
Open Research Online

Citation

Benats, Guillaume; Bandara, Arosha; Yu, Yijun; Colin, Jean-Noel and Nuseibeh, Bashar 
(2011). PrimAndroid: privacy policy modelling and analysis for Android applications. In: 
IEEE International Symposium on Policies for Distributed Systems and Networks, 6-8 Jun 
2011, Pisa, Italy. 

URL

https://oro.open.ac.uk/28528/ 

License

None Specified

Policy

This document has been downloaded from Open Research Online, The Open University's 
repository of research publications. This version is being made available in accordance 
with Open Research Online policies available from Open Research Online (ORO) Policies 

Versions

If this document is identified as the Author Accepted Manuscript it is the version after peer 
review but before type setting, copy editing or publisher branding

https://oro.open.ac.uk/28528/
https://www5.open.ac.uk/library-research-support/open-access-publishing/open-research-online-oro-policies


1

PrimAndroid: Privacy Policy Modelling and
Analysis for Android Applications

Guillaume Benats1,2, Arosha Bandara1, Yijun Yu1, Jean-Noël Colin2, and Bashar Nuseibeh1,3

1
Centre for Research in Computing, Department of Computing, The Open University, Milton Keynes, MK10 9FG, UK

{a.k.bandara,y.yu,b.nuseibeh}@open.ac.uk
2Faculty of Computer Sciences, FUNDP, Namur, Belgium

gbenats@student.fundp.ac.be,jean-noel.colin@fundp.ac.be
3Lero, Irish Software Engineering Centre, Ireland

nuseibeh@lero.ie

Abstract—The rapid growth of mobile applications has
imposed new threats to privacy: users often find it chal-
lenging to ensure that their privacy policies are consistent
with the requirements of a diverse range of of mobile ap-
plications that access personal information under different
contexts. This problem exacerbates when applications de-
pend on each other and therefore share permissions to ac-
cess resources in ways that are opaque to an end-user. To
meet the needs of representing privacy requirements and
of resolving dependencies issues in privacy policies, we pro-
pose an extension to the P-RBAC model for reasoning about
plausible scenarios that can exploit such weaknesses of mo-
bile systems. This work has been evaluated using the case
studies on several Android mobile applications.

Index Terms—Privacy policy, Mobile applications, Policy
conflicts, Android security, Role-based access control.

I. Introduction

GOOGLE’S Android has become a leading mobile plat-
form, supported by a wide community of developers.

Its popularity is reflected by the availability of over 100K
mobile applications on the Android Marketplace. A com-
mon feature of many of these applications is the ability to
access, store, modify and share users’ personal data in one
way or another. In fact, a study by Enck et al. [1] showed
that Android applications often misuse users’ data. Such
findings confirm our view that mobile applications raise
issues of privacy and trust, which need to be better under-
stood. Android is an attractive platform to study in this
regard because, being an open source system, it is possible
to get a better understanding of its security and privacy
mechanisms when compared with rival platforms.

Conventional approaches to protecting users’ privacy
have been based on guidelines such as UK Information
Commissioner’s Fair Information Principles or the OECD
guidelines on cross border information flows, both of which
contain the notion of informed consent. This requires that
any collection of personal data is preceded by users giving
their explicit consent for the data to be collected. This
is also the approach adopted by the way Android mobile
applications are installed: a user is first presented with
a list of required resources (i.e. data sources); then the
user gives permissions for the resources to be accessed by
choosing to proceed explicitly. External privacy manage-
ment tools such as Apex [2] extend the basic Android per-
mission system to allow users to specify conditions under
which an application is given permission to access the spec-

ified resources. For example, using Apex a user can specify
that “this application can only access GPS location when
country is United Kingdom” at installation time. Without
Apex, users can only grant the access to GPS Locations
without differentiate the contexts. Our premise for all sce-
narios cited in this paper is that Apex is already used to
manage permissions over resources.

In this paper we identify two significant shortcomings
in Android’s approach to privacy management. First, An-
droid’s permissions system allows applications to call each
other and under certain conditions one application can
make use of any permission that was granted to another
application. This raises significant privacy concerns be-
cause users are not made aware that an application that
has not request any access to personal data at the instal-
lation time can gain access to this data by calling another
application that was given the permission. Secondly, al-
though the Apex extension allows users to specify con-
straints on policies, there is currently no support for check-
ing conflicts inside the resulting privacy permissions. To
address these two problems, we extend the P-RBAC [3]
privacy policy model to represent dependencies between
applications together with the permissions granted to each
application. Our extension can thus support automated
analysis to identify permissions available to a particular
application, and the extended privacy policy model can
also be used to detect inconsistencies between the permis-
sions granted to applications.

The remainder of the paper is organised as follows. Sec-
tion II gives an overview of Android’s permission subsys-
tem; Section III presents a concrete scenario to lead our
discussions; Section IV presents our approach to analysing
Android permissions; Section V goes over the state-of-the-
art of practical privacy tools for Android; and Section VI
discusses our work and presents some conclusions.

II. Android and Apex Permissions Framework

Android [4] is a multi-process system based on a version
of Linux kernel. By default, Android assigns each appli-
cation its own unique UID. However, if explicitly specified
in the file “AndroidManifest.xml”, this UID can be set to
the same value for two or more applications. They will
then all share the same ID - provided that they are also
signed by the same certificate. Applications with the same



2

Fig. 1. Application dependency resulting from a shared UID

user ID can access each other’s data and, if desired, run in
the same process. Android applications do not contain a
single entrance such as the main method where everything
starts. Instead, all android applications are indeed a set
of components that are named activities and each activity
can be called by other applications. Each application, by
default, has no permission granted that allow it to perform
specific operations on phone’s resources or invoke services
from other applications.

The only way for an application to get a permission in
Android is to include it in the file “AndroidManifest.xml”.
All permissions requested in this file are then presented to
the user who installs the application, either all of them are
granted or nothing is granted if he refuses. This was one of
the limitations of the current Android system before using
a tool like Apex [2]. About a hundred permissions are pro-
vided by the Android system, for more details see [2] or the
Android developers webpage [4]. Examples of Android per-
missions are: write sms, internet, call phone, which
are respectively used to grant access to the “send SMS”,
“internet”, “calling” features of the mobile phone.

One application using activities (i.e.: components) of
another application can only do that if it is granted the
same permissions as the ones required by the callee. The
only way to override this is when two applications share
the same UID.

III. Android Scenario

This section presents a concrete case study to express
and deal with privacy issues mentioned in the introduction:

Alice installs three applications on her Android phone:
• GPSFriends: An application using Google Maps to lo-

cate friends who are using the same application.
• FreeGame: A free game application that Alice installed

by clicking at an advertising link.
• GPSWifi: An application to share free Wi-Fi locations

with friends.
Each application requests and obtains the following per-

missions at the installation time:
• GPSFriends and GPSWifi: access to location data.
• FreeGame: access to the internet.
Although Alice is not aware of it, these applications are

interrelated in the following way:
• FreeGame and GPSFriends are sharing the same UID

• GPSWifi both use GPSFriends to get the user’s loca-
tion.

The dependency graph in Figure 1 shows the relation-
ship between permissions (shown as ovals) and applications

(shown as boxes) for the GameApp and GPSFriends appli-
cations. An arrow from an application to a permission
indicates those permissions that are specified in the appli-
cation’s manifest file and are thus granted by the user at
the installation time. However, in this example the exis-
tence of a path from GameApp to Location indicates that
this application also has permission to access location data,
despite not explicitly requesting this permission from the
user. Figure 2 shows the dependencies between the GPS-
Friends and GPSWifi applications. The plain arrows show
“direct links”, i.e.: created by user granting permissions to
applications. Dashed arrows show “Indirect links”, a way
for an application to get permissions of another applica-
tion and this way accessing data it should normally not.
Indirect links created in this way are the privacy issues we
want to address.

Finally, Alice uses the Apex tool (see section II) to spec-
ify constraints that limit the conditions under which each
permission applies. These constraints are:

• GPSFriends: can only access location data if location
is in London and the time is between 8am and 4pm.

• GPSWifi: can only access location data if the location
is in the UK.

The above scenario illustrates how information in the
“AndroidManifest.xml” file only is insufficient for a user
to grant informed consent for an application to access per-
sonal data. This is because the installation process does
not expose how dependencies between applications can af-
fect the actual permissions available to the applications.
In order to address this issue, we propose an extension of
the P-RBAC specification [3] to support automated rea-
soning about the actual permissions available to an appli-
cation. Our modifications make it possible to take into
account both dependencies and user specified constraints
when reasoning about Android permissions.

IV. P-RBAC for Mobile Applications

The core of P-RBAC [3] is adapted to fulfill mobile per-
missions requirements, and in our case, Android permis-
sions requirements in the following manner.

Since Android devices are typically for a single user,
there is only one role to consider. Therefore we can let
the concept of “role” aside for now. It will be replaced
with the concept of “dependency groups” later on. In ad-
dition, we propose to remove the “purpose” concept from
the basic P-RBAC since the purpose description associ-
ated with Android permissions is simply a text label with-
out well-defined semantics to analyse privacy policies. We
keep the “obligation” entity even though it is not currently
supported by the Android permissions system, because it is
useful for logging the accesses to resources made by appli-
cations and for giving users feedback on potential privacy
violations.

We can now express simple Android permissions to-
gether with constraints using this model. Consider the
permissions and constraints defined by Alice in our case
study (III) :

The permission on GPSFriends: “GPSFriends can



PRIMANDROID: PRIVACY POLICY MODELLING AND ANALYSIS FOR ANDROID APPLICATIONS 3

Fig. 2. Dependencies due to usage of a component

only access location between 8 a.m and 4 p.m” can be
expressed as follows (ACCESS FINE LOCATION denotes the
Android permission to read the GPS sensor location):

permission(GPSFriends, ((has, ACCESS FINE LOCATION),

(time > 8∧ time < 16), Log Access())

However, the above permission expressions do not take
into account the dependencies that can arise between ap-
plications. To address this limitation we need to represent
dependencies between applications and to this end we in-
troduce a notion of ”dependency groups” into the P-RBAC
model. This new entity can be seen as the equivalence of
the “role” entity as an application belongs to a group de-
pending of its purpose. The details of this are discussed in
the next section.

A. Dependency-aware privacy

In order to include the notion of dependencies between
applications in the P-RBAC model, we introduce the “De-
pendency Groups” entity in-between applications and pri-
vacy data permissions. This makes a dependency group
analogous to a “role” in the original RBAC formulation.

This new “Dependency Groups” entity is referring to the
environment of an application in terms of usage dependen-
cies. Each application that invokes operations on other ap-
plications, and applications sharing the same UID, should
be assigned to the same dependency group. The permis-
sions are then granted to the group. The user can thus con-
strain those permissions with conditions like before, using
Apex, but those conditions would apply to all applications
associated with the concerned dependency group. Existing
tools would assign the same permissions on applications
that are used together. If two or more applications depend
on each other, then they belong to the same group.

Let A be a set of applications, G be a set of dependency
groups, R be a set of resources, X be a set of actions, and
O be a set of obligations, respectively, our P-RBAC model
is defined using a condition language LC, which includes
the following sets:

• Resources Permissions RP = {(x,r)|x ∈X,r ∈R};
• Privacy-sensitive Resources Permission PRP =
{(rp,c,o)|rp ∈RP,o ∈O, c is an expression in LC};

• Application Assignment AA⊆A×G is a set of many-
to-many mappings from applications to dependency
groups;

• Privacy-sensitive Resources Permission Assignment
PRPA ⊆ G× PRP is a set of many-to-many map-
pings from dependenccy groups to privacy-sensitive

Fig. 3. Privacy issue due to usage of another component

resource permission assignments.

Under this new formulation, GameApp would also be con-
strained by privacy rules over location, since both GameApp

and GPSFriends would be in the same dependency group,
sharing the same privacy rules. This makes it easier to
prevent unauthorised access to Alice’s location.

A potential complication of using dependency groups is
in dealing with situations where large number of applica-
tions are in the same group due to complicated dependen-
cies between all of them. Alice’s scenario is an extreme case
where there is a lot of relations between applications but
in a system with hundreds of applications, a lot of them
would run as standalone entities or be coupled with, at
most, one or two other applications. Therefore, we expect
dependency groups to be of a manageable size.

An application can also belong to several groups, as long
as the application does not share a UID with an application
of a different group. So, if application a1 is in group g1
and g2, and it shares a UID with application a2, which
is in group g2, then groups g1 and g2 should be merged.
In our scenario, for example, GPSWifi could be in another
dependency group meant for internet settings applications,
as well as being in a dependency group with GPSFriends.

Now let’s have a look at another interesting scenario
which is avoided with our dependency groups entities:
Imagine that Alice has added a new condition on the
permission of GPSFriends to access location, constraining
access to location information when she is in London:

Permission1: (GPSFriends, ((use, ACCESS FINE LOCATION),

Location = London, Log Access() ))

Alice also constrains GPSWifi to be granted access to
location information only when her location is in the UK:

Permission2: (GPSWifi, ((use, ACCESS FINE LOCATION),

Location = UK, Log Access() ))

However, the problem that arises is that GPSWifi has not
been given a direct permission to use the GPS location
data. Instead it accesses location data via GPSFriends,
which now has a constraint that limits its ability to access
location information to those times when Alice is in Lon-
don. This means that any attempt by GPSWifi to access
location information when Alice is in the UK, but outside
of London will fail, because GPSFriends does not have the
required permission in this situation.

There are two possible solutions to this problem, the



4

first one being to grant GPSWifi a direct permission to lo-
cation data which can then be constrained to be applicable
whenever Alice is in the UK. Alternatively, we could define
a dependency group and assign GPSWifi and GPSFriends

to it. This would allow Alice to define the conditions she
wanted on permissions for the whole group and not for each
application separately as if they were used in completely
different groups.

In addition to dependency-aware permissions manage-
ment, we also have to deal with the issue of constraint con-
flicts that could arise when users are allowed to specify the
conditions under which particular permissions arise. In-
deed, Alice can now define privacy rules on a “dependency
group” and, this way, constraining permissions of all appli-
cations inside this group. However, if the constraints she
defines inside a group conflict with each other, all the ap-
plications belonging to the same group could be prevented
from accessing required resources; otherwise they will be
allowed access them under the wrong circumstances. We
deal with the issue of constraint conflicts in the next sec-
tion.

B. Constraint Conflicts

As GPSWifi uses GPSFriends to get information about
location, they will end up in the same dependency group,
thus the two constraints added by Alice on each applica-
tion would lead to conflicting constraints (i.e. conditions
in our P-RBAC model) in our dependency group since it
is not possible to enforce both permissions together. This
becomes apparent when we combine the permissions by
taking the conjunction of the conditions specified:

Permission1 ∧Permission2: (Group1, ((use,

ACCESS FINE LOCATION), time > 16 ∧ time < 20 ∧ time >

8∧ time < 16, Log Access() ))

We have a conditions conflict due to conflicting con-
straints between both privacy rules. The algorithm used
in P-RBAC [3], based on a SAT solver, is the one we im-
plement for detection of those conflicts. If one applies this
algorithm to Alice’s scenario, the result would be true as
she defined two conflicting constraints on applications in-
side the same dependency group.

V. Related Work

This section briefly presents some of the research litera-
ture on privacy management in mobile applications, focus-
ing on the investigations of the Android system.

Research on extending the Android permission frame-
work has concentrated on implementing fine-grained,
context-aware policy mechanisms [5], [6]. However, these
approaches do not include mechanisms for detecting pri-
vacy problems that arise due to application dependencies.
Other work has explored ways in which the Android per-
mission system can be attacked [7] using application depen-
dencies, but does not suggest ways of detecting or resolving
these problems.

There is also work focusing on monitoring Android ap-
plications to detect information leakage [1], [8]. The scope
of our work is thus limited mainly on the idea of depen-
dency and its impact on privacy.

VI. Discussion and Conclusion

In this paper we present a modified P-RBAC model to
represent scenarios of Android applications, and to reason
about dependencies between applications and the impact
on user privacy when those applications use each other
as services. In addition to expressing permissions scenar-
ios, our model allows resolution of some current issues
of privacy in Android applications. Along with existing
tools such as Apex, it addresses some privacy weaknesses
that were still present in Android and allows expression of
more advanced policies to rule out those issues. Our ap-
proach of user-defined rules can be an overhead to users, it
is why our upcoming prototype focuses on an easy-to-use
policy management application. Although other mobile
platforms such as the iOS are as important, they are not
as open as the Android platform. In future we will study
whether it is possible to make such extensions applicable
to the iOS platforms.

VII. Acknowledgments

This work was undertaken as part of an internship at
the Open University for a master thesis in Computer Sci-
ences at the University of Namur. The work was in part
funded by the EPSRC PRiMMA project and the EU FP7
SecureChange Project.

References

[1] W. Enck, P. Gilbert, and B.-G. Chun, “Taintdroid: An
information-flow tracking system for realtime privacy monitor-
ing on smartphones,” 2010.

[2] M. Nauman, S. Khan, and X. Zhang, “Apex : Extending Android
Permission Model and Enforcement with User-defined Runtime
Constraints,” Apr. 2010.

[3] Q. Ni, A. Trompette, E. Bertino, and J. Lobo, “Privacy-aware
role based access control,” ACM Press, June 2007.

[4] Google, “Security and permissions,” 2010.
http://developer.android.com/guide/topics/security/.

[5] M. Conti, V. Nguyen, and B. Crispo, “Crepe: Context-
related policy enforcement for android,” in Information Secu-
rity (M. Burmester, G. Tsudik, S. Magliveras, and I. Ilic, eds.),
vol. 6531 of Lecture Notes in Computer Science, pp. 331–345,
Springer Berlin / Heidelberg, 2011.

[6] G. Bai, L. Gu, T. Feng, Y. Guo, and X. Chen, “Context-aware
usage control for android,” in Security and Privacy in Commu-
nication Networks, vol. 50 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, pp. 326–343, Springer Berlin Heidelberg, 2010.

[7] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Priv-
ilege escalation attacks on android,” in Information Security
(M. Burmester, G. Tsudik, S. Magliveras, and I. Ilic, eds.),
vol. 6531 of Lecture Notes in Computer Science, pp. 346–360,
Springer Berlin / Heidelberg, 2011.

[8] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid : Auto-
mated Security Certification of Android Applications.” Technical
Report.


