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Abstract—YoMoApp (YouTube Monitoring App) is an An-
droid app to monitor mobile YouTube video streaming on both
application- and network-layer. Additionally, it allows to collect
subjective Quality of Experience (QoE) feedback of end users.
During the development of the app, the stable versions of
YoMoApp were already available in the Google Play Store, and
the app was downloaded, installed, and used on many devices
to monitor streaming sessions. As the app was not advertised
in special campaigns or used for dedicated QoE studies, the
monitored streaming sessions of this period compose the data
set of a large unsupervised field study. The collected data set is
evaluated to characterize current mobile YouTube streaming on
both application and network layers. Furthermore, the problems
and methodology to obtain QoE results from such unsupervised
field study are discussed together with the actual QoE results.
Correlations between QoE factors are investigated, and the QoE
of clusters of similar streaming sessions is analyzed.

I. INTRODUCTION

With mobile video streaming being one of the most popular
and most demanding Internet services, it poses huge challenges
to mobile network operators. They strive to deliver the video
data efficiently within the constrained cellular networks, but
have to achieve a high Quality of Experience (QoE) to satisfy
their customers. Thus, it is of paramount importance to mobile
network operators to understand the demands of mobile video
streaming and the perceived streaming quality of end users.

Nowadays, almost all mobile video streaming services
utilize HTTP adaptive video streaming (HAS) technology to
align the video demands to the network conditions. This
means, the client-side adaptation logic can change the video
bit rate to reflect the fluctuating throughput in the network.
The ultimate goal is to avoid stalling, i.e., a playback buffer
underrun due to insufficiently downloaded data, which is the
worst QoE degradation of video streaming. To avoid stalling,
the bit rate of the video is reduced, which was shown to have
a smaller negative impact on the QoE [1]. For example, the
popular streaming portal YouTube switches the resolution of
videos when the network conditions change.

This paper presents YoMoApp (YouTube Monitoring App),
an Android application to monitor mobile YouTube streaming
on application and network layers. The app gives insights into
the streaming process and can also be used to obtain subjective

QoE ratings from end users. Thus, the app is a valuable tool
for studying the QoE of HAS in detail. The app was published
in the Google Play Store and more than 1250 sessions have
been monitored since July 2014 until November 2016. As
the app was not advertised in special campaigns or used
for dedicated QoE studies, the monitored streaming sessions
compose the data set of a large unsupervised field study. In
this paper, YoMoApp will be presented and the unsupervised
field study will be described. Furthermore, the collected data
set is evaluated in terms of application- and network-layer
characteristics of mobile YouTube streaming. The problems
and methodology to obtain QoE results from such data will be
discussed together with the actual QoE results, and the lessons
learned from the study will be summarized.

This paper is structured as follows. Section II will out-
line related work on QoE of HAS and QoE monitoring. In
Section III, YoMoApp is presented and the unsupervised field
study is characterized. Afterwards, Section IV describes the
evaluation of the data set and presents the gained insights.
Finally, the paper is concluded in Section V.

II. RELATED WORK

QoE assessment of HTTP video streaming is a well known
and widely researched problem. [2]-[4] showed that initial
delay and stalling events are the key factors influencing the
QoE of video streaming. While most users were indiffer-
ent to moderate initial delays, already little stalling severely
decreased the QoE. With the growing commercial usage of
HTTP adaptive video streaming, stalling can be traded off for
quality adaptation. [5] revealed that, in a mobile environment
with fluctuating bandwidth, stalling could be reduced up to
80%, and the available bandwidth could be better utilized.
Nevertheless, [6] found that quality switches also impact the
QoE depending on the switching direction, i.e., the increase
or decrease of the video quality. [7] showed that the number
of quality switches can be neglected, while the time on each
quality layer has to be considered as a QoE factor [8]. [9]
found that, in mobile devices with small screens, the impact
of resolution switches on the QOoE is rather low. A survey on
the QoE of adaptive video streaming was conducted in [1].

Apart from application layer QoE factors, also several
papers focused on estimating the QoE from network layer
measurements. In [10], authors introduced QoE Doctor, a
tool to measure and analyze mobile app QoE, based on
active measurements at the network and the application layers.



[11] gathered passive in-network measurements and applied
machine learning methods to find correlations between QoS
and QoE of mobile video applications. The authors of [12]
used a decision tree based on network statistics and flow
records to predict the termination of the video session by the
user. [13] gathered stalling information, average video quality,
and quality variations by applying random forests that take
network features, such as round-trip time and packet loss, into
account. The authors of [14] used different machine learning
methods to classify the QoE from network parameters.

III. STUDY DESCRIPTION
A. YoMoApp

YoMoApp (YouTube Monitoring App) is based on an
Android WebView browser element, in which the mobile
YouTube website is loaded. The video playback on the mobile
YouTube website is integrated via an HTMLS video element
and uses DASH technology. With the Android app, JavaScript
functions are injected to the website, similar to the browser
plugin of YoMo [15]. These functions detect the video element
in the DOM tree and perform the monitoring of the playback.
Therefore, event listeners are added to the HTMLS5 video
element to monitor all changes of the player state, and the
height and width of the video element, which correspond to
the video resolution. Periodically every second, the current
playback time and buffered playtime are polled. Additionally,
the YouTube ID, video title, video duration, and statistics
about precedent advertisement clips are collected. The data
is sent to the Android app for postprocessing and logging.
Due to inconsistencies and errors, such as missing or incorrect
values, which may arise from the usage of JavaScript, the
postprocessing is required to ensure a high consistency of the
resulting streaming logs.

The previous version of YoMoApp [16] has been improved
to also monitor network and context parameters in the native
Android part of YoMoApp. The network usage, i.e., the total
amount of uploaded and downloaded data, is logged periodi-
cally for both mobile and WiFi networks. The app also logs
changes of operator, cell ID, signal strength, RAT, and GPS
position. Moreover, it retrieves several device characteristics
and monitors their changes. These include screen size, screen
orientation, player size, player mode (normal/full screen), and
volume. The monitored data are stored in separate log files
for each video session. If the video has ended or was aborted
after a minimum session length of 20s, the user is asked a
single question to rate the QoE of the streaming session on a
continuous MOS scale ranging from 1 (bad) to 5 (excellent).
However, the user is not required to submit a rating, but he can
also close the rating dialogue. All log files are locally cached
on the device and they are transmitted to an external database
when the app is closed, at fixed time intervals, or if triggered
manually by the user.

To encourage the usage of the app, several aggregate statis-
tics about each streaming session as well as a visualization
are available to the user. Moreover, a map view including all
subjective ratings is included. The overlay heat map shows how
each network operator performs in terms of subjective QoE
ratings, and can therefore be used to benchmark operators.
Finally, for researchers using YoMoApp, the log files of the
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Fig. 1. Tllustration of some of the monitored parameters for two exemplary
video streaming sessions on application and network layer.

streaming sessions can be accessed on the YoMoApp web por-
tal' for further evaluations. Thus, YoMoApp is a valuable tool
to accurately monitor application and network layer streaming
parameters and subjective QoE ratings, and use the monitored
data to study the QoE of HAS.

Figure 1 shows an illustration of the streaming behavior
on application layer and network layer for two sessions.
In Figure la, the buffered playtime (black) and the current
playtime (orange) of Session 1 are depicted. It can be seen
that a video of around 30s length is watched. The video is
played back in 240p and the playback suffers from multiple
stalling events, which occur when the buffer runs empty, i.e.,
the buffered playtime equals the current playtime. Figure 1b
shows the corresponding average download throughput (black,
left axis) and the cumulative download volume (orange, right
axis). It can be seen that data are almost constantly down-
loaded. The detected RAT is EDGE, which is responsible for
the session’s low average throughput of 0.1 Mbps, which is
indicated by the dashed line. Figure 1c shows that, in Session
2, a video is watched for 175s in 360p before the playback is
aborted. The buffered playtime and also the resulting buffer
steadily increase, such that no stalling occurs. At the time
of abortion the buffer contains 265 s of additional playtime.
The corresponding network log is visualized in Figure 1d.
LTE was the used RAT, which resulted in a high average
throughput of 1.0 Mbps. Thereby, segments are downloaded
with a high throughput of up to 13.5Mbps, and the requesting
of new segments is periodically paused for several seconds.
This download behavior results in the stepwise increase of the
cumulative download volume in this figure, and also of the
buffered playtime in Figure Ic.

B. Field Study

The field study of the YoMoApp application resulted in
1266 streaming sessions generated by 196 different users
in the period from July 16, 2014 to November 1, 2016.
The participants were distributed all over the world with the

Thttp://yomoapp.de/dashboard



top 5 countries Germany: 28 %, US: 12.5 %, India: 10.9 %,
Pakistan: 2.7 %, and Vietnam: 2.2 %. All participants used
their own smartphone or tablet, and WiFi or cellular ISPs to
stream videos using YoMoApp. Exactly 5 participants used
a tablet. All other participants had a smartphone. 51 % of
participants used Android 6.0, followed by Android 5.1 with
14 %. According to statistics of the Google Play Store, users
were 39 % German-speaking and 37 % English-speaking. In
terms of the display size, the participants used very different
devices. 28 % of users had a resolution of 1920x1080 pixels
at 480 or 560 dpi, followed by 13 % with a significantly lower
resolution of 976x600 pixels at only 160 dpi.

Before the evaluation, the log files were filtered and pre-
processed. Invalid logs were removed and logs without video
statistics were sorted out. After the filtering, 674 sessions
could be used for evaluation purposes in the results section.
Compared to the study performed in [17], which also examined
YoMoApp data, current evaluations also analyze network layer
statistics and subjective ratings. The most important difference
to the aforementioned paper is that the number of users and the
analyzed sessions available for the evaluation have increased
significantly. Figure 2a shows the average speed within a video
session in km/h, which was obtained from the GPS locations.
On average users moved forward at a speed of 6 km/h, with
about 48 % of users not moving at all, i.e. the speed was
slower than 1km/h during the video session. About 14 % of
the users were walking with a speed of less than 2.5 km/h.
Furthermore, slow traffic is considered as 2.5 km/h to 20 km/h,
and fast traffic, i.e., probably on a train or even driving, as more
than 20km/h. 33 % of the sessions can be counted as slow
traffic. Around 5% of users drove faster than 20 km/h. The
maximum detected speed was at 135.7 km/h. As depicted in
Figure 2b, 35 % of the users used LTE, 47 % were connected
with WCDMA (e.g., UMTS or HSDPA), and the rest used
GSM or EDGE. The analysis of the field study participants,
device characteristics, mobility, and network access shows that
the collected data set covers a huge range of different streaming
sessions. In the following, the technical characteristics of the
sessions and the perceived quality are investigated.

IV. RESULTS

Figure 3 depicts temporal statistics of the QoE factors for
all 674 evaluated mobile YouTube streaming sessions. The
CDFs for initial delay (brown), total stalling time (yellow), and
playback time (black) are shown in Figure 3a. The mean of
the played back time of a single video is 78.6s. The playback
times ranged from around 5 s up to around 480 s. About 46% of
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Fig. 2. Information about the speed and access technology of the users.

the videos have a playback time greater than 30 s. Thus, future
QoE assessments should especially consider longer video clips
also for mobile devices. The average length of the initial delay
is 2.6 s, with a maximum of 11.9s. About 70% of the streaming
sessions show an initial delay less than 3s, suggesting that
initial waiting times for mobile YouTube have a negligible
QoE impact [4]. This notion is also supported by the total
stalling time, which does not include the stalling during the
initial delay. The average total stalling time is 0.93s and
the maximum total stalling time 12.68s. Around 65% of the
sessions have a smooth playback without stalling. The CDF of
the number of stalling events is depicted in black in Figure 3b.
The maximum number of monitored stalling events is 9, while
the average number of stalling events is 0.58. This confirms
the findings of [5] that adaptive video streaming is mostly able
to avoid stalling in mobile sessions.

The CDFs of the number of quality changes is shown in
Figure 3b in brown. In the context of YouTube, the switching
between two different quality layers is implemented as switch-
ing between two different video resolutions. Although stalling
was avoided in most mobile video sessions, also nearly 87% of
the streaming sessions showed no quality changes, hinting at
a rather conservative adaptation logic on the part of YouTube.
This means, YouTube cautiously chooses an appropriate start
quality for the current estimation of the network conditions,
such that quality switches and stalling can be avoided to the
greatest extend. However, this might result in the selection
of a lower video quality than supported by the network and
underutilized bandwidth. In Figure 3c, distribution of the
playout time of the different video qualities (time on layer)
is illustrated. Additionally, the distributions of the quality
played out at the start and the end of a streaming session
are shown. As depicted in the legend, all qualities were used.
For some videos the video resolutions could not be determined
by YoMoApp (unknown). The dominating resolution for the
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time on layer is with over 60% 360p, followed by 240p and
144p. Further, HD content (720p or 1080p) is only streamed
in ca. 8% of the sessions. Again the start qualities support
the conservative behavior of YouTube as mainly 240p and
360p is streamed from the start. The end quality distribution
approximately resembles the distribution of the time on layer,
and argues for an improvement from the low start qualities if
the network conditions permit.

A. Correlations Between Monitored Parameters

Table I investigates the correlation between the monitored
parameters. The cells of the table show the Spearman rank
order correlation coefficient between the two parameters in the
respective row and column. Parameter A-G cover application
layer parameters, namely, initial delay (A), stalling ratio (B),
which is the total stalling time divided by the total playback
time, number of stalling events (C), number of quality changes
(D), start quality (E), end quality (F), and weighted time on
layer (G), which is the time-weighted mean of all played
out quality levels. Moreover, the network parameters average
throughput (H), maximum throughput (I), and flow volume (J)
are considered. Finally, the perceived quality is measured in
terms of user engagement (K), which is the ratio of watched
playtime and video duration, and the actual video quality
subjective rating given by the user (L). As the participation in
YoMoApp is voluntary, the collected ratings were not filtered
a priori, but will be analyzed in the following sections.

It can be seen that only few parameters show non-negligible
correlations. These high correlations can be observed in natural
clusters, e.g., stalling ratio (B) has a very high correlation of
0.93 to number of stalling events (C). Similarly, the quality
layer parameters have high or even very high correlations (E,
F, G). The last cluster of very high correlation larger than
0.91 can be found for the network parameters (H, I, J). The
correlations of other parameter combinations are little if any.
Interestingly, not a single parameter has a correlation of 0.30
or higher to the subjective quality ratings of the users (L).
Only the directions of correlation to the user ratings are as
expected, such as negative correlations of initial delay (A) and
stalling (B, C), and positive correlations of video quality layers
(E, E G). Also for user engagement (K), which is widely
considered as a QoE metric, only low correlations can be
observed. In contrast to subjective ratings, some correlations
with respect to user engagement are even unintuitive, e.g., the
small positive correlations of stalling parameters (B, C). The
very low correlation of 0.01 between user engagement and

subjective ratings suggests that both QoE metrics should be
considered uncorrelated. This indicates that user engagement
rather measures the interest or motivation of the users to watch
a certain content, while the subjective rating is the only QoE
indicator in this unsupervised field study.

B. Clustering Streaming Sessions

To analyze the perceived quality, in a first step, similar
streaming sessions have to be identified. Therefore, the ses-
sions will be characterized by common attributes, i.e., a feature
vector. Each feature vector consists of several perceivable
application layer metrics for a single session, namely, number
of stalling events, stalling ratio, and weighted time on layer.
The number of quality changes is not included in the vector,
because quality changes occurred very seldom, and therefore,
have no influence on the results. Instead, user engagement was
added to the feature vector as it could indicate the motivation
and interest of the users with the video content. Each metric
was normalized to the unit interval.

These 674 feature vectors were clustered with the well
known DBSCAN algorithm [18], with neighborhood distance
€ = 0.1 and minimum number of cluster points 15. All in all,
nine clusters emerged from this process. As the set of outliers
contained a huge number of sessions (216), it was again
clustered with neighborhood distance ¢ = 0.3 and minimum
number of cluster points 15. As a result, two additional clusters
and a smaller set of outliers showed up. Altogether, ten clusters
were generated, which are listed in Table II. Each row shows
the generated cluster with the corresponding metrics. Note
the split between clusters 1-8 and 9-11, as it represents the
two steps of the clustering process. Cluster 11 represents the
remaining set of outliers.

C. Subjectively Perceived Quality and User Engagement

In this section, the aforementioned session clusters are
analyzed with respect to the subjectively perceived quality in
terms of mean opinion score (MOS) and user engagement.
Note that the MOS was only analyzed for clusters with 10
or more ratings. Cluster 1 contains the sessions with HD
content (1080p), no stalling events, and a very short mean
user engagement (4.60%). Of the 18 clustered sessions, 10
sessions were rated, which resulted in an average MOS of
3.85. The average MOS seems contradictory compared to the
video quality and the stalling ratio. However, the mean user
engagement indicates that the users had no intent to actually
watch the video, which might have negatively influenced the

TABLE 1. CORRELATIONS BETWEEN MONITORED PARAMETERS, A=INITIAL DELAY, B=STALLING RATIO, C=NUM. OF STALLING EVENTS, D=NUM.
OF QUALITY CHANGES, E=START QUALITY, F=END QUALITY, G=WEIGHTED TIME ON LAYER, H=AVG. THROUGHPUT, I=MAX. THROUGHPUT, J=FLOW
VOLUME, K=USER ENGAGEMENT, L=SUBJECTIVE QUALITY RATING

[ Parameter | A ] B ] C ] D | E ] F ] G ] H ] T ] T K ] L |

A 1.00 0.01 0.02 0.17 -0.11 -0.10 -0.11 0.00 0.03 0.06 -0.14 -0.17

B 0.01 1.00 0.93 0.09 -0.08 -0.10 -0.11 0.20 0.19 0.21 0.22 -0.10

C 0.02 0.93 1.00 0.10 -0.15 -0.17 -0.18 0.17 0.18 0.21 0.28 -0.15

D 0.17 0.09 0.10 1.00 -0.10 0.19 0.12 -0.27 -0.25 -0.23 0.11 -0.21

E -0.11 -0.08 -0.15 -0.10 1.00 0.72 0.73 -0.06 -0.07 -0.09 -0.04 0.29

F -0.10 -0.10 -0.17 0.19 0.72 1.00 0.93 -0.20 -0.19 -0.21 -0.08 0.16

G 0.11 -0.11 -0.18 0.12 0.73 0.93 1.00 -0.19 -0.20 -0.21 -0.10 0.18

H 0.00 0.20 0.17 -0.27 -0.06 -0.20 -0.19 1.00 0.92 0.91 0.08 0.06

I 0.03 0.19 0.18 -0.25 -0.07 -0.19 -0.20 0.92 1.00 0.95 0.19 -0.15

J 0.06 0.21 0.21 -0.23 -0.09 -0.21 -0.21 0.91 0.95 1.00 0.27 -0.18
K [ 014 022 028 0l [ 004] 008] 010 008 [ 019 027 [ 100 [ 001
L [ 01| 010] 015 021 02 | 016 018 [ 006 | 015 | -0a8 | 00l [ 100 |




TABLE II.

CLUSTERING RECORDED FOR THE FEATURE VECTORS

[ Cluster | Sessions | Sessions with MOS [ Stalling Events [ Mean Stalling Ratio | Quality [ Mean User Engagement | Mean Opinion Score |
1 18 10 0 0% 1080p 4.60% 3.85
2 84 38 0 0% 360p 97.23% 444
3 234 71 0 0% 360p 11.77% 418
7 38 2 0 0% 240p 530% N/A
5 43 0 0 0% 108-180p 6.83% N/A
6 18 11 1 0.5% 360p 98.77% 422
7 21 11 1 29.4% 360p 7.96% 447
8 20 6 2 22% 360p 5.50% N/A
9 21 13 0.24 0.07% 108p-240p 96.76% 3.89
10 36 2 1 2.9% 240p-360p 1421% 436
11 159 88 19 445% 108p-1080p 49.34% 377
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Clusters 4 and 5 are very similar in that there is no stalling,
a poor video quality, and a low mean user engagement. The
only difference is that the played out resolutions in Cluster 5
(108p - 180p) are even worse than in Cluster 4 (240p). The low
user engagement and the missing quality ratings indicate that
the streaming or content quality in these clusters is especially
low, such that users aborted early and even did not want to
rate. Note that these two clusters account for 12.76% of the
monitored sessions, thus, the poor streaming performance or
poor content cannot be neglected. Also Clusters 6 and 7 are
about the same size, and both have 360p resolution and exactly
one stalling event. While Cluster 6 accommodates a low
mean stalling ratio (0.5%) and a high mean user engagement
(98.77%), the mean stalling ratio of Cluster 7 is 29.4%. It
could be argued that the higher mean stalling ratio causes the
low mean user engagement of 7.96%. However, when rated
subjectively by the users, Cluster 7 exhibits a better MOS
than the cluster with the low mean stalling ratio and the high
mean user engagement. The last cluster generated by the first
clustering step is portrayed by two stalling events, a high mean
stalling ratio (22.2%), a quality level of 360p, and a short mean
user engagement.

The original set of outlier sessions, which is not listed in
Table II, was clustered again and could be split into three more
clusters. Clusters 9 and 10 could be formed because of the
higher neighborhood distance, and Cluster 11 comprises the
remaining set of outlier sessions. All three clusters contain
sessions with and without stalling events. Still, the mean
stalling ratio is relatively low for all of them. The main
differences are the mean user engagement and the played out
video quality. Cluster 9 offers a video quality between 108p
and 240p and has a mean user engagement of 96.76%, while
Cluster 10 has a higher video quality between 240p and 360p,
but a lower mean user engagement of 14.21%. It can be seen
from Cluster 9 that many users do not abort their streaming
sessions although they face a poor video quality and some
stalling. The reason might be that users know about their poor
network access or are really interested in the video content,
and thus, tolerate the bad streaming quality. Cluster 11 contains

Fig. 4. MOS, mean user engagement, and their standard deviations of clusters.

all remaining sessions, which were not similar enough to the
above presented clusters. All kinds of resolutions and stalling
occur. The mean user engagement of the remaining sessions
is 49.34% and the MOS is 3.77.

Figure 4 summarizes the above findings about subjectively
perceived quality and user engagement. The figure shows the
different clusters on the x-axis, and their MOS and standard
deviation in black on the left y-axis. Note that the MOS of
Clusters 4, 5, 8 with no or insufficient ratings is omitted. The
right y-axis shows the mean user engagement and standard
deviation in orange. It can be seen that the MOS of the clusters
are in a similar range, and the obtained ratings for each cluster
contain a significant variance, which is indicated by the large
standard deviations. Nevertheless, the pairwise comparison
results of a one-way analysis of variance (ANOVA) confirms
that only the means of Cluster 2 and the outlier Cluster 11
are significantly different. The exclusion of Cluster 11 in the
ANOVA shows that there is no significant difference among
the means of the ratings of the ten clusters with a p-value
of 0.12. This high amount of variance can be attributed to
the unsupervised nature of the field study. The figure shows
that the clusters are nicely separated into either a very high
user engagement, i.e., videos are entirely watched, or very low
user engagement, i.e., videos are aborted early. As mentioned
above, user engagement is not correlated to the streaming or
network parameters, and therefore, could be influenced by the
users’ motivation or interest in the content. A lack of these
eventually could have forced users to quickly abort the video to
find better content, thereby also quickly performing the rating,
which could result in unreliable ratings.

When analyzing only the clusters with high user engage-
ment 2, 6, and 9, the MOS values reflect the streaming quality.
Cluster 2 with 360p and no stalling has a MOS of 4.44, Cluster
6 with 360p and 1 stalling has a MOS of 4.22, and Cluster 9
with lower resolution and small stalling has MOS of 3.89.
The one-way ANOVA has a p-value of 0.03 and pairwise



comparison confirms that the means of Cluster 2 and Cluster 9
are significantly different. This confirms findings on the impact
of stalling [2] and time on quality layer [7], [8], and suggests
that an unsupervised field study can be used for QoE research,
when focusing on users with a high engagement.

V. CONCLUSION

This work is the first to conduct an unsupervised field
study on the QoE of mobile adaptive video streaming on
YouTube. An Android-based monitoring app, YoMoApp, was
implemented and published on the Google Play Store. During
the development more than 1250 streaming sessions could be
monitored, thereby logging network layer parameters, appli-
cation layer streaming parameters, device characteristics, and
subjective ratings. After the filtering of incompletely monitored
sessions, 674 sessions were evaluated to gain insights into the
streaming context and streaming behavior of mobile YouTube.

The correlation between the monitored parameters were
investigated, which showed that none had a high correlation
to user engagement or subjective quality rating. Also user
engagement, which is widely considered a QoE metric, was
uncorrelated to the subjective rating. This could be due to the
fact that it rather measures the interest or motivation of the
users to watch a certain content. When clustering all streaming
sessions according to perceived streaming parameters and user
engagement, ten clusters could be identified. The characteris-
tics of the clusters and the remaining set of outlier sessions
were analyzed. User ratings showed a very high variance
within the ten clusters, such that their MOS values were not
significantly different. The high variance might be attributed
to the user engagement, which nicely separated the clusters
into very high and very low user engagement. In case of low
motivation or interest to watch the video, users could have
quickly aborted to find better content and quickly performed
the rating, which could result in unreliable feedback.

After excluding the clusters with low mean user engage-
ment, the ratings of the remaining clusters reflected the stream-
ing quality. Thus, QoE research could rely on an unsupervised
field study if the behavior and engagement of the users with
the test is monitored. In future work, additional means will
be added to YoMoApp to improve the user engagement. In
particular, users will be asked before the start of the video
streaming session if they want to rate the subjective quality
afterwards. Moreover, the rating dialogue will be extended to
feature additional questions, which can be used for consistency
checks, and the rating time will be monitored.
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