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Abstract—We are presenting here a detailed analysis and
performance characterization of a statistical temperature down-
scaling application used in the MAELSTROM EuroHPC project.
This application uses a deep learning methodology to convert low-
resolution atmospheric temperature states into high-resolution.
We have performed in-depth profiling and roofline analysis
at different levels (Operators, Training, Distributed Training,
Inference) of the downscaling model on different hardware
architectures (Nvidia V100 & A100 GPUs). Finally, we compare
the training and inference cost of the downscaling model with
various cloud providers. Our results identify the model bottle-
necks which can be used to enhance the model architecture and
determine hardware configuration for efficiently utilizing the
HPC. Furthermore, we provide a comprehensive methodology
for in-depth profiling and benchmarking of the deep learning
models.

Index Terms—Performance Analysis, Roofline Model, Weather
Forecast, Deep Learning Benchmark

I. INTRODUCTION

The use of AI and machine learning involves a considerable
amount of computing resources in training the models and,
to a lesser degree, in production when the models are used.
It is essential to understand the computational needs of a
model in training and inference to i) give it enough resources
and ii) not give it more than needed so that resources are
not wasted. In this paper, we present a thorough perfor-
mance analysis and characterization of the MAELSTROM
Temperature Downscaling (MTD) application which is a post-
processing methodology to convert low-resolution atmospheric
grid space into high-resolution grid space using a Convolution
Neural Network (CNN). The statistical downscaling technique
used in MTD is highly inspired by CNN-based image super-
resolution because it takes grid-based input, learns spatial-
temporal patterns from trained data, and converts the low-
resolution atmospheric states to a high-resolution [1], [2]. The
MTD application uses a U-Net [3] architecture to enhance the
spatial resolution of atmospheric T2M (2 meters above surface
air temperature) [4]–[6]. The approach we take to analyze
and characterize the downscaling application is to combine
modular-level deep learning benchmarking [7] with roofline
analysis [8], where we study i) the operators that make up
the model, ii) the inference network, and iii) the training of
the network. We specifically concentrate on the convolutional

operators of the U-net model architecture. These are studied
with the help of roofline graphs to understand how close
the application performance is to the architecture’s empirical
limits. The platforms we have chosen to study the application
are Nvidia A100 and V100 GPUs. Improving the accuracy of
the MTD model is not part of our research.

The contributions of our work include the following:
• An analysis of the main computational components of the

MTD application and their computational need,
• Roofline characterizations of the convolutional operators

of the MTD application on A100 and V100 GPUs,
• Benchmarking of inference and training performance on

A100 and V100 and provided methodology to effectively
to utilise A100 GPU for MTD model inference

• A cost-analysis on some of the major cloud providers,
• A methodology to capture performance data for the

above-mentioned performance measurements.
To identify the bottleneck of convolution operators, we used

roofline analysis by varying convolution operator parameters
such as kernel, strides, and filters. Our benchmark and profiling
techniques shows tensor core utilization across multiple GPUs
and energy utilization for training. Using our performance
metrics results, developers can enhance the MTD model
architecture and adjust the hardware configuration to utilize
the underlying hardware effectively. For example, fixing the
batch size, selecting the optimal number of GPUs for training,
and finding cost-effective cloud instances for inference and
training.

Fig. 1: MAELSTROM Temperature Downscaling Model Input
and Target Output of T2m (2 meters above surface air temper-
ature) values plotted using cartopy-matlplotlib of Grid Space
[96 x 128] in the zonal and meridian directions.
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Fig. 2: MAELSTROM Temperature Downscaling Model Architecture
.

II. BACKGROUND

A. The MAELSTROM Temperature Downscaling Application

The MTD model uses a U-Net architecture to convert low-
resolution grid space atmospheric 2m temperature states into a
high resolution [3]. For training the MTD model, we used data
provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF) in the form of the HRES1 dataset using
the Bi-linear interpolation technique. The target T2M (2 meters
above surface air temperature) is the direct output of the
ECMWF HRES dataset; that is why input T2M looks like
smooth temperature fields, whereas target T2M is sharpened
because the original data is captured in complex terrain, as
shown in Figure 1.

The MTD model architecture is illustrated in Figure 2. The
most compute-intensive parts are the 2D convolution layers
(Conv2D). The MTD model accepts input of 96 × 128 × 3
grid space, data variables are (Low-resolution T2M, elevation
and High-resolution elevation) and generates two outputs,
each with the shape of 96 × 128 × 1 (High-resolution T2M
and elevation). MTD’s model contains a total of 3525650
trainable parameters and 3360 non-trainable parameters with
7.5GiB training data and 0.95 GiB of validation data. The
current dataset contains only the central part of Europe. More
coarsened HRES data across Europe on different periods will
be added to improve the precision, so the MTD models will
require retraining with new data to increase the accuracy of
enhancing the spatial resolution of T2M.

B. Hardware aspects

We have chosen to base most of our analysis on measure-
ments on the Nvidia V100 and A100 GPUs. These are compu-
tational engines built specifically for AI and machine learning
applications. Table I summarizes the main characteristics of
these platforms. Both A100 and V100 use a Tensor Cores (TC)

1https://www.ecmwf.int/en/forecasts/datasets/set-i

TABLE I: Nvidia V100 and A100 main specifications.

V100 A100
FP64 7.8 TFlop/s 9.7 TFlop/s
FP32 15.7 TFlop/s 19.5 TFlop/s
Tensor Cores 125 TFlop/s 312 TFlop/s
GPU Memory 16 GB 40 GB

to accelerate the computing of matrix-matrix multiplication,
and it is widely used in deep learning model training. A100
TC supports single precision (FP32), half-precision (FP16),
BFLOAT16 and INT8. Whereas V100 only supports half
precision tensor core.

C. Benchmarking Deep Learning Models

Various deep learning benchmark suites are available like
MLPerf [9], Dawnbench [10], and Deepbench [11] [12].
Most suites support high-level profiling aspects, like wallclock
performance metric, accuracy, training, and validation loss.
Ben-Nun et al. [7]. proposed a modular level approach to
benchmark a deep learning model on various levels, including
distributed training, but it lacks to identify the bottlenecks of
operators and cloud costs. However, low-level profiling is vital
to identify the bottlenecks of model architecture efficiency.
Researchers used roofline analysis to identify the bottlenecks
of deep learning applications, but it is limited to the operator-
level investigation [13], [14]. Yang et al. [8] proposed hierar-
chical roofline analysis to identify bottlenecks in convolution
operator and model training; however, this methodology lacks
to extend it to distributed training.

We propose a comprehensive and in-depth profiling method-
ology for benchmarking and performance analysis of deep
learning models to fill the gap in the previous research work.
We combine the modular level approach of deep learning
benchmark and roofline technique [7], [8] with cost analysis
and dissect the model into five levels: Operator, Training,
Distributed training, Inference, and Cloud cost comparison.



We performed deep profiling at each level and identified the
performance bottlenecks of the model for future enhancement.
Furthermore, we provided a methodology to use A100 GPU
for inference effectively.

III. METHODOLOGY

We separated the experiments into multiple levels: Operator,
Training, Distributed training, Inference, and cloud compute
cost comparison. For the operator level, we conduct the
experiment on the MTD model’s convolution operators. We
perform roofline analysis on NVIDIA V100 and A100 GPUs
for Conv2D operators by the varying batch size, strides, kernel,
and filters to identify the bottlenecks of the operators. Using
the knowledge gained from the operator level, we train the
MTD model with two precision modes, single precision, and
mixed precision, on single V100 and A100 GPU, and we
measure Tensor core, GPU utilization, GPU power, memory
usage, average epoch time, training and validation loss. Then,
we use HPC clusters for distributed training to determine
whether increasing GPUs reduces the training time for the
MTD model. For each node, we increase GPU gradually from
1 to 4 for training. We used TensorFlow mirrored strategy API
for distributed training because it synchronous training across
multiple GPUs on a single node.

At the inference level, we calculate the one full forward
propagation time of the MTD model trained with single and
mixed precision. Then we used the DLProf2 tool to extract
the TC utilization, GPU utilization, and wallclock time for
inference. We used roofline analysis to find the computational
bottleneck of the kernel. Then we compare inference with
V100 and A100 GPUs, and we suggest a methodology to use
NVIDIA Multi-instance GPU (MIG3) technology for efficient
inference on A100 GPU. Finally, we compare training and
inference cost with various cloud vendors.

A. Systems used

1) Hardware: We used two HPC systems for our research:
JUWELS4 Booster and JUWELS cluster. Juwels Booster con-
tains 936 nodes, and each node contains 4 x A100 Nvidia
GPUs with 40 GB HBM connected via NVLink3 with AMD
EPYC 7402 processor and 512GB memory. Juwels cluster
contains 56 computing nodes, each containing 4× NVIDIA
V100 GPU and 16 GB HBM with 2× Intel Xeon Gold
6148 processor. We used single-node JUWELS Booster and
JUWELS Cluster extensively across all levels.

2) Software framework: Throughout the experiments, we
used TensorFlow version 2, Python 3.9.6, CUDA 11.6, and
cuDNN v8.3.1. We used the following precision modes on all
levels: single precision and half-precision for operator levels
and mixed precision (It enables TC on GPU to utilize FP32
and FP16 for accelerated computing) for training level.

2https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
3https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
4https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels

48 96 192 384 768 1536 3072 6144 12288 24576 49152
Buffer Size (MB)

10
100
200

400

600

800

1000

1200

1400

1600

Ba
nd

wi
dt

h 
GB

/s

V100
A100

Fig. 3: High Bandwidth Memory (HBM) Peak Throughput of
V100 and A100 GPUs

13
23

0.
4 

G
B

/s

19
28

7.
3 

G
B

/s

104 kB 144 kB

Fig. 4: L1 and L2 cache Peak Throughput of V100 and A100
GPUs.

B. Roofline characterization

The roofline model is a visually-intuitive way to understand
the kernel performance and identify the bottlenecks of ker-
nel execution on a given machine [8]. We perform roofline
analysis on V100 and A100 GPUs of Conv2D operators
because they are the most compute-intensive operations in the
MTD application. The roofline model is an intuitive model
based on bounds of data transfer and computes capacity
and can be expressed as in equation 1. Where P is the
achievable performance (GFLOP/s), π is the peak performance
(GFLOP/s), β is the peak bandwidth (GB/s), and AI is the
arithmetic intensity expressed as floating point operations
by data movement (FLOPs per Bytes). To plot the roofline
model for MTD Conv2D operators on GPUs, we need two
components:

• Machine Characterization: In terms of peak GFLOP/s
for (single precision, half-precision, and TC) and Peak
bandwidth (GB/s) of L1 cache, L2 cache, and High
Bandwidth Memory (HBM).

• Application Characterization: Conv2D kernel Arithmetic
Intensity (AI) and Conv2D kernel throughput GFLOP/s
of (single precision, half-precision, and TC).

P ≤ min

{
π
β ×AI

(1)

1) Machine Characterization: We used the Empirical
Roofline Tool [8] (ERT) and Cuda-Bench [15] tool to col-
lect machine characterization metrics empirically. We col-
lected single and half-precision values for GPUs using ERT.
V100 peak single precision is 15.5 TFLOP/s, and half-
precision is 29.6 TFLOP/s. A100 peak single precision is



18.5 TFLOP/s, and half-precision is 58.8 TFLOP/s. We used
Cutlass GEMMs (General Matrix Multiplications) to calculate
Peak TC TFLOP/s. GEMMs are defined in Equation 2.

D = αAB+ βC (2)

where A and B are input matrices, and C is already existing
matrix and overwritten by output matrix D. α and β are scalar
constants. For matrix A is M x K, B is M x N and C and
D are N x K matrix. We used M = N = K = 16384
matrix to get the peak TC results for V100 is 101.2 TFLOP/s,
and A100 is 292.2 TFLOP/s. To calculate the Peak HBM
throughput, we used a stream-kernel technique from Cuda-
Bench by increasing the buffer size from 48 MB to 49152 MB,
which guarantees to capture the device memory within. The
V100 we used has a 16GB memory limit, whereas the A100
has a 40 GB memory limit. As a result, V100 can reach a peak
HBM bandwidth of 818.5 GB/s on a buffer size of 12288 MB,
and A100 reaches a peak HBM bandwidth of 1346 GB/s on
24576 MB, as shown in Figure 3.

To read the L1 and L2 cache bandwidth, we launch one
thread block per Stream Multiprocessor (SM). Every thread
block reads the same buffer continuously, and we vary the
buffer size to measure peak L1 and L2 bandwidth, as shown
in Figure 4. As a result, V100 L1 bandwidth is 13230.4 GB/s,
and L2 bandwidth is 2142.8 GB/s. And A100 L1 bandwidth
is 19287.3 GB/s and L2 is 3877.6 GB/s. We use these values
to plot the roofline model of L1, L2, HBM, Single and half-
precision, and Tensor Core ceilings as shown in Figure 5

2) Application Characterization: We use the Nsight5 Com-
pute CLI tool to collect the kernel performance and bandwidth
metrics for roofline analysis. We use PyCUDA6 marker API to
specify the specific region of the code to extract the metrics.
We used the following command to extract kernel metrics.

ncu -profile-from-start off –metrics [metrics] python app.py

We used Equation (3) to calculate the kernel execution time
Kt from the ncu output. We calculate single precision and
half-precision and TC FLOPs using Equation (4), (5), and
(6), respectively. We calculate L1 and L2 cache from this
metrics {l1tex, lts} t bytes.sum and device memory from
this metrics dram bytes.sum

Kt =
elapsed avg

avg per second
(3)

FP32 FLOPs = fadd + (2 ∗ ffma ) + fmul (4)

FP16 FLOPs = hadd + (2 ∗ hfma ) + hmul (5)

TC FLOPs = pipe tensor.sum ∗ 512 (6)

5https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
6https://documen.tician.de/pycuda/

IV. EXPERIMENTS AND RESULTS

A. Operator Level

We use roofline analysis to identify the computational
bottlenecks and data movement of different level cache (L1
and L2) and HBM of convolution operators. We focused
only on the computational bottleneck of convolution operators
rather than the measuring accuracy of the model while varying
operator configuration. We use V100 and A100 GPUs for
roofline analysis. First, we collected the GPU kernel metrics
using the nsight-compute-cli tool and used PyCUDA marker
API to specify the code region to extract metrics. Then, we
pre-process the metrics to get the Arithmetic intensity of L1,
L2, HBM, and performance GFLOP/s as mentioned in Section
III-B2 and plot these results in the roofline chart as shown in
Figure 5.

In the roofline chart, the horizontal ceiling represents peak
GFLOP/s of Tensor Core, single precision, and half-precision.
The color blue, red, and green represents kernel associated
with L1, L2 cache, and HBM. If the kernel value is near the
ceilings of (TC, FP32, and FP16) of the roofline chart, it shows
the kernel has higher performance. Suppose the kernel values
of blue, red, and green colors near the respective diagonal
ceilings (L1, L2, and HBM) show good data locality. If any
color overlaps, it shows poor data locality.

For this experiment, we used the MTD model’s highest
FLOP operator, which is Conv2D:(tensor shape: 128x96x112,
batch size:32, filters: 56, kernel: 3x3, strides:3) as base
configuration. We vary the batch size, kernel size, strides,
and filters of the above-mentioned Conv2d operator with
single and half-precision modes. The roofline analyses for the
mentioned Conv2D operators are performed in both forward
and backward passes. However, we can use and change only
batch size configuration for further experiments of MTD’s
model. Still, we perform roofline analysis for varying strides,
kernels, and filters to identify bottlenecks. Due to the page
limit, we only included the roofline chart for batch size
configuration and only backward passes of varying kernel size.
For the remaining configurations, we summarised them in their
appropriate sections.

Batch Size: For this experiment, we used the above-
mentioned Conv2D operator for roofline analysis by varying
batch sizes from 16, 32, and 64. As shown in Figure 5, the
forward pass of the V100 GPU shows all batch sizes of single
precision and half-precision L2 and HBM overlap, which
means poor L2 cache data locality, but there is a gap between
L1 and L2 that indicates there is less L1 cache misses. Half
precision mode outperformed single precision for both (V100
and A100) forward pass and backward pass. In half-precision,
batch sizes 16 and 32 perform less than batch size 64. V100
forward pass results are the same as A100 forward pass, but
A100 gives better data locality of L1, L2, and HBM for single
and half-precision. In A100 backward pass increasing batch
size from 16 to 64, performance is not linearly increasing.

Strides: For this experiment, we use the base Conv2D
operator and vary the strides from 2, 3, 4, and 5. The backward



(a) V100 Forward Pass (b) V100 Backward Pass

(c) A100 Forward Pass (d) A100 Backward Pass

Fig. 5: Batch Size: Roofline Analysis of V100 and A100 GPUs Forward and Backward pass of MTD Convolutional Operator
Conv2D:(tensor shape: 128x96x112, filters: 56, kernel: 3x3, strides:3) by varying batch size of 16, 32 and 64.

pass of V100, for single and half-precision stride size 2, gives
more performance than others. There is more L1 cache misses
on single precision. In half-precision stride sizes, 2 and 3 give
good L1 cache data locality. Half-precision of A100 GPU,
there is a good gap between L1, L2, and HBM. Therefore, it
gives good data locality than V100. Strides 4 and 5 perform
more than strides 2 and 3 in half-precision of A100 GPU.

Kernel: Now we vary the kernel size from 3x3, 5x5, and
7x7 in the base Conv2d operator. As shown in Figure 6,
V100 backward pass single and half-precision give good data
locality, and performance increases linearly with increasing the
kernel size, but A100 backward pass kernel 5x5 gives better
performance than 7x7 in half-precision, but single precision
performance increase linearly like V100 and it gives poor L1
cache data locality on single precision.

Filters: We use the base Conv2D operator for this experi-
ment and vary the filter sizes to 56, 112, and 224. The back-
ward pass A100 GPU half-precision performance increases
linearly with the filters, whereas in single precision, filter size
112 performs better than filter size 224. Furthermore, in V100
backward pass, both single and half-precision performance
increases linearly with filter size. As a result, both A100 and
V100 backward pass give good data locality in half-precision,
and some L1 caches miss on single precision. On the other
hand, V100 forward pass has poor data locality and linear
performance on single precision. Both A100 and V100 forward
pass half-precision of filters 112, and 224 give the same level
of performance but comparatively very high than filter 56.

Summary:
• Increasing the batch size from 32 to 64 gives a significant

performance boost.
• In the backward pass of A100, half-precision strides 4

and 5 give more performance than 2 and 3. whereas
V100 backward pass (half and single precision) stride
2 provides higher performance than with 4 and 5.

• The V100 backward pass kernel size (3× 3, 5× 5, 7× 7)
performance increases linearly in both half and single
precision. Whereas half-precision of A100 backward pass
of kernel size 5× 5 gives more performance than 7× 7.

• In A100, half-precision backward pass performance in-
creases linearly with the number of filters (56, 112, 224).
In single precision, 112 filters give more performance
than 224 filters.

Comparatively, A100 offers better data locality of L1, L2,
and HBM than V100. And more L1 cache miss on single
precision than half precision. We can use batch size 64 and
mixed precision rather than 32 batch size and single precision
for training. Bottleneck findings of strides, kernel, and filters
help the developer modify the MTD’s model architecture to
utilize the hardware effectively.

B. Training Level

In single GPU training, we trained the MTD model with
two precision modes, single precision and mixed precision.
As we already know, half-precision performs more than single
precision for Conv2D operators from the operator level.



(a) V100 Backward Pass (b) A100 Backward Pass

Fig. 6: Roofline Analysis of V100 and A100 GPUs Backward pass of MTD Convolutional Operator by varying kernel size.

TABLE II: Single GPU Training with Mixed Precision and Single-Precision Mode on A100 and V100 GPUs.

GPU V100 A100
Batch Size 32 64 32 64
Precision Single Mixed Single Mixed Single Mixed Single Mixed
Data loading time (s) 8.87 17.29 13.42 12.02 5.08 5.14 5.05 5.58
Total run-time (s) 2847 1892 2756 1779 1530 1319 1450 1212
Total training time (s) 2805 1844 2706 1734 1507 1296 1427 1188
Avg. epoch time (s) 40.07 26.34 38.66 24.78 21.53 18.52 20.39 16.98
Training loss 0.0532 0.0535 0.0554 0.0551 0.0532 0.0536 0.0552 0.0556
Validation loss 0.0585 0.0586 0.0599 0.0591 0.0584 0.0601 0.0588 0.0594
Avg. GPU Usage % 90.53 81.86 91.38 83.55 22.38 19.27 22.46 22.02
Avg. Mem. Usage Rate % 63.24 44.41 66.13 47.52 14.06 7.25 14.94 10.72
Avg. GPU Temp °C 59.92 57.5 58.49 57.74 50.96 48.45 50.9 47.85
Avg. GPU Power W 259.13 244.14 252.35 238.49 116.01 98.73 116.99 107.51

The mixed precision contains both single and half-precision
but is automatically selected by the deep learning framework.
Our assumption is mixed precision will perform more than
single precision. We will verify it from training-level results.
We trained in V100 and A100 GPUs with batch sizes (32,
64) and 70 epochs with Adam [16] optimizer. As results
shown in Table II, single precision of V100 using 32 batch
sizes consumes a higher total training time. Whereas A100
mixed precision of 64 batch size consumes less training time
than others. The training and validation loss of batch sizes
32 and 64 is almost identical for single precision and mixed
precision on V100 and A100 GPUs. Mixed precision gives
good training time per epoch than single precision mode. We
exclude the first epoch time for the average training time per
epoch calculation because the first epoch always takes higher
time in single precision and mixed precision on both V100
and A100. While increasing the batch size from 32 to 64,
there is only slight performance improvement for V100 and
A100 in both modes. The mixed precision of V100 gives
more performance than single precision, whereas A100 gives
only a slight marginal improvement. Because tensor cores are
activated only half-precision in V100 but single and half-
precision in A100. Mixed precision consumes less average
GPU and memory usage than single precision mode. V100
consumes more additional GPU power than A100 GPU. While
using mixed precision in V100 and A100, GPU temperature
and power consumption were also reduced.
Summary: Mixed precision training consumes less GPU

power and memory than single precision training on both
GPUs. V100 mixed precision of batch size 64 utilizes Tensor
Core at 89.5%, whereas A100 utilizes only 31.7% of TC.

C. Distributed Training Level

We conduct this experiment to determine whether increasing
the number of GPUs for training the MTD model will affect
the training time. We used two nodes for this experiment
JUWELS Booster and JUWELS Cluster. Due to the inadequate
training data volume on the MTD model, we used a maximum
of 4 GPUs for distributed training, and we increased GPU
gradually from 1 to 4. We used TensorFlow mirrored strategy
API for distributed training as discussed in section III-A. We
used only ten epochs and dynamic batch sizes (Batch size
gradually increased with the number of GPUs). We already
discussed in section IV-B that mixed precision gives more
performance than single precision, so we used mixed precision
for training. The loading data time is lesser in a single GPU
than in multiple GPUs because data needs to transfer to
multiple GPUs. These variations are higher in V100 than in
A100. The average epoch time for training in V100 decreases
significantly from using 1 GPU to 2 GPUs but later, using 3
and 4 GPUs does not give enough performance boost. Whereas
in A100, using 1 GPU gives an average epoch time of 22.9
seconds, and using 2 GPUs gives 19.3, there is no substantial
improvement in using multiple GPUs. Final training loss and
validation loss are almost the same for using 1 and 2 GPUs
for both V100 and A100, but further increasing GPUs, there



TABLE III: Inference Performance Metrics on A100 and V100

Device V100 A100
Precision Single Mixed Single Mixed
Wallclock time (s) 0.09 0.051 0.10 0.037
TC utilization % None 58.7 16.1 6.4
GPU utilization % 8.1 3.2 2.6 1.1

is a drop in training and validation losses because we increase
batch size gradually with GPUs, batch size implicit connection
with gradient estimator, so increasing batch size above 64
causes low variance.
Summary: Using four GPUs on V100 and A100 is not
sufficiently utilizing all the GPUs in the node for training.
V100 utilizes 81.8% of TC, whereas A100 only utilizes 26.9%
of TC. Average GPU usage and memory usage decreases
gradually with an increasing number of GPUs in V100. On
average, A100 consumes less GPU energy than V100. Overall
the MTD model does not sufficiently utilize the multiple GPUs
for distributed training. We suggest using a single GPU for
training the MTD model is sufficient.

D. Inference Level

The inference level calculates the time to complete the full
forward propagation of the MTD model. Furthermore, we
investigate the roofline analysis on the most time-consuming
kernel during the inference. The MTD model network is
explained in the section II. We compare the results with V100
and A100 GPUs. We used single and mixed precision MTD
models for the inference benchmark. Both the model trained
with batch size 64. As shown in Table III, the model is
trained with mixed precision utilizing tensor core very well on
V100 than the model trained with single precision. Whereas
in A100, both single and mixed precision utilizes the tensor
core because, as we already discussed in section II-B, A100
will utilize the tensor core on both single and half-precision,
but V100 only uses tensor core on half precision.

The model’s accuracy with the single and mixed precision
modes is almost identical. In A100 mixed precision model took
less time for inference than other variants. Inference on the
mixed precision model performs more than a single precision-
trained model on both GPUs. So we will use mixed precision
trained model for inference roofline analysis. If we perform
roofline analysis for all the kernels during the inference will
not be very effective in studying the system because there
are too many kernel launches during inference. So first, we
used the NSight System CLI tool to extract the kernel statis-
tics, we identified conv2d grouped direct kernel and im-
plicit convolve sgemm kernel took considerable GPU com-
puting time than others. We also performed roofline analysis
on the most time-consuming kernels. Both A100 and V100
conv2d grouped kernel utilize only 1% of the device’s FP32
Peak performance. V100 implicit convolve sgemm utilizes
10% device’s FP32 Peak performance, and in A100, it utilizes
13% device’s FP32 Peak performance. As a result, the MTD
model inference in A100 is not giving a bigger performance
boost than V100 GPU.

Summary: For inference, A100 mixed-precision trained mod-
els provide 2.7 times more performance than A100 single
precision and 2.4 times more than V100 single precision. After
roofline analysis of the MTD model inference, both V100
and A100 GPUs do not effectively utilize the device’s peak
performance. The A100 GPU does not provide a significant
performance increase compared to the V100 GPU.
Suggestion: We can utilize the Nividia MIG technology to
partition GPU into multiple instances and deploy the model
into any one of the instances for inference. This technology is
applicable only starting from Ampere architecture. For A100,
there are seven MIG profiles available, but we categorize them
into 4 profiles

• 7 5GB: split GPU into 7 instances. Each 5GB memory
• 3 10GB: split GPU into 3 instances. Each 10GB memory
• 2 20GB: split GPU into 2 instances. Each 20GB memory
• 1 40GB: split GPU into 1 instance. Full 40 GB memory

If the model inference utilizes the device less than 25%, we use
7 5GB profile. If usage is 25% to 50%, we can use 3 10GB
profile. Likewise, we can use other profiles for inference. For
example, our MTD model utilizes only 1.1% of GPU for
inference in A100, so we use 7 5GB profile and split the A100
GPU into 7 5GB profile by using the following command
sudo nvidia-smi mig -cgi 19 -C and deploy the MTD model
into any of the instances or on many instances and use a
load balancer7 for the inference server to effectively utilize
the underlying A100 GPU.

E. Cloud Compute Cost

Training: We compare the public cloud computing cost of
V100 and A100 (1 GPU and 4 GPU) on three cloud vendors
AWS, GCP, and Azure. As we already gathered training time
from training and distributed training levels, V100 single
and four GPUs’ average epoch times are 32.8s and 22.3s.
Similarly, A100, a single, and four GPUs are 22.88s and
18.94s, respectively. At least 70 epochs are needed to get
good accuracy of the MTD model. To get a fair comparison,
we calculated the computing cost for ten times training the
model. So V100 single and four GPU total training time 6.38
hrs and 4.34 hrs. The total training time in A100 single and
four GPU is 4.45 hrs and 3.69 hrs, respectively. As shown in
Table IV, GCP gives the least computing cost for one A100
GPU than V100. AWS consumes higher GPU costs than other
vendors because AWS doesn’t have instances with exactly 4
A100 GPUs, so we calculated the cost for instance, with 8
A100 GPUs. A single A100 GPU from GCP is good for MTD
model training.

Inference: As we discussed in section IV-D, both V100
and A100 GPUs give almost the same performance for the
MTD model inference on test data. We checked MTD model
inference for CPU to determine whether it will cost less than
GPU. We used AWS c5.4xlarge instance, which has Intel(R)
Xeon(R) Platinum 8275CL CPU @ 3.00GHz CPU total of
16 cores for the MTD model trained with mixed-precision

7https://www.envoyproxy.io/docs/envoy



TABLE IV: GPU Compute Cost Comparison for training with AWS, GCP, and AZURE

Cloud Provider Instance Type Device GPUs Per Hour USD Total Training (hour) Total USD

AWS
p4d.24xlarge A100 8 32.77 3.69 120.92

p3.2xlarge V100 1 3.06 6.38 19.52
p3.8xlarge 4 12.24 4.34 53.12

GCP
NVIDIA A100 A100 1 2.93 4.45 13.03

4 11.74 3.69 43.32

NVIDIA V100 V100 1 2.48 6.38 15.82
4 9.92 4.34 43.05

AZURE

NC6s v3 V100 1 3.06 6.38 19.52
NC24rs v3 4 13.46 4.34 58.41

NC24ads v4 A100 1 3.67 4.45 16.33
NC96ads v4 4 14.69 3.69 54.20

mode takes an average time of approximately 5.15 seconds
for inference which is slower than A100 inference time. GPUs
outperform CPUs in terms of performance and cost for MTD
model inference. For example, per hour cost for a c5.4xlarge
instance is $0.68 and GCP single A100 GPU per hour cost is
$2.93. If we perform 104 times inference c5.4xlarge instance
cost is $9.7 whereas cost of GCP A100 is $0.30. We suggest
using A100 for inference to leverage Nividia MIG technology
to utilize the hardware effectively.

V. CONCLUSIONS

We provided a comprehensive methodology for profiling the
MAELSTROM Temperature Downscaling (MTD) application
starting from the operator level and identifying the bottleneck
of the convolutional operator using roofline analysis and using
the parameters to train the model and analyze the training
and distribute training level. We profiled the MTD model
inference to identify the device utilization, and we suggested a
methodology to use Multi-Instance GPU for inference. Finally,
we compared computing costs for training and inference from
cloud vendors. Our results will help to choose the hardware
configuration but also helps to enhance the MTD model archi-
tecture because we detailed operator bottlenecks for varying
batch sizes, kernels, strides, and filters using roofline analysis.
To the author’s knowledge, our methodologies and results will
help other researchers and developers enhance and profile their
deep learning models.
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