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Abstract—Evacuee routing algorithms in emergency typically
adopt one single criterion to compute desired paths and ignore
the specific requirements of users caused by different physical
strength, mobility and level of resistance to hazard. In this
paper, we present a quality of service (QoS) driven multi-path
routing algorithm to provide diverse paths for different categories
of evacuees. This algorithm borrows the concept of Cognitive
Packet Network (CPN), which is a flexible protocol that can
rapidly solve optimal solution for any user-defined goal function.
Spatial information regarding the location and spread of hazards
is taken into consideration to avoid that evacuees be directed
towards hazardous zones. Furthermore, since previous emergency
navigation algorithms are normally insensitive to sudden changes
in the hazard environment such as abrupt congestion or injury
of civilians, evacuees are dynamically assigned to several groups
to adapt their course of action with regard to their on-going
physical condition and environments. Simulation results indicate
that the proposed algorithm which is sensitive to the needs of
evacuees produces better results than the use of a single metric.
Simulations also show that the use of dynamic grouping to adjust
the evacuees’ category and routing algorithms with regard for
their on-going health conditions and mobility, can achieve higher
survival rates.

Keywords—Emergency navigation, QoS driven protocol, Dy-
namic grouping, Cognitive Packet Network.

I. INTRODUCTION

The advancement in information technology (IT) has fa-
cilitated the emergence of complex emergency management
systems (EMS) [1] based on in-situ wireless sensor networks
(WSN). However, in most of the applications, routing algo-
rithms use a single criterion to choose paths for all evacuees
without considering their specific requirements due to variance
on age, mobility, level of resistance to hazard etc. For instance,
evacuees such as sick people or aged people need to choose
the safest paths that will be well ahead of the spreading hazard
while for others may prefer the quickest paths without hazard.
In this paper, we propose a multi-path routing algorithm to
tailor different services to diverse categories of evacuees.
Moreover, the category that an evacuee belongs to can shift
in terms of their on-going physical conditions. We use the
concepts of the Cognitive Packet Networks (CPN) to search
escape paths for the evacuees in a building based on predefined
metrics. The remainder of this paper is organised as follows. In
the next section we review the literature relevant to our work.
Section III presents the concept of CPN and its variations for
the evacuee routing problem. The routing metrics used in CPN
as well as dynamic grouping mechanisms are then introduced
in Section IV and Section V, respectively. The simulation

models and assumptions are described in Section VI and the
experimental results are presented in Section VII. Finally, we
draw conclusions in Section VIII.

II. RELATED WORK

Disaster management and building evacuation can improve
significantly with the help of IT solutions. Initial research in
this field were actually driven by defence applications [2] in-
cluding enhanced reality simulators [3] and evacuation models
that incorporated models of human mobility and behaviour [4].
Recent survey articles [5], [6] can assist in selecting research
directions with agent-based models that offer some level of
realism by representing each individual evacuee as an agent
that follows specific goals.

Research then moved further to the development of com-
plex Emergency Cyber-Physical-Human systems to direct
evacuees to exits in a real time [7] with sensor nodes (SNs) re-
sponsible for collecting hazard information while the decision
subsystem composed of decision nodes (DNs) provides advice
to evacuees through visual indicators or portable devices.
Li et al. [8] implement a WSN consisting of sensors that
continuously monitor the environment and distribute a danger-
level map across the network. Optimization methods have been
suggested [9] using distributed decision making with random
neural networks [10], [11] to overcome the huge complexity of
decision making for a large number of agents in the presence of
spatial information to help select exit routes and decide about
the appropriate allocation of rescuers and technical assets.

Communications are essential in this context, but they can
easily malfunction during emergencies. To ease this prob-
lem, in [12] a resilient emergency support system (ESS)
disseminates emergency messages to evacuees with the aid
of opportunistic communications (Oppcomms). Experimental
results indicate that this system is quite resilient to network
failures during an emergency. Because Oppcomms are sus-
ceptible to malicious attacks [1] a defense mechanism that
uses a combination of identity-based signatures (IBS) and
content-based message verification to detect malicious nodes
is proposed, while in [13] an infrastructure-less emergency
navigation system guides evacuees with the aid of smart
handsets and cloud servers. As the core of EMS, navigation al-
gorithms also have motivated considerable research. Potential-
maintenance approaches such as [14], [15] establish global
navigation graphs via assigning each sensor a potential value
which is determined by the distance to exits and/or the hazard
area. Evacuees are directed towards the exit along the paths
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with the smallest cumulative potential. To avoid civilians being
directed to hazards [8] one can use artificial potential fields
where the exit generates an attractive potential which “pulls”
the evacuees towards it while the sensors in dangerous areas
generate a repulsive potential that “pushes” them away. How-
ever, these approaches require massive information exchanges
to synchronise the navigation map of each sensor.

The notion of “effective length” [7] calculated as the
product of the physical length and the hazard intensity, together
with Dijkstra’s algorithm can compute the best path to exits
[16], [17], and can include [18] information about the spatial
hazard. The “Uniformity principle” [19] is also useful in
showing that proper allocation of evacuees to routes, such that
all exit routes have the same clearance time, is essential in
minimizing evacuation time [20], while in [21], [22] network
flow models mimic evacuation planning problems and convert
the original network to time-expended networks. To reduce the
high computational cost caused of these linear programming
methods, in [23] the Cognitive Packet Network is used for
route discovery.

III. COGNITIVE PACKET NETWORK

A. CPN Architecture

The Cognitive Packet Network [24], [25] was initially
proposed for packet routing in large scale packet networks, and
was first suggested for evacuee routing in [26] via integrating
with a m-sensible routing algorithm [27]. Unlike traditional
packet network protocols where routers have all the intelli-
gence, CPN constructs intelligence into packets for routing
and flow control through a decentralised self-adaptive decision
architecture [28] offering a framework to implement learning
algorithms and adaptation.

CPN contains three types of packets - smart packets (SP),
acknowledgement packets (ACK) and dumb packets (DP).
Each CPN node maintains a Mailbox (MB) storing diverse
classes of QoS information grouped under path and associated
QoS measurements, which is regularly updated by ACKs that
traverse the node. A MB will discard expired QoS information
or the worst one when reaches its capacity. SPs are sent by
CPN nodes to explore the network and gather relevant informa-
tion with respect to a user-specified QoS. The measurements
made by the SPs represent their “experience” of the network
state and future SPs exploit this in making better decisions. The
preferred learning method is the RNN [29] with reinforcement
learning (RL) which penalizes or rewards SP decisions so that
subsequent decisions can provide better results in meeting QoS
goals. The QoS goals (routing metrics) which are detailed in
Section IV are the inputs of RNN. When an SP reaches one
exit, an ACK, carrying the SP’s measurements, is generated by
the destination node and travels back to source node along the
discovered loop-free path. The ACK updates the MB of every
node along its path and triggers the nodes to run the learning
algorithms and update the relevant decisions. The DPs, which
carry the payload, are always source-routed using the highest
ranked path information. The DPs can also be used to carry
out measurements. In summary, the first set of SPs sent aim
to primarily establish connection between the source and the
intended destination while the subsequent SPs update the path
to optimising a given QoS metric. To improve performance

and avoid unnecessary burden of the network, lost packets
will be discarded. An SP is considered lost if it has traversed
a set number of hops or for a set time without reaching its
destination while an ACK or a DP is lost if enters a node that
is not along its specified path.

B. Variations for Evacuee Routing Problem

CPN is suitable for resource-limited emergency environ-
ments because each CPN node can adaptively collect infor-
mation with “interested” counterparts rather than synchronise
data with all the other nodes in the environment. To adapt the
original CPN to emergency evacuation problems, we assume
that a wireless sensor network, which consists of sensor nodes
(SNs) and decision nodes (DNs), is deployed in the built
environment. Each DN is considered as a CPN node and can
emit SPs to other DNs to explore the environment. Guiding
evacuees in the presence of a spreading hazard is similar to
routing packets in a fast-changing packet network. By using
CPN, each source node in a computer network can discover
routes to destinations with respect to the pre-defined QoS goals
and DPs can then follow the top ranked routes to achieve cer-
tain QoS requirements. Similarly, during an emergency, each
decision node in the EMS sends SPs to search physical paths
to exits for the evacuees in proximity. Therefore, evacuees can
be considered as DPs. However, unlike DPs, evacuees cannot
be source-routed as they need path updates in case the initial
path becomes dangerous or congested. This represents a major
challenge as, ideally, an evacuee should only get an updated
path if the present path becomes bad, but since only a path’s
source node will know if an old path becomes bad and by that
time, an evacuee already given the old path would have left
and therefore cannot be informed. Based on our assumption
that all evacuees can receive full path information, we use a
movement depth value that ensures every evacuee traverse a
given number of nodes before getting an update. The optimal
movement depth value for any emergency scenario, will be a
function of the evacuee distribution and possibly the decision
algorithm. In our treatment, the movement depth of evacuees
is set to 3.

IV. ROUTING METRICS

The routing metrics are the QoS goals that are pursued
by SPs and optimised by the RNN algorithm. When an
ACK brings back sensory data to the source node, collected
information will be extracted and then measured by routing
metrics, the result will be used as input of RNN. In this section,
we propose two metrics that integrate with spatial information
gathered by SNs to guide evacuees. As shown in Figure 1, we
hypothesize that DNs are located at the vertices of the building
graph and calculate advices for evacuees in proximity. SNs
are located along each edge and provide real-time information
with respect to the conditions of their immediate environment
that will be relevant in computing the optimal paths. Spatial
information of a DN i is obtained by virtue of observations
from a set of nearby SNs, which is defined as Ni. A SN s
is considered to belong to set Ni if the Euclidean distance
between the SN s and the DN i is not greater than a certain
distance R, i.e., Ni := {s ∈ S : d(i, s) ≤ R} where S is
the set of all SNs in the building and d(i, s) represents the
Euclidean distance between a DN i and a SN s. Each SN



estimates the hazard intensity H along the edge it is located
as:

H =

{
1 if no hazard is present
k · 103 otherwise

where k is an integer in the interval [1, 8] that indicates the
level of the detected hazard. Each SN also records the time
instant when it first detects the hazard.

Fig. 1. DNs are located on the black dots while SNs are positioned on the
red rings. SNs in the green circle belong to the spatial set of N570002.

Each DN can obtain the hazard intensity estimated by the
SNs along all its incident edges. The DNs can also obtain
sensory data from all SNs within their spatial set when R has
a nonzero value. A DN i uses these measurements to compute
the effective length of all its incident edges as follows:

Eπ(s) = lπ(s) · [Hπ(s) +

∑n
j=1;j 6=sHπ(j)

n− 1
] (1)

where π(s) represents the edge that SN s locates on. Eπ(s)
is the effective length of the edge π(s); lπ(s) is the physical
length of the edge π(s); Hπ(s) is the estimated hazard intensity
by sensor s; term n is the number of sensors belonging to the
spatial set Ni of the DN. If R = 0, the summation in (1)
evaluates to zero and the effective length becomes:

Eπ(s) = lπ(s) ·Hπ(s) (2)

When the hazard is first detected, each DN computes its initial
predicted hazard reach time as:

tinitial =
d(i, f)

Hs
(3)

where d(i, f) depicts the Euclidean distance between a DN
i and the fire source location f , Hs is the estimated hazard
spread rate. Similarly, when R is nonzero and one of the SNs
in a DNs spatial set first detects the hazard, the DN can also
compute the hazard reach time from the SN as:

tpredn =
d(i, s)

Hs
(4)

where d(i, s) represents the Euclidean distance between a DN
i and the hazardous sensor location s, Hs is the estimated
hazard spread rate.

A DN regularly computes its hazard time thaz , which is the
estimated time before a node becomes hazardous, as follows:
◦ If R 6= 0 (considering spatial information)

thaz = min{(tinitial − telapsed),min
s∈N

[tspredn − tsenode]} (5)

◦ Otherwise
thaz = tinitial − telapsed (6)

where telapsed is the time since the hazard started; tspredn is the
initial predicted time for the hazard at SN s, which belongs
to spatial set of the DN, to reach the DN, evaluated using
4; tsenode is the time elapsed since the sensor s detected the
hazard. If a SN in the spatial set of a DN has not detected the
hazard, the DN sets its value for (tspredn − tsenode) to a very
large number.

The two metrics that we consider in the experiments
are described as follows. Time metric customises paths for
prime-aged adults (“class one group”) while safety metric is
associated with children and the elderly (“class two group”).

Time Metric: the primary goal of this metric is to choose
egress paths that minimise the evacuation times of the evac-
uees. The path traversal time is estimated as follows:

Gt =

n−1∑
i=1

[
E(π(i, i+ 1))

V
+ tdelay] (7)

where π represents a particular path and n is the number of
DNs on it. Term i depicts the i-th DN on the path. E(π(i, i+
1)) is the effective length of the edge π(i, i + 1) connecting
the nodes i and i+ 1 and V is the speed of the evacuee.

We assume an evacuee at a node to be a customer waiting
to be served by a DN where the service is obtaining the best
escape path based on the operating metric. We also assume
that only one evacuee can be served at a time by a DN so that
when evacuees arrive at a DN while it is busy, the evacuees
will be considered to be in a queue. Therefore, tdelay estimates
the possible congestion delays that might be experienced by
an evacuee at the nodes of an escape path using the Little’s
theorem as follows:

tdelay =
qi + ti · (ai − di)

ai
(8)

where qi is the present queue length of node i, ti is the time for
an evacuee to reach node i and ai and di are the average arrival
and average departure rates of node i. The DNs are used to
estimate these values. Term tdelay is set to zero if (8) evaluates
to a negative value so as to comply with the non-decreasing
property of a QoS metric stated in [27].

Safety Metric: in this case, we seek paths such that the
evacuees are ahead of the spreading hazard. For a path between
any node i and a destination or exit node n, this metric is
evaluated by the hazard intensity of a route:

Gs =

n−1∑
i=1

[L[ti − tihaz] · ci + s(π(i, i+ 1))] (9)

where ti is the predicted time for an evacuee to reach node i,
tihaz is the computed hazard time of node i, ci is the hazard
growth rate at node i and s(π(i, i + 1)) is a safety value
for the edge between nodes i and i + 1. The safety value
ensures that Gs never evaluates to zero for an entirely safe
path which prevents the inverse of the metric (G−1s )) from
being undefined. In our treatment, we set this safety value as
the effective length of the edge. The function L[x] takes the
value x if x is nonnegative and zero if x is negative.

For the time metric, we include the spatial information
in order to prevent the system from directing the evacuees
close to hazardous regions, while for the safety metric, the



spatial information helps in updating the initial prediction of
the hazard time. The level of the spatial information used by
the DN is determined by the value of R.

In our simulations, each DN stores information relevant to
evaluating the path metrics given in (7) and (9). Therefore, a
DN should compute the following values:

• The effective length H of all its incident edges.

• Its hazard time thaz .

• The estimates of its queue length, average arrival and
average departure rates.

An estimate of the average arrival rate is regularly updated
by the DN using the number of the evacuees that have arrived
the node during a certain time period. The average departure
rate is set to 1 as this is the average time cost for a DN to serve
an evacuee. To minimise the complexity of our problem, we
choose a constant value of 20cm/s as the value of the hazard
spread rate for the simulations.

V. DYNAMIC GROUPING MECHANISMS

To the best of our knowledge, previous studies in emer-
gency navigation persist on a single decision algorithm during
the whole evacuation process and do not adjust in accordance
with individuals’ physical conditions and their immediate
environments. Although we have divided evacuees into two
groups with separate routing metrics in Section IV, we believe
it is necessary for evacuees to be able to switch groups during
an evacuation if certain conditions are fulfilled. For instance,
when an individual which belongs to the “class one group” gets
injured, it should be adapted to the safer “class two group” due
to the reduced mobility and injury. Hence, in this section, we
present two dynamic grouping mechanisms to enable evacuees
to change groups and the associated algorithms rather than
stick to the pre-defined groups.

This first mechanism is very simple: any evacuee in the
first category whose health level has dropped below 50% of
its original value will be immediately considered as a class
two agent. Hence, instead of choosing paths with the shortest
time to exits, evacuees will choose safest escape paths. The
other mechanism is proposed based on the observation that
certain vertices located in broad areas such as a hall can still
have a long queue and the connected paths are not sufficiently
used. These vertices are normally linked with “bottlenecks”
such as staircases where stampede or continuous congestion
may occur. Although both the time metric and safety metric
take predicted congestion level of a route into consideration,
the effect of other factors in the metrics such as “effective
length” may induce evacuees at a vertex to choose an identical
path. To exclude the influence of other factors, we consider
the potential number of congestion encountered on a path as
a secondary QoS metric and propose a congestion-alleviate
mechanism to balance the main QoS requirement and the
secondary QoS need. This congestion-ease policy makes use of
the mailbox of CPN nodes and chooses a less congested path
with acceptable main QoS value (safety level or egress time)
rather than the top ranked path when the congestion level is
high. More specifically, if the queue length at a vertex is larger
than or equals to a certain value (In our treatment, we set it to

4), the related DN will re-assign the newly arrived evacuee to
the congestion-ease group and suggest a less congested path.

VI. SIMULATION MODEL AND ASSUMPTIONS

Experiments are conducted on a Java-based multi-agent
simulation tool, namely Distributed Building Evacuation Sim-
ulator (DBES) [7], [30], which can import various building
models to mimic confined spaces and use autonomic actors
to imitate crowd behaviours. The building model in this paper
simulates the three lower floors of the EEE building at Imperial
College London as shown in Fig. 2.

Fig. 2. Graph representation of the building model. Vertices (black round
dots) represent locations where people can congregate such as rooms, door-
ways and corridors while the two black stars on the first floor depict exits.

Evacuees are divided into “class one agent” (adults, 16 -
50 years) and “class two agent” (children or aged people) in
accordance with their age. The two categories adopt different
mobile and health models in which class one agent has higher
mobility and higher resistance to fatigue and the hazard. The
initial health level of simulated evacuees is set to 100 and
will decrease due to fatigue and exposure to the hazard. If
the health level of an evacuee falls below 50, its speeds will
also drop to half of the initial value. Initially, evacuees are
randomly scattered in the building and are assumed to carry
portable devices that can receive advices from the emergency
management system.

VII. EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed algorithm,
we simulate a fire-related disaster in the building model with
diverse occupancy rates (30, 60, 90 and 120 evacuees). The
proposed algorithm which combines time metric and safety
metric is examined under different levels of spatial informa-
tion. The level of spatial information is determined by the
operating communication range (R) of DNs. For comparison
purposes, two algorithms which use time or safety metric
individually are also experimented.

A. Average Survival Rate

As shown in Figure 3, for low levels of occupancy (30
and 60 evacuees), the safety metric (SM) achieves best perfor-
mances on its own, while the time metric (TM) gives the worst
performance overall. This is because unlike SM which tends
to guide all the evacuees to the safest path, evacuees using
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Fig. 3. The average survival rates for the decision algorithms. The experimen-
tal results are the average of 5 simulations, the error bars show the min/max
result in any of the five simulation runs.

TM may take the risk to traverse potential hazard areas in
order to reduce the evacuation time. However, some evacuees
may perish due to the decreased mobility caused by injury. The
combined metrics (CMs) reach the performance of SM because
they can naturally ease congestion by generating separate
channels for two categories of evacuees. Moreover, rather than
stick to the quickest path with higher risk, injured evacuees can
switch to the safest path due to the benefit of dynamic grouping
and therefore reduce fatalities.

On the other hand, for high population densities (90 and
120 evacuees), CMs perform the best among all the algorithms.
This is because the congestion level has a considerable impact
on the system performance in densely-populated scenarios. For
90 evacuees, because CMs can assign evacuees to a third group
when severe congestion occurs (queue length > 3) and suggest
a less congested path with an acceptable QoS level, paths in
broad areas are more sufficiently used and evacuees can reach
exits with less latency. In addition, at this level, TM can be seen
to perform better than SM. This is because TM can alleviate
congestion more efficiently in comparison with SM. On the
other hand, for 120 evacuees, CMs only perform slightly better
than other two metrics, the reason is that the congestion-ease
mechanisms are invalid to some extent in this scenario due to
the extremely high occupancy.

In summary, CMs gain better results than other algorithms
and CM with R = 300 achieves the overall best performance.
This reflects that the range of spatial hazard information (R)
can affect the system performance. When R is too small,
evacuees are insensitive to the hazard and may choose risky
routes. Hence, spreading hazard may block the chosen route
and evacuees will have to traverse a detour path. On the
contrary, if R is too large, some paths with acceptable safety
level may also be excluded and this can induce insufficient
use of routes. Towards comparison algorithms, SM gains good
performance in low occupancy rates but bad performance
in high occupancy rates. This is because in order to keep
all the evacuees far away from the hazard, SM only directs
evacuees to safest paths and has the potential to cause jam-
ming. When the population is low, this issue is negligible
but can induce continuous congestion in densely-populated

scenarios. Conversely, TM achieves unacceptable performance
in low occupancy rates but improved results in high occupancy
rates. This is because the quickest paths tend to traverse areas
with potential risks and evacuees with low health level may
perish owing to the fast spreading of the hazard as well as
significantly reduced mobility. In high population densities, the
embedded congestion ease mechanism of TM is less effective
because injured evacuees with significantly reduced mobility
become “obstacles” for other civilians and induce continuous
congestion.

B. The Effect of Dynamic Grouping

In the simulations where we consider CMs, a class one
evacuee whose health level falls below 50 will be immediately
considered as a member of second class. Moreover, an evacuee
that reaches a vertex with more than 3 individuals will be
assigned to the congestion-ease group and choose a less
popular path. In order to evaluate the effect of the “dynamic
grouping”, we repeat the experiments by routing two categories
of evacuees with SM and TM separately and avoid changing of
class. This means that class one agents will use TM throughout
each simulation. Figures 4 and 5 show the comparisons of
results with R = 0.
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Fig. 4. Percentage of survivors, Combined metrics with R = 0. The results
are the average of 5 simulations, the error bars show the min/max value in
any of the five simulation runs.

The results indicate that the dynamic changing of groups
generally has a positive impact on the system performance.
Figure 4 shows that dynamic grouping can improve the survival
rate in highly population densities. From Figure 5 we can
see that the use of congestion ease mechanism introduced in
Section V can reduce the congestion level of evacuee flows.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a multi-path routing algorithm to
direct different types of evacuees with respect to their on-going
requirements. Spatial hazard information is combined into
routing metrics of CPN to prevent evacuees from being guided
into hazards and provide a more accurate prediction on the fire
spreading rate. Two dynamic grouping mechanisms which ad-
just the type and the associated decision algorithm of evacuees
are presented with regard to evacuees’ physical conditions and
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Fig. 5. Average congestion times, Combined metric with R = 0. The results
are the average of 5 simulations, the error bars show the min/max value in
any of the five simulations.

surrounding environments. The results indicated that this QoS
driven routing algorithm provides improved performance and
the use of dynamic grouping can achieve higher survival rates.
The simulation results also imply that appropriate setting of
parameters such as the range of spatial hazard information can
significantly improve the performance of a routing algorithm.
Hence, future research will focus on cloud-based fast-than-
real-time simulation to seek optimal parameters or choosing
appropriate navigation algorithms from initial conditions, and
look at how search [31], communications [32] and energy
consumption [33] can be optimised.
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