2 = lfact(user(,42Sl,honest), C-42531, 

recaho , -4258) = 
[user( -4262 , honest)] . 

[rand(user(-4251 ,honest) ,-4314)1. 

S3 = lfact(user(-4251 ,honest), C-42531 , 
recsendsnonce,-4258) = 

States found are:  
Dl = lfact(user(~425l,honest) , C-42531, 

recmessage,s(-4258)) = 

checkaddress , s (-4258) ) = Cokl . 
checknonce, s (-4258) ) = Cokl . 

[-42641. 
D2 = lfact(user(-425l,honest), C-42531, 

D3 = lf act (user (-4251 , honest) , C-42533 , 

We now ask the Analyzer how to find the state in which 
the intruder knows W4 and lfacts S2 and S3 hold. In 
this case we get two results, each matching W4 and 
requiring S2 and S3 to be part of the input state. Note 
that the second solution requires the intruder’s use of 
the public-key encryption function. 

Solution number 1.1.1 
The events that will occur are: 

Fl = event(user(~l0036,honest), C-100383 , 
recsignedmess,s(-i0043)) = 

Cuser(~l0047,honest), 
pke(pubkey(user(~10036,honest)), 
pke(privkey(user(~10047,honest)), 
(rand(user (-10047 , honest , -10053) , 
rand(user(~10036,honest),~10109), 
user(-l0036 , honest 1, 

mess (user (-10047 , honest) ,-10053) ) ) )I . 
F2 = event(user(~l0036,honest) , C-100383 , 

acceptmess,s(s(-l0043))) = 
Cuser(-l0047,honest), 
mess(user(~10047,honest),~10053)1. 
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The events that occurred are 
Rl = event(user(,l0047,honest), [,10138], 

sentsignedmess,s(,lOOS3)) = 
Crand(uner(,10047,hone8t) ,-10063), 
rand(uner (-10036, honest ) , ,10109 ) , 
user(,10036 ,honent 1, 
m e n s ( u s e r ( , i ~ ~ ~ ~ , h o n . e t )  ,,10063)] . 

Hi = event(user(,l0036,honest), C-100383, 

The lints of event8 to avoid are 

requestedmessage,,l0452) = 
[us er (- 10047, honest , - 104643 . 

Input words a r e :  

U1 = user(-l0036,honest) 
U2 = rand(user(-l0036,honest) ,-10109) 

Input state variables are:  

Si = count(user(,l0047,honest)) = -10053. 
S2 = lfact(user(,l0036,honest), [,100381, 

recwho,,l0043) = 

S3 = lf act (user(,l0036, honest), C-100383 , 
[user (- 10047, honest 11 . 

[rand(user(,l0036 ,honest) ,,10109)1. 
recnendsnonce,-l0043) = 

Words found are: 
El = pke (pubkey (user (, 10036, honest ) ) , 

pke(privkey(user(,10047, honest) ) , 
(rand(user(-l0047,honest) ,,10053), 
rand(user(,l0036,honest),,lOlO9), 
user(,l0036,honest), 
mess(urer(,l0047,honest) ,,10053)))) 

Rule number 3 was used. 

Solution number 1.1.2 
The events that will occur are :  

Fl = event(user(,9440,honest), [-94423, 
recsignedmess,s(,9447)) = 

[user(,946l,honest), 
pke(pubkey(user(,9440,honest)), 
pke(privbey(ulrer(,9451 .honerrt)), 

rand(user(,9440, honest) ,,9501), 
user(,9440,honest),,9453)))]. 

(-9494, 

F2 = event (user( -9440, honest), C-94423 , 
[user(,94Sl ,honest) ,,94531. 

RI = event(pen,C,952l],pke,s(_9521)) = 
Cpubkey(user(,9440,honest)), 

acceptmess,s(s(,9447))) = 

The events that occurred are 

pke(privkey(user(-9461 ,honest)), 

rand(user (-9440, honest ) , ,950 1 ) , 
user(,944O,honest),,9453))1. 

(-9494, 

The lists of events to avoid are 

Hi = event(user(,9440,honest), C-94423, 

[user(,946l,honest) ,,97851. 
H2 = event(user(,9451 ,honest), C-97981, 

requestedmessage , ,9773) = 

Input words a r e  : 

U1 = pubkey(user(-9440,honest)) 
U2 = pke(privkey(user(,94Sl,honest)), 

(-9494, 
rand(user (-9440, honest) , -9501), 
user(,9440,honest),,9453)) 

Input state variables are:  

Si = count(pen) = -9521. 
S2 = If act (user (-9440, honest) , C-94421, 

recwho, ,9447) = 

recsendsnonce,,9447) = 

[user(,94Sl ,honest)] . 
S3 = lfact(user(-9440,honest), C-94421, 

[rand(user(_9440,honest) ,-9SOl)l . 
Words found are: 
El = pke(pubkey(user(,9440,honest)), 

pke(privkey(user(-945l,honest)), 

rand(user (-9440 ,honest), -9601 ) , 
user(_9440,honest),_9453))) 

(-9494, 

Rule number 301 was used. 

Notice that, in Solution 1.1.1, the second event in our 
series of undesirable events has occurred. When we ask 
the Analyzer how to find lfacts S2 and S3 in Solution 
1.1.1, it finds that the only way that this can occur 
is if the request event occurs. This is the third and 
last undesirable event in the series, and so it rejects the 
solution and declares the state unreachable. 
In Solution 1.1.2, the Analyzer used the fact that the 
word W4 was of the form 

pke(pubkey(user(_9440 ,honest)) , 
pke(privkey(user(,9461 ,honest)) , 

rand(user( ,9440, honest), ,9501) , 
user(,9440,honest) ,,9453))) 

(-9494 , 

to prove that the word was obtainable if 

U1 = pubkey(user(,9440,honest)) 

and 

U2 = pke(privkey(user(-9451 ,honest)), 
rand(user(,9440,honest) (-9494, ,,9501), 

user(,9440,honest) ,,9453)) 

can be found by the intruder. All public keys are as- 
sumed to be generally known. Thus we attempt to de- 
termine whether or not the intruder can find W2. The 
Analyzer finds several solutions, but in our previous syn- 
tactic analysis we proved them unreachable. Thus the 
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Analyzer judges the word W2 to be unobtainable by the 
intruder, and says that the state is unreachable. 
We have now followed all paths to the end and proved 
that each one begins in an unreachable state. Thus we 
have proved the original state we specified unreachable, 
and hence that the requirement is satisfied. 

3 Conclusions 
In this paper we have presented a formal language for 
specifying and reasoning about cryptographic protocol 
requirements. We have given examples of simple sets of 
requirements in that language. We have looked at two 
versions of a protocol that might meet those require- 
ments and shown how to  specify them in the lan uage 
of the NRL Protocol Analyzer. We have also s%own 
how to map one of our sets of formal requirements to 
the language of the NRL Protocol Analyzer and used 
the Analyzer to show that one version of the protocol 
meets those requirements. 
We regard the applications in this paper as very elemen- 
tary and primarily for illustrative purposes. We have 
begun work on more substantive and more commonly 
applicable requirements. In particular we have specified 
requirements for various types of two party key distribu- 
tion protocols, including general requirements covering 
public or shared key protocols and requirements for pro- 
tocols using Diffie-Hellman type key exchange. Interest- 
ingly, the reason we cannot cover all of the above with 
a general complete set of requirements is only because 
the session key is not produced from a single source in 
Diffie-Hellman schemes. We have also be un to specify 
requirements for resource sharing of the aind found in 
[BM90]. We expect to find still more applications for 
our language and technique in the future. 
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