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Abstract This work presents an optimization-based scalable quantum neural network framework
for approximating n-qubit unitaries through generic parametric representation of unitaries, which
are obtained as product of exponential of elements of a new basis that we propose as an alternative
to Pauli string basis. We call this basis as the Standard Recursive Block Basis, which is constructed
using a recursive method, and its elements are permutation-similar to block Hermitian unitary ma-
trices.
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1 Introduction

Parametric representation of unitary matrices has been an active area of research for a long time.
With the recent advancements in quantum hardware technology, this has become even more crucial
in the field of quantum computing since quantum evolution is described by unitary matrices. Ad-
ditionally, the emergence of NISQ computers and variational quantum algorithms necessitates the
implementation of quantum processes through parametrized quantum circuits consisting of only a
few universal quantum gates. Thus it is of paramount interest to design quantum parametrized
circuits for unitary evolution on a multi-qubit system using one-qubit and two-qubit quantum
gates [21].

The Solovay-Kitaev theorem, established by Kitaev and Solovay, proves that any one-qubit special
unitary matrix can be approximated by a collection of one-qubit gates, which can generate a dense
subset of the SU(2) [9]. This process of identifying suitable approximations for a given unitary
matrix is known as “compilation” for fault-tolerant quantum computation [6,17]. It is well-known
that CNOT and one-qubit gates form a universal model of quantum computation and can represent
unitaries for multi-qubit systems [1, 4, 6, 7, 13,19,20,25,28,29].

In the NISQ era, several proposals are made for physical implementations of near-term quantum
computers. The compilation problem for decomposing a given unitary in terms of the primitive
gate set of a near-term quantum device and approximating the unitary with high accuracy is one
of the fundamental among them. There have been advancements in efficiently solving the quantum
compilation problem using various methods such as recursive CS decomposition and Quantum
Shannon-decomposition [11,14].

Recently, an optimization based viewpoint for the compilation problem has generated a lot of
interest [12,15]. In this approach, a unitary matrix is found that can be realized in hardware with
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constraints (such as the native gate alphabets of the NISQ platform), that is the closest to a target
unitary with respect to a metric. Various cost functions are defined in these optimization-based
approaches to achieve a good implementation of the target unitary. For example, optimizing the
structure (i.e., where to place a CNOT gate), optimizing the rotation angles of the rotation gates,
optimizing the number of CNOT count etc. after writing a parametric representation using matrix
decomposition of the target unitary [3, 22,23].

In this paper, we present an optimization-based approach to approximate a given unitary matrix
through generic parametrized unitary matrices. This leads to the development of a quantum neural
network framework for implementing n-qubit unitaries using quantum circuits of CNOT and one-
qubit gates. To obtain a generic parametrized representation for unitaries, a new basis for the
algebra of d × d complex matrices is introduced, with the aim of expressing any unitary through
product of exponential of the proposed basis elements. We call this basis as Recursive Block Basis
(RBB) and the basis elements are Hermitian and unitary matrices that are either diagonal or 2-
sparse matrices, alike the Pauli string basis elements. The proposed basis has an advantage over
the Pauli string basis as the basis elements are permutation similar to block diagonal matrices,
making it easier to compute the exponential of the basis elements. Further, we use this basis to
define a basis for n-qubit systems with trace-zero matrices that we call Standard Recursive Block
Basis (SRBB), which contains 2n diagonal basis elements that are Pauli strings with Pauli matrices
I2 and σ3, the Pauli basis matrix about Z axis.

We present an algorithm for approximating any target unitary of order d using generic parametrized
unitary matrices with an ordering of exponential of the basis elements for multiplying to approx-
imate a target unitary such that the number of CNOT gate is reduced for a quantum circuit
representation of the algorithm. The optimal values of the parameters to determine a unitary close
to a target unitary are obtained using a classical optimization algorithm, such as Nelder-Mead, to
minimize the Frobenius norm of the distance between the target and generic parametrized unitary
matrices. The quantum circuit formulation of generic unitary matrices for n-qubit systems is de-
fined by a quantum neural network framework with L ≥ 1 layers. The recursive approach used to
construct our basis also has the advantage that the proposed quantum circuit for n-qubit systems
is scalable. Given a circuit for n-qubits, the circuit for (n+1)-qubits can be implemented using the
current circuit with the addition of new CNOT gates and 1-qubit rotation gates. The proposed
quantum circuit of one layer of approximation has at most 2 · 4n + (n − 5)2n CNOT gates, and
at most 3

2 · 4n − 5
2 · 2n + 1 one-qubit rotation gates corresponding to Z axis. We examine various

scenarios to evaluate the effectiveness of our approximation algorithm in approximating standard
and random unitary matrices for 2-qubit, 3-qubit, and 4-qubit systems. Our results indicate that
the proposed algorithm performs better one layer of approximation when the target unitaries are
sparse, and the error of the approximation reduces with the increase of number of layers for the
approximation. Lastly, we present an algorithm that enables the implementation of the proposed
quantum circuits from n-qubit to (n+ 1)-qubit systems.

The remainder of the paper is structured as follows. In Section 2, recursive methods are introduced
for constructing a basis of Hermitian, unitary matrices for complex matrices of size d×d. Section 3
presents a quantum neural network framework for an optimization-based approximation algorithm
to approximate target unitaries for n-qubit systems. In Section 4, a scalable quantum circuit is
proposed for approximation algorithm.
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2 Recursive approaches for the construction of a Hermitian uni-
tary basis

The following theorem describes a recursive approach for construction of a Hermitian unitary basis,
with d2 − 1 of them having trace zero when d is even. We call this basis as the Recursive Block
Basis (RBB).

Theorem 2.1 (RBB) Let B(d) = {B(d)
j : 1 ≤ j ≤ d2}, d > 2 denote the desired ordered basis for

the matrix algebra of d×d complex matrices. Then setting B(2) = {σ1.σ2, σ3, I2} as the Pauli basis,

the elements of B(d) can be constructed from the elements of B(d−1) using the following recursive
procedure:

B
(d)
j =



[
B

(d−1)
j 0

0 (−1)d−1

]
; if j ∈ {1, . . . , (d− 1)2 − 1},

P(k,d−1)

[
D 0

0 σ1

]
P(k,d−1);

if j = (d− 1)2 + (k − 1),

P(k,d−1)

[
D 0

0 σ2

]
P(k,d−1);

if j = (d− 1)2 + (d− 1) + (k − 1),[
I⌊d/2⌋+1 0

0 −I⌊d/2⌋

]
; if j = d2 − 1 and d is odd[

Σ 0

0 σ3

]
; if j = d2 − 1 and d is even

Id if j = d2

,

where k ∈ {1, . . . , d− 1} Pk,(d−1) is the permutation matrix of order d corresponding to the 2-cycle

(k, d− 1), D = diag{dl : 1 ≤ l ≤ d− 2}, dl = (−1)l−1, and Σ =

[
I⌊d/2⌋−1 0

0 −I⌊d/2⌋−1

]
Besides,

Tr(B
(d)
j ) =

{
1 if d is odd

0 if d is even,
,

1 ≤ j ≤ d2 − 1,
(
B

(d)
j

)2
= Id, and {B(d)

j : 1 ≤ j ≤ d2 − 1} forms a basis for su(d) when d is even.

The basis elements that are diagonal matrices are given by B
(d)
j where j = m2 − 1, 2 ≤ m ≤ d and

B
(d)
d2

= Id.

Proof: First observe that the matrices B
(d)
j , 1 ≤ j ≤ d2 are Hermitian and unitary due to the

construction. Also, Tr(B
(d)
j ) = 0 when d is even and Tr(B

(d)
j ) = 1 when d is odd. Now we show
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that these matrices form a linearly independent subset of Cd×d. Suppose d is even. Then set

0 =

(d−1)−12∑
m=1

[
c1mB

(d−1)
m 0
0 −c1m

]
︸ ︷︷ ︸

A

+

(d−1)∑
m=1

P(m(d−1))

[
(c2m + c3m)D 0

0 c2mσ1 + c3mσ2

]
P(m(d−1))︸ ︷︷ ︸

B

+

[
c44Σ+ c55Id−2 0

0 −c44σ3 + c55I2

]
︸ ︷︷ ︸

C

. (1)

Then see that the first d−1 entries of the last column of B are given by c2m− ic3m, 1 ≤ m ≤ d−1,
whereas these corresponding entries in A and C are zero. Also first n− 1 entries (left to right) of
the last row of B are given by c2m + ic3m, 1 ≤ m ≤ d − 1, whereas these corresponding entries in
A and C are zero. Then equating the last column and row of the rhs of equation (1) with the last
zero column and row of lhs, it follows that c2m = c3m = 0, 1 ≤ m ≤ d − 1. Then the equation (1)
becomes

0 =

(d−1)2−1∑
m=1

[
c1mB

(d−1)
m 0
0 −c1m

]
+[

c44Σ+ c55Id−2 0
0 −c44σ3 + c55I2

]
. (2)

Further, since {B(d−1)
m : 1 ≤ m ≤ (d− 1)2 − 1} ∪ Id−1 is linearly independent, then using the same

method described above, the matrix
∑(d−1)2−1

m=1 c1mB
(d−1)
j has all non-diagonal entries 0. Thus the

only terms remain are diagonal matrices i.e. the equation reduces to

0 =

(d−1)∑
m=2

[
c1(m2−1)B

(d−1)
(m2−1) 0

0 −c1(m2−1)

]
+[

c44Σ+ c55Id−2 0
0 −c44σ3 + c55I2

]
(3)

where B
(d−1)
m2−1

and Id−1 = B
(d−1)
(d−1)2

, 2 ≤ m ≤ d− 1 are proposed basis elements of C(d−1)×(d−1).

For a diagonal matrix M of order d with diagonal entries mjj , 1 ≤ j ≤ d, set diag(M) =
[m11m22 . . . mdd]

T as the column vector. Then observe that equation (3) can be described as

a linear system Ax = 0, where x =
[
c13 . . . c1((d−1)2−1) c44 c55

]T
and the consecutive columns

of A are given by diag
(
B

(d)
m2−1

)
, 2 ≤ m ≤ d− 1, diag

Σ 0 0
0 −1 0
0 0 1

 , and diag (Id) .

Next we show that A is non-singular i.e. the columns of A form a linearly independent set. Suppose

0 =

d−1∑
m=2

αm

[
diag

(
B

(d)
m2−1

)
−1

]
+

β

diag
Σ 0 0

0 −1 0
0 0 1

+ γ
[
diag (Id)

]
.
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Then multiplying the all-one vector 1Td from left at the above equation, we obtain nγ = 0 since
sum of entries of all other vectors are zero. This further implies γ = 0. Thus we have

d−1∑
m=2

αm

[
diag

(
B

(d)
m2−1

)
−1

]
+ β

diag
Σ 0 0

0 −1 0
0 0 1

 = 0.

Now note that the first entry of all the vectors in the above vectors are 1. Then considering the
first and last entries of the above vectors, we obtain

β +

d−1∑
m=2

αm = 0 and β −
d−1∑
m=2

αm = 0,

whose only solution is β = αm = 0 for all m. Hence the desired result follows when m is even. The
proof for odd m follows similarly. □

Remark 2.2 (a) Note that any of the basis elements described by the above theorem that is a
non diagonal matrix, is one of the form

P

D1 0 0
0 σ 0
0 0 D2

P, P

[
σ 0
0 D

]
P, P

[
D 0
0 σ

]
P

where D,D1, D2 are diagonal matrices with entries from {1,−1}, σ ∈ {σ1, σ2} and P is a
2-cycle or transposition.

(b) The basis elements with indices j ∈ J = {l2 − 1 : 2 ≤ l ≤ d} ∪ {d2} are diagonal matrices,
which are orthogonal to each other. Obviously, |J | = d− 1.

Now we present a Hermitian unitary trace-less basis of n-qubit systems that will play a crucial
role in the remainder of the paper. The idea is that we now replace the diagonal basis elements
of B(2n) described in Theorem 2.1 by another set of diagonal matrices keeping invariance of the
linearly independent property of the basis. First note that the set of matrices

DIZ = {A1 ⊗ . . .⊗An : Aj ∈ {I2, σ3}, 1 ≤ j ≤ n} (4)

is a set of 2n linearly independent diagonal matrices with trace zero except when Aj = I2 for all
j i.e. A1 ⊗ . . . ⊗ An = I2n . We call the proposed basis as the Standard Recursive Block Basis
(SRBB), defined below.

Corollary 2.3 (SRBB) Let B(2n) = {B(2n)
j : 1 ≤ j ≤ 22n} denote the basis described in Theorem

2.1, and DIZ is given by equation (4). Then the set U (2n) = {U (2n)
j : 1 ≤ j ≤ 22n}, where

U
(2n)
j =

{
D ∈ DIZ if j ∈ J = {l2 − 1 : 2 ≤ l ≤ 2n} ∪ {22n}
B

(2n)
j , otherwise

forms a Hermitian unitary basis for C2n×2n. Besides, Tr(U
(2n)
j ) = 0 when U

(2n)
j ̸= I2n .

Now we introduce a function which provides an ordering of the diagonal elements of U (2n). From
now onward, we denote A1 ⊗ A2 ⊗ . . .⊗ Am = ⊗m

i=1Ai for some matrices or vectors Ai. If Ai = A
for all i then we denote ⊗m

i=1Ai = ⊗mA.
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Definition 2.4 Define χ : {I, Z} → {0, 1} such that χ(I) = 0, χ(Z) = 1. For any positive integer
m, define χm : {⊗m

i=1Ai |Ai ∈ {I, Z}, 1 ≤ i ≤ m} → {0, 1, . . . , 2m − 1} such that

χm (⊗m
i=1Ai) =

m∑
i=1

2i−1χ(Ai).

3 Parametric representation of unitary matrices

It is well-known that the set of all unitary matrices of order d, denoted by U(d) forms a Lie group
and the corresponding Lie algebra is the real vector space of all skew-Hermitian matrices of order
d which we denote as u(d). A classification of unitary matrices is that: any unitary matrix can be
expressed as exponential of a skew-Hermitian matrix i.e. the map exp : u(d) → U(d) is surjective
[Theorem 3.2, [5]]. Now we develop a parametric representation of unitary matrices of order d.

We recall from [Chapter 2, [24]] that if {X1, . . . , Xk} is a basis of the Lie algebra of a Lie group G
then for some θ > 0, the map

ψ : (θ1, θ2, . . . , θk) 7→ exp(θ1X1) exp(θ2X2) . . . exp(θkXk)

from Rk into G is an analytic diffeomorphism of the cube Ikθ = {(θ1, . . . , θk) : |θj | < θ, 1 ≤ j ≤ k} of

Rk onto an open subset U of G containing the identity element I of G. If x1, . . . , xk are the analytic
functions on U such that the map y 7→ (x1(y), . . . , xk(y)) inverts ψ, then for 1 ≤ j ≤ k,

xj(exp θ1X1, exp θ2X2, . . . , exp θkXk) = θj , (θ1, . . . , θk) ∈ Ikθ .

Then x1, . . . , xk are called the canonical coordinates of the second kind around I with respect to
the basis {X1, . . . , Xk}.

Setting G = U(d), the dimension of u(d) is d2 and if {B(d)
j : 1 ≤ j ≤ d2} denotes a basis of u(d)

then we have the following theorem.

Theorem 3.1 There exists a θ > 0 such that
{∏d2

j=1 exp
(
iθjB

(d)
j

)
: (θ1, . . . , θd2) ∈ Id

2

θ

}
generates

U(d).

Proof: With the standard subspace topology of the matrix algebra of complex matrices, U(d) is
a connected topological space. Then there exists θ > 0 such that the map ψ : (θ1, . . . , θd2) 7→
exp(θ1B

(d)
1 ), . . . , exp(θd2B

(d)
d2

) is a diffeomorphism from Id
2

θ onto an open neighborhood U of U
containing the identity matrix. Then the desired result follows from Corollary 2.9, [8]. □

Now we have the following proposition.

Proposition 3.2 Let B(d) = {B(d)
j : 1 ≤ j ≤ d2} denote a basis of Hermitian unitary matrices for

Cd×d as described in Theorem 2.1 or Corollary 2.3. Then

exp(±iθjB(d)
j ) = cos θjId ± i sin θjB

(d)
j ,

for any θj ∈ R, 1 ≤ j ≤ d2.

Proof: The proof follows from the fact that exp(±itσj) = cos t± i sin tσj , j = 0, 1, 2, 3, t ∈ R, and
P(k,d−1) is a symmetric unitary matrix, as described in Theorem 2.1 and Corollary 2.3. □
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Thus it follows from Proposition 3.2 that exponential of basis elements given in Corollary 2.3 is
either a 2-level matrix or a diagonal matrix since the basis elements U2n

j , 1 ≤ j ≤ 2n are either a 2-
level or a diagonal matrix. It is a well-known result that any unitary matrix can always be written
as a product of 2-level matrices [16]. On the other hand, due to Theorem 3.1 and Proposition
3.2, it is clear that as a byproduct of the construction of the proposed basis, it provides such a
decomposition.

Note that any unitary matrix is a unit scaling of a special unitary matrix, hence now onward we
focus on special unitary matrices. We consider 2-sparse unitary matrices that are block diagonal
matrices with each block is a special unitary matrix. Let Ra(θ) denote a rotation gate around an
axis a with an angle θ ∈ R. In particular, when the rotation matrices around the axes X,Y, Z are

defined as RZ(θ) =

[
eiθ 0
0 e−iθ

]
, RY (θ) =

[
cos θ sin θ
− sin θ cos θ

]
, RX(θ) =

[
cos θ i sin θ
i sin θ cos θ

]
.

Definition 3.3 [11] For n-qubit systems, a multi-controlled rotation gate around an axis a is
defined as

1 ◦ ◦
. . .

.

.

.
◦ ◦

2 ◦ ◦
. . .

.

.

.
◦ ◦

.

.

.
◦ ◦

. . .

.

.

.
◦ ◦

n− 1 ◦ ◦
. . .

.

.

.
◦ ◦

n Ra(θ1) Ra(θ2) . . . Ra(θ2n−2 ) Ra(θ2n−1 )

,

where ◦ ∈ { • , }, and θj , 1 ≤ j ≤ 2n−1 ∈ R. Then the unitary matrix corresponding

to the above circuit is given by Fn(Ra(θ1, θ2, . . . , θ2k−1)),

Fn(Ra) =

 Ra(θ1) 0 0 0

0 0
. . . 0

0 0 0 Ra(θ2n−1)


Further, it can be shown that the multi-controlled rotation gates can be decomposed and imple-
mented through CNOT and single qubit gates [11]. Indeed, the multi-controlled rotation gate on
an n qubit system given by

1

2
.
.
.

n− 1

n Fn(Ra(ψ1, . . . , ψ2n−1 ))

(5)

can be written as

1 • •
2
.
.
.

n− 1

n Fn−1(Ra(θ1, . . . , θ2n−1 )) Fn−1(Ra(ϕ1, . . . , ϕ2n−1 ))

(6)

where a ∈ {Y,Z} and

ψj =

{
θj + ϕj where 1 ≤ j ≤ 2n−2

θj − ϕj where 2n−2 + 1 ≤ j ≤ 2n−1.
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Lemma 3.4 The quantum circuits in equation (5) and Equation (6) are equivalent when a ∈
{Y,Z}.

Proof: The proof is computational and easy to verify. □

Now with the help of the multi-controlled rotation gates, we consider writing 2-sparse block diagonal
matrix of the form 

U1(Θ1)
U2(Θ2)

. . .

U2k−1(Θ2n−1)

 (7)

in terms of the proposed basis elements, where Uj(Θj) ∈ SU(2),Θj := (αj , βj , γj), 1 ≤ j ≤ 2n−1 is
a 2× 2 special unitary matrix such that

Uj(Θj) =

[
ei(αj+βj) cos γj ei(αj−βj) sin γj

−e−i(αj−βj) sin γj e−i(αj+βj) cos γj

]
. (8)

Since any 2×2 special unitary matrix has a ZY Z decomposition, the matrices in equation (7) have
circuit from using the multi-controlled rotation gates as

1
.
.
.

n− 1

n Fn(RZ) Fn(RY ) Fn(RZ)

(9)

which we denote asMnZY Z, where Fn(RZ) = Fn(Rz(α1, . . . , α2n−1)), Fn(RY ) = Fn(RY (γ1, . . . , γ2n−1)),
and Fn(RZ) = Fn(RZ(β1, . . . , β2n−1))

Theorem 3.5 The special unitary matrix corresponding to anMnZY Z given by equation (7) can be

written as
(∏2n−1−1

l=0 exp(itl(χ
−1
n−1(l)⊗ σ3)

) (∏2n−1

j=1 exp (iθ4j2−2jU
(2n)
4j2−2j

)
) (∏2n−1−1

l=0 exp(it′l(χ
−1
n−1(l)⊗ σ3)

)
where θ4j2−2j = γj ∈ R, 1 ≤ j ≤ 2n−1, tl, t

′
l ∈ R.

Proof: The proof is computational and easy to verify. □

Remark 3.6 Note that computing the exponential of Pauli string matrices is a difficult task because
the fundamental Pauli matrices do not commute. Besides, in the worst-case scenario, generating
a Pauli string for an n-qubit system would require O(n22n) operations using generic Kronecker
product algorithms [18]. On the contrary, the construction of the proposed basis matrices do not
require any operation as the construction is completely prescribed by the pattern of the non-zero
entries of the basis elements.

3.1 Approximation of arbitrary unitaries inspired by reduced CNOT gate count

We can utilize Theorem 3.1 to find a value θ > 0 such that the set
{∏d2

j=1 exp
(
iθjB

(d)
j

)}
, where

(θ1, . . . , θd2) ∈ Id
2

θ , generates the unitary group U(d). As a result, any unitary matrix U up to
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permutation of indices of the basis elements can be represented as

U =

 d2∏
j=1

exp
(
iθjB

(d)
j

) . . .

 d2∏
j=1

exp
(
iθjB

(d)
j

)
︸ ︷︷ ︸

L times

:=

L∏
l=1

 d2∏
j=1

exp
(
iθljB

(d)
j

) (10)

for some positive integer L, which we call the number of layers or iterations for approximating U .
However, determining the appropriate value of L for a given U ∈ U(d) is challenging in practice.
Indeed, we propose to find a parametric representation of a given unitary through solving the
following optimization problem

min
θlj∈IKd

2
θ

∥∥∥∥∥∥U −
L∏
l=1

 d2∏
j=1

exp
(
iθljB

(d)
j

)∥∥∥∥∥∥
F

for some θ > 0, where ∥ · ∥F denotes the Frobenius matrix norm.

For n-qubit system the algorithm faces another significant problem for implementation of the
unitary matrices through elementary gates, since the ultimate goal is to implement any unitary
through strings of elementary gates. Indeed, for unitary matrices of order d = 2n, the problem with
above ordering of multiplication of exponential of basis elements lies in the fact that in order to
construct a quantum circuit for the proposed ordering of the basis elements while approximating
any unitary from SU(2n), the number of CNOT gates required for a single iteration becomes O(23n)
as follows from equation (10) setting L = 1. This is due to the fact all non-diagonal RBB matrices
generate 2-level unitary matrices and a single 2-level unitary matrix requires at least 2n−1 CNOT
gates from this ordering of the basis elements and there are 22n − 2n non-diagonal basis matrices.

Thus the question is: how to choose a suitable ordering of the basis elements? One motivation for
a suitable choice is to reduce the number of CNOT gates in a quantum circuit implementation of a
given unitary matrix using equation (10). First we introduce two functions through which we like
to call the proposed basis elements of particular index. We define the functions: f : N × Z → Z
and h : N× Z → Z such that{

f(n, k) := fn(k) = (n− 1)2 + (n− 1) + (k mod (n− 1))

h(n, k) := hn(k) = (n− 1)2 + (k mod (n− 1)).
(11)

First observe that a SRBB element U
(2n)
j ∈ U (2n), exp(iθU

(2n)
j ), j = hq(p), p < q, q ∈ {2, . . . , 2n},

can be written as
(∏2n−1−1

l=0 exp(itl(χ
−1
n−1(l)⊗ σ3)

)
exp (iθU

(2n)
j′ )

(∏2n−1−1
l=0 exp(it′l(χ

−1
n−1(l)⊗ σ3)

)
where j′ = fq(p), p < q, q ∈ {2, . . . , 2n} for some tl, t

′
l ∈ R. Moreover, we would like to consider the

ordering of the SRBB such that products of the exponential certain non-diagonal SRBB elements
in that order should generate MnZY Z type matrix or a block-diagonal special unitary matrix. For
example, note from Theorem 3.5 that in the original ordering of the non-diagonal SRBB matrices

with indices 4j2 − 2j and diagonal SRBB matrices, the matrix
(∏2n−1−1

l=0 exp(itl(χ
−1
n−1(l)⊗ σ3)

)
(∏2n−1

j=1 θ4j2−2jU
(2n)
4j2−2j

) (∏2n−1−1
l=0 exp(it′l(χ

−1
n−1(l)⊗ σ3)

)
is a MnZY Z type matrix. Besides, it is

well known that quantum circuit for MnZY Z is prevalent in literature [11].
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From Corollary 2.3, note that any non-diagonal element of the SRBB is given by U
(2n)
j = PMP,

where M is a block diagonal matrix with a maximum 3 blocks, two of which are diagonal matrices
and one block is σ ∈ {σ1, σ3}, and P = P(α,β) is a trnasposition with 0 < α ≤ β ≤ 2n.

Observe that for a pair 1 ≤ α < β ≤ 2n with β is even and α is odd, we have P(α+1,β) exp
(
iθU

(2n)
fβ(α)

)
P(α+1,β)

gives aMnZY Z type matrix. Similarly, if β is odd and α is even then P(α,β+1) exp
(
iθU

(2n)
fβ(α)

)
P(α,β+1)

is a MnZY Z type matrix. Next if α and β are both odd then P(α+1,β) exp
(
ιθU

(2n)
fβ(α)

)
P(α+1,β)

will be a special unitary block-diagonal matrix consists of blocks are of size 2 belonging to U(2)

with at least one block of the form

[
exp(iθ) 0

0 exp(iθ)

]
, n > 2. Similarly, if α, β are even then

P(α,β−1) exp
(
iθU

(2n)
fq(p)

)
P(α,β−1) is a special unitary block diagonal matrix with at least one block is

from U(2). Similar observations also hold for the function h.

Finally observe that all the transpositions P(α,β) whose pre and pro multiplication make a matrix

U
(2n)
j ∈ U (2n) of type MnZY Z or a special unitary block diagonal matrix, have the values of α, β

both to be even or α is even and β is odd, where 1 ≤ α < β ≤ 2n.

Thus we consider two sets of permutation matrices

P2n,even = {P(α,β) ∈ P2n |α, β are even}
P2n,odd = {P(α,β) ∈ P2n |α is even, β is odd}

which we will use in order to approximate a unitary matrix as a product ofMnZY Z or unitary block

diagonal matrices and its permutations. Then it follows that |P2n,even| = 22n−3−2n−2 =
∣∣∣P2n,odd

∣∣∣ .
Let T ex and T ox be sets of 2n−2 disjoint transpositions from P2n,even and P2n,odd respectively,

1 ≤ x ≤ 2n−1− 1 such that ·∪xT ex = P2n,even and ·∪xT ox = P2n,odd, where ·∪ denotes disjoint union.
Define

ΠTex =
∏

(α,β)∈T ex

P(α,β) and ΠTox =
∏

(α,β)∈T ox

P(α,β), (12)

1 ≤ x ≤ 2n−1 − 1.

The motivation behind creating unitary block diagonal or MnZY Z matrices lies in the fact that
the quantum circuits for such matrices are easy to implement. The quantum circuit for MnZY Z
matrices can be found in [11]. We shall see later that adding a few CNOT and RZ gates it is
possible to define a circuit for a special unitary block diagonal matrix with 2 × 2 blocks from a
circuit that represents a MnZY Z matrix. Then we have the following result.

Lemma 3.7 A block diagonal matrix U ∈ SU(2n) consisting of 2×2 blocks is of the form
(∏2n

t=2 exp
(
iθt2−1U

(2n)
t2−1

))
(∏2n−1

j=1 exp
(
iθ4j2−2jU

(2n)
4j2−2j

)) (∏2n

t=2 exp
(
iθt2−1U

(2n)
t2−1

))
where θ4j2−2j ∈ R, 1 ≤ j ≤ 2n−1, θt2−1, θ

′
t2−1

are obtained from Theorem3.5.

Proof: The proof is computational and easy to verify. □
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Now from equation (12), for any 1 ≤ x ≤ 2n−1 − 1, define

Me
x = ΠTe

x

 ∏
(α,β)∈T ex

exp
(
iθhβ−1(α)U

(2n)
hβ−1(α)

)
exp

(
iθfβ−1(α)U

(2n)
fβ−1(α)

)
exp

(
iθhβ(α−1)U

(2n)
hβ(α−1)

)
exp

(
iθfβ(α−1)U

(2n)
fβ(α−1)

)]
ΠTe

x, (13)

Mo
x = ΠTo

x

 ∏
(α,β)∈T ox

exp
(
iθhβ(α−1)U

(2n)
hβ(α−1)

)
exp

(
iθfβ(α−1)U

(2n)
fβ(α−1)

)
exp

(
iθhβ+1(α)U

(2n)
hβ+1(α)

)
exp

(
iθfβ+1(α)U

(2n)
fβ+1(α)

)]
ΠTo

x, (14)

where ΠTex and ΠTox are defined in equation (12). Then it can be seen that Mo
x ∈ SU(2n) is a

block-diagonal matrix with 2× 2 blocks and M e
x ∈ SU(2n) is a MnZY Z matrix, 1 ≤ x ≤ 2n−1 − 1.

Approximation of unitary matrices with optimal ordering: Define

ζ(Θ
(l)
ζ ) =

2n∏
j=2

exp
(
iθ

(l)
j2−1

U
(2n)
j2−1

)
(15)

Ψ(Θ
(l)
ψ ) =

2n−1∏
j=1

exp
(
iθ

(l)
(2j−1)2

U
(2n)
(2j−1)2

)
exp

(
iθ

(l)
(4j2−2j)

U
(2n)
(4j2−2j)

)
2n−1−1∏

x=1

(ΠTex)M
e
x (ΠT

e
x)

 (16)

Φ(Θ
(l)
ϕ ) =

2n−1−1∏
x=1

(ΠTox)M
o
x (ΠT

o
x)

 . (17)

Then note that ζ(Θ
(l)
ζ ) is the product of exponential of all diagonal SRBB elements. Besides, it is

computational to check that Ψ(Θψ) is the product of matrices of type MnZY Z and permutation

scaling of MnZY Z type matrices, and Φ(Θ
(l)
ϕ ) ∈ SU(2n) is product of block-diagonal matrices,

which we will use in the construction of the circuits for these matrices in Section 4. Then we
propose a quantum neural network framework [2] for approximating a unitary matrix as follows.
Given U ∈ SU(2n), approximate U as

U ≡
L∏
l=1

ζ(Θ
(l)
ζ )Ψ(Θ

(l)
ψ ) Φ(Θ

(l)
ϕ ) (18)

where l is called the layer and we call the equation (18) the L-layer approximation of U.

3.2 Numerical simulations

In this section we report the performance of the proposed algorithms for approximating unitary
matrices through product of exponential of the proposed RBB elements in optimal ordering. Given

11



Algorithm 1 Algorithm for Approximating 2n × 2n special unitary matrix

Provided: U1 ∈ SU(2n), U
(2n)
j ∈ U (2n), 1 ≤ j ≤ 22n − 1, ζ(Θζ), Ψ(Θψ), Φ(Θϕ) given by equation

(15) - (17).

Input: Θ
(0)
ζ , Θ

(0)
ψ , Θ

(0)
ϕ , ϵ > 0

Output: A =
∏
t ζ(Θ

(t)
ζ )Ψ(Θ

(t)
ψ )Φ(Θ

(t)
ϕ ) such that ∥U −A∥F ≤ ϵ

procedure (Unitary Matrix U)
A→ I
for t = 1; t++ do

Use an optimization method like Nelder-Mead/Powell’s or Gradient descent method to

find Θ
(t)
ζ , Θ

(t)
ψ , Θ

(t)
ϕ such that

min
Θ

(t)
ζ ,Θ

(t)
ψ ,Θ

(t)
ϕ

∥∥∥U − ζ(Θ
(t)
ζ )Ψ(Θ

(t)
ψ )Φ(Θ

(t)
ϕ )

∥∥∥
F
= ϵt

if ϵt ≤ ϵ then
Break
A→ Aζ(Θ

(t)
ζ )Ψ(Θ

(t)
ψ )Φ(Θ

(t)
ϕ )

else
Ut+1 → UtA

∗

end if
End

end for
End
End Procedure

end procedure

12



Matrix Time taken Error from Error from [26]
in seconds our Method circuit +

in our method our method

CNOT 90 7.977× 10−14 1.2× 10−15

Grover2 124 1.256× 10−15 3.66× 10−13

XX 20 6.226× 10−12 4.2× 10−13

YY 240 3.223× 10−15 1.5× 10−13

ZZ 90 1.363× 10−17 2.96× 10−13

SWAP 63 1.839× 10−13 6.8× 10−16

XZ 150 3.580× 10−13 9.884× 10−13

ZX 129 5.438× 10−13 4.332× 10−13

ZY 121 3.188× 10−12 1.065× 10−13

CNOT(2,1) 45 1.058× 10−13 2.89× 10−13

DCNOT 29 4.020× 10−13 4.92× 10−14

XNOR 23 3.166× 10−13 8.04× 10−12

iSWAP 183 3.003× 10−14 4.13× 10−13

fSWAP 93 2.037× 10−13 3.32× 10−13

C-Phase 15 7.666× 10−15 5.06× 10−13

XX+YY 124 1.665× 10−12 4.186× 10−13
√
SWAP 97 1.686× 10−13 4.05× 10−13

√
iSWAP 10 1.106× 10−13 2.76× 10−13

QFT2 31 3.215× 10−13 9.526× 10−13

Table 1: Error and time for simulating standard 2-qubit unitaries

a target unitary matrix, the initial choice of the parameters can influence the output unitary matrix
and since the objective function is non-convex, the optimal approximated values of the parameters
may lead to a local minimum. Thus we generate up to 103 random points from uniform distribution
and normal distribution for the set of parameters Θ = {θ1, . . . , θ22n−1}, where 0 ≤ θj ≤ 2π, 1 ≤ j ≤
22n − 1 and execute the proposed algorithms. Finally, we report the error that is least among all
those initial parameter values.

We compare our findings with the results found in [10, 11, 26, 27] and see that our method for 2-
qubits is faster as it does not need to perform singular value decomposition. Like [10,26], we don’t
need to convert the target matrices into magic basis/states and perform Schmidt decomposition in
order to check for separable states which is non-trivial and time consuming. We have also seen that
employing the modified ordering of the proposed basis elements and decomposing a 2-qubit gate

using the original ordering of the basis elements with (
∏15
j=1 exp (iθiU

(4)
i ))L with L = 1 and applying

Algorithm 1, the error is same. We have performed Algorithm 1 on MATLAB and Python 3.0 on a
system with 16GB RAM, Intel(R) Core(TM) i5−1035G1 CPU @1.00GHz1.19GHz for 2-qubit and
3-qubit examples. For 4-qubit examples, we have performed the simulations using supercomputer
PARAM Shakti of IIT Kharagpur. The approximation errors are reported in Tables 1, 2, 3 and
Figures 1, 2, 3.
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Matrix 1st iteration QFAST UniversalQ
Error from + KAK [27]
our method [27]

Toffoli 4.48× 10−9 1.5× 10−6 2.6× 10−8

Fredkin 1.6× 10−8 2.2× 10−6 0

Grover3 4.60× 10−9 8.1× 10−7 0

Peres 2× 10−8 6.8× 10−7 2.1× 10−8

QFT3 3.1× 10−9 3× 10−7 3× 10−8

Table 2: Error in the Frobenius norm after simulation using one iteration/Layer for 3-qubit standard
unitaries

Matrix 1st iteration QFAST + QFAST +
Error from KAK [27] UQ [27]
our method

CCCX 1.97× 10−8 2.2× 10−5 1.3× 10−6

Grover4 2.12× 10−9 − −
QFT4 9.331× 10−8 7.9× 10−7 8.5× 10−7

Table 3: Error in the Frobenius norm after simulation using one iteration/Layer for 4-qubit standard
unitaries

4 Quantum circuit representation of unitary matrices

In the previous section we have introduced a modified ordering while multiplying for approximation
of unitary matrices of n-qubit systems. The modified ordering is introduced to incorporate a
structure for approximating a target unitary through product of permutation matrices, MnZY Z
type matrices, and special unitary block-diagonal matrices when we write a given target unitary as
product of exponential of SRBB elements through a neural network framework.

4.1 Quantum circuits for product of transpositions

Now we construct quantum circuit for the matrix ΠTsx, s ∈ {e, o}, 1 ≤ x ≤ 2n−1 − 1. First consider
an n-qubit quantum circuit consisting of only (CNOT )(n,i), 1 ≤ i ≤ n − 1 gates as follows. Let

x ≡ (x1x2x3, . . . xn−1) denote the binary representation of 0 ≤ x ≤ 2n−1 i.e. x =
∑n−1

i=1 2n−i−1xi
where xi ∈ {0, 1}. Then for a given x with its binary representation define a circuit with the property
that for each 1 ≤ i ≤ n−1 the circuit contains a (CNOT )(n,i) gate if the xi = 1, where (CNOT )(n,i)
means a CNOT gate with n-th qubit as the control and i-th qubit as target. Note that binary
strings (x1, x2, . . . , xn−1) and all subsets of [n− 1] = {1, . . . , n− 1} have a one-one correspondence.
We denote this function as χ : {0, 1}n−1 → 2[n−1], which assigns x = (x1, x2, . . . , xn−1) to χ(x) =
Λ = {j : xj = 1, 1 ≤ j ≤ n−1}. Thus each position of the string represents a characteristic function
for Λ.

Theorem 4.1 Let χ : {0, 1}n−1 → 2[n−1] be the bijective function as defined above. Then ΠTex =∏2n−2−1
m=0 P(αΛ(m),βΛ(m)), where m ≡ (m1,m2, . . . ,mn−1), αΛ(m) =

∑
i∈Λmi2

n−i+
∑

j ̸∈Λmj2
n−j+2,

βΛ(m) =
∑

i∈Λmi2
n−i +

∑
j ̸∈Λmj2

n−j + 2, and ΠTex ̸= ΠTey if x ̸= y.
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Figure 1: Approximation errors using Algorithm 1 for 2-qubit unitary matrices sampled from
random Haar distribution.

Figure 2: The errors obtained from up to three iterations (layers) for 3-qubit Haar random unitaries.
The error after 3rd iteration lies between 10−4 to 10−6.

Proof: The proof follows from the n-qubit representation given by the circuit in equation (19)

1.
.
.m1
.
.
.m2
.
.
.m3
.
.
...
.mk
.
.
.n • • • •

(19)

Theorem 4.2 Let χ : {0, 1}n−1 → 2[n−1] be the bijective function as defined above. Then ΠTox =∏2n−2−1
m=0 P(αΛ(m),βΛ(m)), where m ≡ (m1,m2, . . . ,mn−1), αΛ(m) =

∑
i∈Λmi2

n−i+
∑

j ̸∈Λmj2
n−j+2,

βΛ(m) =
∑

i∈Λmi2
n−i +

∑
j ̸∈Λmj2

n−j + 1, and ΠTox ̸= ΠToy if x ̸= y.
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Figure 3: Errors for simulating random 8-sparse 4-qubit block-diagonal unitaries considering only
one iteration of the Algorithm 1.

Proof: The proof follows from the n-qubit representation given by the circuit in equation (20)

1.
.
.m1 • •
.
.
.m2
.
.
.m3
.
.
.mk
.
.
.n • • • •

(20)

4.2 Quantum circuit for diagonal unitaries

The SRBB basis elements that are diagonal matrices, are given by U
(2n)
j2−1

, 2 ≤ j ≤ 2n, which are

of the form ⊗n
j=1Aj , Aj ∈ {I2, σ3}. Given such a basis elment for some j, let m be the greatest

number such that Ap = I2 for all p > m, and let Am1 = Am2 = . . . , Amk = σ3 for some k with

m1 < m2 < . . . < mk < m. Then a quantum circuit representation of exp
(
iθU

(2n)
j2−1

)
is given by

1.
.
.m1 • •
.
.
.m2 • •
.
.
.mk • •
.
.
.
m RZ(θ)

.

.

.n

(21)

4.3 Quantum circuit for unitary block diagonal matrices

Corollary 4.3 A quantum circuit for a block diagonal matrix U ∈ SU(2n) of the form
U2 0 0 0 0

0 U4 0 0 0

0 0 0
. . . 0

0 0 0 0 U2n

 ,
where U2j ∈ U(2), 1 ≤ j ≤ 2n−1, requires at most 5.2n−1 − 6 CNOT gates.
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Proof: The proof follows from the quantum circuit given by equation (23).

4.4 Scalable quantum circuits for approximating special unitary matrices

From Algorithm 1, we see that we a special unitary matrix U ∈ SU(2n) can be approximated in
the circuit form with one layer is given by

1

Φ(Θϕ) Ψ(Θψ) ζ(Θζ)

.

.

.
n− 1

n

(22)

for 1 ≤ x ≤ 2n−1 − 1, ΠTsxM
s
xΠTsx, s ∈ {e, o} can have the quantum circuit representation as

1

ΠTsx Ms
x ΠTsx

.

.

.

.

.

.
n

where the circuit representation of M s
x is of the form in equation (5), and the circuits for ΠTsx can

be determined by Theorem 4.2 and Theorem 4.1.

Now we present the following algorithms based on the above discussion that will help us to create
an algorithm for constructing scalable quantum circuits.

Algorithm 2 Creating circuit for (n+1)-qubit rotation gates F(n+1)(Rz) from multi-qubit rotation
gates F(n)(Rz)

Provided: CNOT gates,circuits Fn(Rz) .
Input:a1, a2, a4 . . . , a2n−1 for Fn(Rz) := Fn(Rz(a1, a2 . . . , a2n−1)) and b1, b2, b3 . . . , b2n−1 for
Fn(Rz) := Fn(Rz(b1, b2 . . . , b2n−1))
Output:ξ(Fn(Rz(a1, . . . , a2n−1)), Fn(Rz(b1, . . . , b2n−1))) := ξ(Fn(Rz), Fn(Rz)) gives a circuit of
Fn+1(Rz)

Add one layer of qubit at the top. Add a (CNOT )(1,n+1) to the left of I2 ⊗ Fn(Rz). Then add
another (CNOT )(1,n+1) and a I2 ⊗ Fn(Rz).
End

Algorithm 3 Creating circuit for (n+1)-qubit rotation gates F(n+1)(Ry) from multi-qubit rotation
gates F(n)(Ry)

Provided: CNOT gates,circuits Fn(Ry) .
Input:a1, a2, a4 . . . , a2n−1 for Fn(Ry) := Fn(Ry(a1, a2 . . . , a2n−1)) and b1, b2, b3 . . . , b2n−1 for
Fn(Ry) := Fn(Ry(b1, b2 . . . , b2n−1))
Output:ξ(Fn(Ry(a1, . . . , a2n−1)), Fn(Ry(b1, . . . , b2n−1))) := ξ(Fn(Ry), Fn(Ry)) gives a circuit of
Fn+1(Rz)

Add one layer of qubit at the top. Add a (CNOT )(1,n+1) to the left of I2 ⊗ Fn(Ry). Then add
another (CNOT )(1,n+1) and a I2 ⊗ Fn(Ry).
End

Now we give Algorithm 6, combining all the Algorithms 2-5 for the generation of (n + 1)-qubit
circuit from n-qubit circuit.
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Algorithm 4 Creating circuit for ΠTen+1,y, 0 ≤ y ≤ 2n − 1 from circuit ΠTen,x, 0 ≤ x ≤ 2n−1 − 1

Provided: CNOT gates, circuits ΠTen,x, 0 ≤ x ≤ 2n−1 − 1 .
Input: y ∈ {0, . . . , 2n − 1}
Output: η(y, 2n+1, even) gives a circuit of I2 ⊗ΠTen+1,y

for y = 0 : 2n − 1; y ++ do
if y < 2n−1 then

x = y
η(y, 2n+1, even) → Add one qubit layer at the top.

else
x = y − 2n−1

η(y, 2n+1, even) → Add one qubit layer at the top and add a (CNOT )(n+1,1) to left of
ΠTen,x.

end if
end for

Algorithm 5 Creating circuit for ΠTon+1,y, 0 ≤ y ≤ 2n − 1 from circuit ΠTon,x, 0 ≤ x ≤ 2n−1 − 1

Provided: CNOT gates,circuits ΠTen,x,ΠTon,x, 0 ≤ x ≤ 2n−1 − 1 .
Input: y ∈ {0, . . . , 2n − 1}
Output:η(y, 2n+1, odd) gives a circuit of ΠTon+1,x

for y = 0 : 2n − 1; y ++ do
if y < 2n−1 then

x = y
η(y, 2n+1, odd) → Add one qubit layer at the top.

else
x = y − 2n−1

η(y, 2n+1, odd) → Add one qubit layer at the top and add a (CNOT )(n+1,1)

gate,(CNOT )(1,n+1) gate to the left of I2 ⊗ ΠTen,x. Add another (CNOT )(1,n+1) gate to the
right of I2 ⊗ΠTen,x.

End If
end if
End For

end for
End
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Algorithm 6 Creating a (n + 1)-qubit circuit to approximate any U ∈ SU(2n+1) from a n-qubit
circuit that approximates any Û ∈ SU(2n)

Provided: CNOT gates and 1 qubit rotation gates.
Input: n-qubit circuit that approximates any Û ∈ SU(2n) and of the form mentioned in equation
22 i.e. ζ(Θζ)Ψ(Θψ)ψ(Θψ) where all the terms have been defined in equation 22
Output:(n+ 1)-qubit circuit that approximates any U ∈ SU(2n+1)

procedure ▷
Add a qubit layer at the top/beginning of the circuit.
Create product of all 2n+1 special unitary diagonal matrices from product of all 2n special

unitary diagonal matrices using ξ(Fi(Rz), Fi(Rz)), 1 ≤ i ≤ n in Algorithm 2.

for y = 1 : 2n − 1; y ++ do
Use Algorithm 4 create ΠTen+1,y using the function η(y, 2n+1, even)

Use Algorithm 5 create ΠTon+1,y using the function η(y, 2n+1, odd)
Add CNOT gates to convert ΠTon,y → ΠTon+1,y

End
end for
ζ(Θζ) → Π

(2n+1−1)
i=1 exp (iθaχ

−1
n+1(a)), (see definition of χ at equation 2.4)

Create a (n + 1)-qubit Mn+1ZY Z matrix M e
y from a n qubit MnZY Z matrix using

ξ(Fn(Rz), Fn(Rz)), ξ(Fn(Ry), Fn(Ry)) in Algorithm 2 and Algorithm 3

for y = 1 : 2n − 1; i++ do
Create a (n + 1)-qubit Mn+1ZY Z matrix M e

y from a n qubit MnZY Z matrix using
ξ(Fn(Rz), Fn(Rz)), ξ(Fn(Ry), Fn(Ry)) in Algorithm 2 and Algorithm 3

Create a (n + 1)-qubit block diagonal special unitary matrix Mo
y from a n qubit block

diagonal special unitary matrix using ξ(Fi(Rz), Fi(Rz)), 1 ≤ i ≤ n in Algorithm 2. and
ξ(Fn(Ry), Fn(Ry)) in Algorithm 3

End
end for
for y = 1 : 2n − 1 : y ++ do

ψ(Θψ) →M e
0ΠTen+1,yM

e
yP(y,2n+1,even)

ψ(Θψ) → ψ(Θψ)

Φ(Θϕ) → ΠTon+1,xM
o
xΠTon+1,x

Φ(Θϕ) → Φ(Θϕ)
End

end for
ζ(Θζ)ψ(Θψ)Φ(Θϕ)
End Procedure

end procedure
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Theorem 4.4 The circuit implementation of a special unitary matrix on n-qubits with L layers
using Algorithm 2 requires at most L(2.4n + (n − 5)2n) CNOT gates, L(32 ·4

n − 5
22
n + 1) Rz gates

where L is the number of iterations/layers.

Proof: The proof follows from the above Algorithms. □
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2 F2(Rz) F2(Rz)
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.
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