
Exploiting Coarse-Grained Parallelism to Accelerate
Protein Motif Finding with a Network Processor

Ben Wun, Jeremy Buhler, and Patrick Crowley

Department of Computer Science and Engineering
Washington University in St.Louis

{bw6,jbuhler,pcrowley}@cse.wustl.edu

Abstract

While general-purpose processors have only recently employed
chip multiprocessor (CMP) architectures, network processors
(NPs) have used heterogeneous multi-core architectures since
the late 1990s. NPs differ qualitatively from workstation and
server CMPs in that they replicate many simple, highly efficient
processor cores on a chip, rather than a small number of
sophisticated superscalar CPUs. In this paper, we compare the
performance of one such NP, the Intel IXP 2850, to that of the
Intel Pentium 4 when executing a scientific computing workload
with a high degree of thread-level parallelism. Our target
program, HMMer, is a bioinformatics tool that identifies
conserved motifs in protein sequences. HMMer represents
motifs as hidden Markov models (HMMs) and spends most of its
time executing the well-known Viterbi algorithm to align
proteins to these models. Our observations of HMMer on the
IXP are therefore relevant to computations in many other
domains that rely on the Viterbi algorithm. We show that the
IXP achieves a speedup of 1.82 over the Pentium, despite the
Pentium’s 1.85x faster clock. Moreover, we argue that next-
generation IXP NPs will likely provide a 10-20x speedup for our
workload over the IXP 2850, in contrast to 5-10x speedup
expected from a next-generation Pentium-based CMP.

1. Introduction

The oft-predicted shift among general-purpose
processors (GPPs) away from superscalar organizations of
increasing sophistication towards chip multiprocessors
(CMPs) appears imminent, with all major desktop
processor vendors planning to release dual- or quad-core
processors in the near future. GPPs are beginning to adopt
CMP organizations mainly because their designers can no
longer achieve satisfactory performance improvements by
increasing clock frequencies and cache sizes. In contrast,
commodity network processors (NPs) have used CMP
organizations since the late 1990s to exploit packet-level
parallelism in networking workloads. This shift toward
CMP in general-purpose processor organization invites
comparisons between these processors and NPs.

The first generation of general-purpose CMPs is
expected to employ a small number of sophisticated,
superscalar CPU cores; by contrast, NPs contain many,
much simpler single-issue cores. Desktop and server
processors focus on maximizing instruction-level
parallelism (ILP) and minimizing latency to memory,
while NPs are designed to exploit coarse-grained
parallelism and maximize throughput. NPs are designed
to maximize performance and efficiency on packet
processing workloads; however, we believe that many
other workloads, in particular tasks drawn from scientific
computing, are better suited to NP-style CMPs than to
CMPs based on superscalar cores.

In this work, we study a representative scientific
workload drawn from bioinformatics: the HMMer
program [2] for protein motif finding. HMMer compares
protein sequences to a database of motifs – sequences
known to occur, with some variation, in a large family of
other proteins. These motifs are represented as hidden
Markov models (HMMs) [14], which allows HMMer to
search for them in a protein using well-developed
mathematical machinery for parsing discrete sequences
with an HMM. Because HMMer works on a large
database of motifs, each of which can be compared
separately to a target protein, its computation can benefit
greatly from systems with substantial coarse-grained
parallelism. This computation is therefore a natural fit to
network processor-style CMPs.

We have implemented JackHMMer, a version of
HMMer that runs on an Intel IXP 2850 network
processor. The IXP implements the Viterbi algorithm for
HMMs [13], which is the core component of HMMer’s
search algorithm. This paper recounts our experience
implementing JackHMMer, quantifies its performance
gain relative to both the original HMMer and a hand-
optimized version on a hyper-threaded Pentium 4, and
draws lessons from our experience about how future NPs
may be designed in order to better accelerate similar non-
networking workloads.

The remainder of the paper is organized as follows.
Section 2 provides background on both HMMer and the
IXP architecture. Section 3 examines the behavior of
HMMer on a superscalar processor. Section 4 describes
the implementation of JackHMMer and the techniques
used to maximize performance on the IXP. Section 5
compares the performance of JackHMMer to that of a
hand-optimized HMMer on the P4 architecture, while
Section 6 suggests likely improvements to both
architectures and extrapolates the expected speedup if our
assumptions prove correct. Section 7 describes related
work. The paper concludes in Section 8.

2. Background

In this section, we review both the problem domain
and the target architecture for JackHMMer. We first give
a detailed account of the HMMer application, its purpose,
and its core search computation. We then describe the
essential features of the Intel IXP architecture that we use
to accelerate this computation.

2.1 Protein Motifs and HMMer
Proteins perform most metabolic and regulatory tasks

in living cells. Families of evolutionarily related proteins
exhibit conservation of a common amino acid sequence
along part or all of their lengths. To help identify the
function of an unknown protein, biologists look for strings
of amino acids in its sequence that resemble the sequences
of proteins with known functions. When a common
sequence appears in multiple proteins, it is called a motif.

Because exact preservation of a motif's sequence is
rarely necessary to maintain its biological function, a
motif may be encoded by slightly different sequences of
amino acids in different proteins. Amino acids in the
motif may change or may be deleted, and irrelevant “non-

motif” sequences may be inserted in the middle of it. All
these forms of variation must be considered when seeking
a motif in a protein sequence. Furthermore, several
distinct copies of one motif may appear within a single
protein.

To summarize the observed variability in a motif,
HMMer describes it probabilistically using a hidden
Markov model (HMM). An HMM is a finite state diagram
in which each directed edge from state qi to state qj is
assigned a transition probability p(qj | qi). If qj is an
emitting state, passing through it emits one symbol (i.e.
one amino acid); each possible symbol α has an emission
probability e(α | qj). To generate a protein sequence of
length n from an HMM, one begins in its initial state q0
and traces a path that passes through n emitting states,
and possibly some non-emitting states. The probability of
the sequence is the product of all transition probabilities
on the path, times the emission probabilities of all amino
acids given the states from which they were emitted.

The structure of the HMM used by HMMer is shown
in Figure 1. A motif of length m is comprised of m “match
states”, M1…Mm, where Mk emits the amino acid at the
motif's kth sequence position. A parallel sequence of non-
emitting “deletion states” states D1…Dm allow any
substring of the motif to be skipped, while another set of
“insertion states” I1…Im-1 allow sequence to be emitted
between any two motif positions. The non-emitting states
B and E anchor the motif's endpoints. Finally, states N, C,
and J respectively emit non-motif sequences before, after,
and between two copies of the motif. In this way, the
model generates an entire protein containing one or more
copies of the motif. HMMer infers suitable transition and
emission probabilities to describe a motif from a
collection of example sequences for that motif.

2.1.1 Finding Motifs with the Viterbi Algorithm

To determine whether a protein sequence s of length n
contains a motif matching the model M, HMMer
calculates the probability that s is emitted by a series of
states that form a path connecting the start and end states
of M. Any path through the HMM with n emitting states
can generate the emitted sequence s; following the
maximum likelihood principle [3], HMMer finds and
evaluates only a single, most probable path. If this path
has a high enough probability relative to the chance that s
was generated from a null model containing no motif,
then s is considered to “hit” M, and the path indicates
which amino acid in the protein (if any) corresponds to
each motif position.

HMMer uses the Viterbi algorithm [13], a well-known
dynamic programming method, to compute the most
probable path through an HMM M for a sequence s. Let
P(q, j) be the highest probability for any path through M

D4D3D1 D2

I1I1 I2I2 I3I3

E

CC

JJ

NN

B

M1 M2 M4M3

Figure 1: Example of hidden Markov model used by
HMMer search tool, with motif length m = 4. Start
and end states are represented by black dots.
Square states emit amino acids in the motif;
triangular states emit non-motif amino acids, while
circular states are non-emitting. Any path from the
start state to the end state of the model generates a
protein sequence.

from state q0 to state q that emits the string s[1..j] . If state
q is non-emitting, we have

).'|(),'(max),(
'

qqpjqPjqP
Mq∈

=

If state q is emitting, we have

).'|()1,'(max)|][(),(
'

qqpjqPqjsejqP
Mq

−×=
∈

If qe is the unique final state of M, then a most
probable path for s has probability P(qe,,s). This
probability can be computed in time Θ(n|M|), where |M|
is the total number of states in the model. Given space
Θ(n|M|) to store the full matrix of intermediate
probabilities P(q, j), one can recover a most probable path
by tracing back the transitions chosen by the algorithm,
starting with the end state qe and continuing until the start
state q0 is reached.

HMMer’s implementation of the Viterbi algorithm
takes the form of a doubly nested loop. The outer loop
iterates over each amino acid s[j] of the sequence s, while
the inner loop iterates over the states of the model M. This
loop ordering is dictated by the data dependencies in the
model of Figure 1. In the HMMs typically used by
HMMer, m, the motif length, is on the order of tens to
hundreds; hence, nearly the entire inner loop is spent
calculating probabilities for the M-, I-, and D-states, with
negligible time spent on the other states. In both our
implementation, described in Section 4, and the original
HMMer software, the inner loop is organized as a series
of m iterations, each of which processes the states Mk, Ik,
and Dk for one motif position k.

Two further implementation details are crucial to the
feasibility of our implementation. First, HMMer carries
out all computations in the log domain, so that the
products in the Viterbi recurrence can be replaced by
sums. Moreover, the log probabilities are scaled to integer
scores, allowing the entire computation to be done in
fixed-point arithmetic. Hence, the computation requires
neither floating-point nor fast multiplication, which are
lacking on the IXP.

2.1.2 Significance of the Viterbi Algorithm

HMMer’s basic computation is as follows: given a
protein sequence s and a database of motif models M1…Mz
, compute the score of a most probable path for s through
each Mj using the Viterbi algorithm. Subsequent
computation identifies paths scoring highly enough to
report, but this work is negligible compared to that
required to search a large motif database. The time
needed to read the motif database can also be made nearly
negligible by storing each model in its binary, in-memory
representation. Hence, nearly 100% of useful compute
time in HMMer is spent in the Viterbi algorithm.

Although HMMer runs quickly on one protein and just
a few models, its cost rapidly mounts in high-throughput
bioinformatics use. Publicly available motif databases
such as Pfam-A and SCOP contain around 104 models, all
of which must be compared to a protein of interest to
identify its component motifs. Typical applications of
HMMer include motif identification in all of an
organism’s proteins (5x103 for bacteria to 2x104 for
human), or, if discrete proteins have not been identified,
in a translation of organism’s complete genomic DNA
(107 amino acids, equivalent to roughly 3x104 average-
sized proteins, for even a small bacterium).

A modern superscalar CPU requires between 10-3 and
10-2 seconds to compare a typical model to a typical
protein, leading to times on the order of 1-10 CPU-days
for high-throughput HMMer computations. Moreover,
databases of automatically, rather than manually, curated
motif models, such as Pfam-B, can be an order of
magnitude larger than those mentioned above. The
biological community’s desire to accelerate these
computations can be seen in the development of massively
parallel HMMer implementations for computing clusters
[28], of FPGA-based HMMer accelerators [25] and of
heuristics [29] to process more models per second at some
cost to sensitivity. Developing fast architectures for
HMMer can therefore significantly benefit bioinformatics.

The utility of accelerating the Viterbi algorithm
extends well beyond its application to HMMer. Searches
using hidden Markov models are useful for many
applications that involve recognizing complex patterns in
sequential data. A classic engineering application of
HMMs is in speech recognition [13], where spoken words
must be reconstructed from a noisy time series of
individual phonemes. Related applications include text
recognition [19], image processing and computer vision
[19], and time-series analysis of scientific and economic
data sets [23]. More recently, HMMs and related
probabilistic techniques have been used to recognize
patterns of behavior in network traffic, particularly for
intrusion detection [24]. All of these applications involve
comparing a large volume of information to a collection
of HMMs using the Viterbi algorithm or its close
relatives, so all are potentially amenable to parallelization
using an implementation like that described in this work.

2.2 Packet Processing and the Intel IXP
The Intel IXP family of NPs [8] is designed to

implement packet processing tasks within packet-based
networking and communications equipment, such as
router line cards, cellular phone base stations, wired and
wireless access points, and security devices. Each IXP
product targets a different link speed; the IXP 2850
supports line-rate packet processing at up to 10 Gbps. The

IXP, like other NPs, uses multiple processors, threads,
and memory channels to increase per-packet computation
while hiding memory latency.

Figure 2 shows the major components and top-level
organization of the IXP 2850. It consists of a number of
units, each linked to a shared interconnect. While it is not
apparent in the figure, the interconnect is made up of
multiple uni-directional command and data buses, each
unit having a connection to each bus.

The IXP features a variety of resources, including
multiple memories and both programmable and fixed-
function units. The microengine (ME) clusters are the
central resource. Each ME is a 32-bit, 6-stage pipelined
processor. The MEs implement a small, RISC-like ISA
tailored to packet processing. The XScale processor is a
standard ARM-compatible processor that implements
control and management functions on top of Linux or a
commercial real-time OS. Other units provide critical
functions or resources in hardware, including a
configurable hash unit and 16KB of on-chip scratch
memory. Each IXP integrates DRAM and SRAM
controllers on chip. The IXP 2850 includes three Rambus
RDRAM and four QDR SRAM controllers and channels
for bulk and latency-sensitive data storage, respectively.
Most units on the IXP 2850 are clocked at 1.4 GHz, with
the exception of the XScale, interconnect, and memory
controllers, which are clocked at 700 MHz or less.

Figure 3 shows a high-level view of the IXP ME
organization. Each IXP ME provides hardware support
for 8 hardware thread contexts, including register storage,
multithreading ISA extensions, and a thread arbiter. Each
ME has its own local data and instruction storage, both
implemented as SRAMs. An ME communicates
asynchronously with other units via I/O commands and
transfer registers. A DRAM read, for example, is carried
out by sending a read operation to the DRAM controller
(via the Command Outlet FIFO) that specifies the desired
address as well as the target incoming transfer registers to
which the data should be delivered. Hardware signals are

specified in the ISA and are asserted when requested
operations have completed. This message-passing style
and the use of hardware signals allow ME software to
initiate multiple external requests, without blocking so
long as subsequent computation does not depend on the
completion of these requests. This asynchronous memory
interaction, which is a unique feature of the IXP ME ISA,
is exploited in Section 4.4 to pipeline the Viterbi
computation.

3. HMMer on a Superscalar Processor

As described in Section 2, HMMer execution is
dominated by the Viterbi computation. Indeed, profiling
HMMer using gprof [16] shows that 82.9% of execution
time is spent in the function that implements the Viterbi
algorithm; almost all of the remainder is spent in
preprocessing of the model database, which can be moved
off-line relative to the search. To better understand this
crucial function, we used Intel’s Vtune [12] program to
empirically characterize its execution on the Pentium 4.

The version of HMMer that we characterize here is
not the standard distribution but a modified, highly
optimized version that is described in section 5.2. For our
experiments, we used an input protein of length n = 544
and a representative sample of motif models from the
Pfam_ls database [4]. Using a different set of input
proteins and motif models would influence runtime but
(as we later show) would not materially change the
program’s behavior.

3.1 Instruction and Data Locality
The Viterbi computation is a relatively small function,

requiring only several hundred lines of C code.
Consequently, instruction cache performance should be
good. This is confirmed by Vtune results which show a
trace cache miss rate of 0.001%. Data locality is also
good, as there is a first level cache miss rate of 7% and a
second level cache miss rate of 0.7%. These results show

DRAM
Controllers

PCI Controller

SRAM
Controllers

ME ME ME ME

Hash CSRs

Scratch Mem

ME ME ME ME

ME ME ME ME

ME ME ME ME

TBUF

RBUF

S
P

I/C
S

IX

XScale
Processor

Crypto 1 Crypto 2

DRAM
Controllers

PCI Controller

SRAM
Controllers

ME ME ME ME

Hash CSRs

Scratch Mem

ME ME ME ME

ME ME ME ME

ME ME ME ME

TBUF

RBUF

S
P

I/C
S

IX

XScale
Processor

Crypto 1 Crypto 2

Figure 2: Organization of the IXP 2850 NP.

GPRs
8 thds*32

Transfer
IN Regs

8 thds*32

Transfer
OUT Regs
8 thds*32

Prev
Neighbor
8 thds*16

Local
Memory

Control
Store

Next
Neighbor

Pseudo-Random

CRC

To registers,
local mem,
and units

Timers

32-b
ALU

Cmd
Outlet

GPRs
8 thds*32

Transfer
IN Regs

8 thds*32

Transfer
OUT Regs
8 thds*32

Prev
Neighbor
8 thds*16

Local
Memory

Control
Store

Next
Neighbor

Pseudo-Random

CRC

To registers,
local mem,
and units

Timers

32-b
ALU
32-b
ALU

Cmd
Outlet

Figure 3: Organization of the IXP Micro-Engine.

that the 512 KB cache on our P4 can service the vast
majority of memory requests.

3.2 Instruction Mix
Most instructions executed by HMMer are

computation and logic instructions, which account for
58% of all dynamic instructions. Memory operations are
the second most frequent class, with load and store
operations representing 16.2% and 16.6%, respectively.
Control flow instructions represent 9.2% of all operations.
With its high cache hit rates, and a branch misprediction
rate of only 0.3%, HMMer on the P4 is limited principally
by the amount of ILP the processor can exploit.

3.3 Prospects for ILP
We used the SimpleScalar toolkit, version 3 [6] to

investigate the prospects for ILP within HMMer by
observing how instructions issued per cycle (IPC) changed
as a function of issue width. In the simulations used to
gather this information, sufficiently large caches, branch
predictors, and reorder buffers were used at each issue
width to avoid structural hazards. IPC peaks at around
3.6, but only when a very aggressive superscalar width of
128 is used. For narrower superscalar processors, an IPC
of between 1 and 2 is more realistic. This is confirmed by
Vtune, which shows the actual IPC on the hyper-threaded
P4 to be 1.87 for 1 thread and 2.16 for 2 threads (1.08 per
thread).

The available ILP in HMMer’s Viterbi computation is
limited for two reasons. First, the core inner loop includes
a number of loop-carried dependencies that limit
opportunities for parallel instruction issue. Moreover, the
inner loop contains around 50 instructions, many of
which have data dependencies between them. These
dependencies leave little room for out-of-order scheduling
either within or between loops. The low level of available
ILP in HMMer limits the potential for acceleration by
complex out-of-order execution schemes.

3.4 Prospects for TLP
While parallelism between instructions in a single

Viterbi calculation appears limited, there is no restriction
on the number of distinct Viterbi calculations that can be
carried out on distinct models simultaneously. In fact,
because HMMer is frequently used to check one or several
sequences against a large model database, there is an
ample supply of thread-level parallelism if different
models are processed in different threads. Indeed, the
HMMer distribution includes a version of the program
that uses the pthreads library [7] to exploit this
parallelism on SMP architectures. Running our hand-
optimized version of HMMer (described in Section 5.2)
using 2 threads on a hyper-threaded Pentium processor
increased performance by 14.8%. All comparisons to the

IXP in this work reference this dual-threaded version on
the hyper-threaded P4.

To summarize, our observations of HMMer using
Vtune and SimpleScalar suggest that it has a small cache
footprint, easily predicted branches, and limited
instruction-level parallelism, but massive coarse-grained
parallelism. These characteristics tend to defeat efforts to
accelerate the computation using the dominant design
techniques for improving superscalar performance, but
they are much more attractive for deployment on an array
of small, relatively simple processors. JackHMMer
therefore organizes its computation to maximally exploit
HMMer’s coarse-grained parallelism on the IXP
architecture.

4. JackHMMer: HMMer on the IXP

In this section, we describe the design and
implementation of JackHMMer. The XScale control
processor is responsible for dispatching jobs to the MEs,
which perform the Viterbi calculation. Because current
IXP implementations provide relatively little memory
close to the MEs, a principal design challenge was to keep
all MEs busy while retaining models and intermediate
data in a shared, relatively high-latency memory. We
addressed this challenge by minimizing the number of
distinct commands processed by the memory controllers
and by pipelining the Viterbi algorithm to overlap
memory latency with computation.

4.1 Application Partition
JackHMMer works with a single input protein

sequence s and a database of HMMs. The database is
divided into Viterbi packets (M, θ), one packet for each
individual model in the database. Viterbi packets are
created offline (for both the IXP and P4 versions) by
laying out M in a binary format and computing a
corresponding score threshold θ, such that a protein is
considered to “hit” a model M only if its score against M
is at least θ. At runtime, the XScale distributes these
packets of work to the MEs, which compare each M to the
sequence s and identifies those models whose score
against s is high enough to trigger a hit. Individual
Viterbi packets can be processed independently, so each
ME acts as an independent worker that asynchronously
accepts packets and returns results to the XScale.

For each job that triggers a report, a most probable
path through the model must be reconstructed.
Reconstruction of this path within the IXP is feasible but
is deferred to future work, and it represents a small
amount of the work (1% or less) in the full HMMer
implementation. To make all comparisons fair, the results
reported in this paper exclude the cost of reconstruction
for both the IXP and P4 versions of HMMer.

4.2 Memory Requirements and Layout
In our implementation, each of the IXP 2850’s sixteen

MEs can independently and asynchronously accept units
of work from the XScale. However, the storage needed to
complete each unit substantially exceeds the MEs’ local
memory capacities, requiring the use of shared SRAM
and DRAM memories.

To complete a Viterbi packet (M, θ), a ME needs the
model M and the input sequence s, plus storage for the
intermediate values P(q, j). A sequence of n amino acids
occupies n bytes of storage, while the model for a motif of
length m occupies roughly 104m bytes. If the IXP does not
retain the full matrix of intermediate probabilities to
compute the most probable path, its intermediate storage
requirements are a further 3m+4 32-bit integers. The
protein and motif lengths m and n are typically in the
range 200-400, though longer examples of each can be
found. Hence, both model and intermediate storage are
typically too large to fit within the 2400 bytes of memory
local to each ME in the IXP 2850.

The data used in the Viterbi computation is distributed
across multiple memories attached to the IXP. This
distribution splits the memory traffic of the computation
among the IXP’s different memory controllers and data
buses, thereby substantially increasing total available
bandwidth. We place the models and intermediate storage
in SRAM and DRAM respectively, principally because
DRAM is the only memory large enough to hold
intermediate results for all MEs if we choose to retain the
full matrix. The common sequence s used with all Viterbi
packets is accessed much less frequently than either
model or intermediate data and so can be placed almost
anywhere with minimal performance impact; currently, s
is placed in scratch RAM attached to the IXP’s hash unit.

We lay out the model parameters and intermediate
values P(q, j) in memory so as to most efficiently support
the loop structure described in Section 2.1.2. Each
iteration of the inner loop processes states Mk, Ik, and Dk
for one motif position k. We therefore pack together the
model transition probabilities associated with these three
states for one value of k into a contiguous block of
memory that can be retrieved with a single multiword
SRAM read operation. Similarly, we pack P(Mk, j), P(Ik, j)
and P(Dk, j) into a single 3-word block in DRAM for each
k. Because the current sequence character s[j] remains
constant over each pass through the outer loop, we
arrange the emission probabilities for Mk and Ik so that all
the probabilities for one amino acid α are stored
contiguously; for each α, pairs [e(α|Mk), e(α|Ik)] are
packed into a single block for each k, since the two values
are always used together. All blocks are padded so that

reads and writes are properly aligned, avoiding costly
read-modify-write cycles in the IXP’s memory controllers.

4.3 XScale and ME Interaction
The XScale implements a job dispatcher, which is

responsible for sending Viterbi packets to the MEs and
reading the results of each computation back out of
DRAM. The XScale first reads the database from over the
network and caches it in DRAM. This is necessary
because our development platform lacks a local hard disk.
When an ME becomes free, it signals the XScale. The
XScale writes several control parameters into the ME’s
registers, including a pointer to the next Viterbi packet,
and signals the ME. The ME then transfers the packet
into SRAM and begins its computation.

It may seem wasteful for the MEs to transfer models
from DRAM to SRAM only to read them back from
SRAM. There are several reasons for this organization.
The first is memory alignment: DRAM can only be
accessed on 8 byte boundaries, which is inconvenient and
wasteful in our Viterbi implementation, whereas access
from SRAM avoids such problems. Secondly, the bulk
transfer leaves our design more flexible; a future
implementation may make use of the IXP’s DMA
controllers to achieve the same function without
occupying the MEs. Finally, the transfer operations
represent less than 1% of work done by the MEs.

4.4 Pipelining the Viterbi Algorithm
The MEs on the IXP lack any form of automatically

managed cache and have local memories that are too
small to hold all the data necessary to perform the Viterbi
computation. To achieve good performance on this
memory-intensive task, it is therefore essential to organize
the computation so as to hide the long latencies associated
with memory accesses. We use two techniques to reduce
memory latency in our implementation: batching of reads
and writes, and pipelining of memory operations.

The ME instruction set supports multiword read and
write commands of up to 16 32-bit words to SRAM and
up to 16 64-bit dwords to DRAM. Both these sizes are
greater than the sizes of the transition probabilities (22
bytes), emission probabilities (4 bytes), and intermediate
values (12 bytes) used for one motif position k in the inner
loop of the Viterbi algorithm. However, actually reading
and writing memory once for each k is inefficient for two
reasons: first, it needlessly multiplies the number of
distinct accesses queued by the SRAM and DRAM
controllers; and second, it fails to take advantage of
DRAM’s ability to transfer data in large multiword bursts.
Multiplying the number of read and write commands
increases the queue depth in the IXP’s memory
controllers, leading to longer latencies for all accesses and
stalls when the queues fill.

To maximize the efficiency of memory operations, we
organize our computation so that data for multiple inner
loop iterations can be transferred in a few large
operations. All of the model transition probabilities
needed to process Mk, Ik, and Dk for two consecutive motif
positions k can be fetched by one multiword SRAM read
command. A single SRAM read is also sufficient to load
all the emission probabilities needed for 10 consecutive
motif positions. Similarly, we can read and write all the
intermediate probabilities for 10 motif positions using one
DRAM burst read and one burst write. When the amount
of data to be transferred at once exceeds the storage
available in the IXP’s register set, we use the local
memory of each ME to hold the data until it can be
consumed by the computation (for reads) or written back
(for writes).

Batching memory operations is effective in reducing
total latency to the extent that fewer, larger operations,
particularly to DRAM, require less total time to return the
same number of bytes. However, batching cannot actually
hide latency. Fortunately, the IXP architecture’s support
for asynchronous memory operations provides a
mechanism by which the Viterbi algorithm can be
effectively pipelined. We use asynchronous operations to
prefetch data ahead of when it will be needed – two motif
positions ahead for transition probabilities, ten positions
ahead for other model parameters and intermediate
probabilities. Similarly, we issue a DRAM write for ten
iterations’ worth of intermediate probabilities, then
compute for a further 10 iterations before requiring that
write to complete. Although such pipelining places great
demands on the IXP’s limited number of transfer
registers, we avoid this hazard by moving batched values
to local memory as soon as they become available, thereby
freeing their transfer registers for the next operation.

With the above optimizations, an IXP 2850 attached
to commodity SRAM and DRAM chips and running one
instance of the Viterbi algorithm per ME supports
simultaneous operation of up to twelve MEs without
saturating the command queues of the IXP’s memory
controllers and with relatively few idle cycles in any
engine due to memory latency (see section 5.4).

5. Experimental Evaluation

 In this section, we compare the performance of the
optimized HMMer application running on the P4 to
JackHMMer running on the IXP 2850. The IXP’s 16 MEs
can each issue 1 instruction per cycle; with a 1.4 GHz
clock, this means it can perform 22.4 Gops/sec at peak.
The P4, which can retire 3 micro-ops in 1 cycle and is
clocked at 2.6 GHz, can retire 7.8 Gops/sec at peak. This
means that if both implementations are CPU-bound, can
find enough parallelism to keep their functional units

busy, and require similar numbers of instructions to
execute HMMer, the JackHMMer implementation should
outperform the P4 by almost 3x. Of course, these
assumptions do not necessarily hold; hence, a more
careful empirical comparison is needed.

5.1 Experimental Setup
JackHMMer was implemented on an Intel IXDP 2810

development platform [11] containing two IXP 2850
processors, of which we use only one. Attached to the
2850 are 768 MB of SDRAM and 32 MB of QDR SRAM.
The operating system on the IXP is MontaVista Linux 3.1
[10]. The P4 implementation was run on a 2.6 GHz P4
with SUSE Linux 9.1 as an operating system.

JackHMMer’s Viterbi computation was run on the
MEs of the IXP 2850, with the scheduler/job dispatcher
run on the IXP’s XScale control processor. The reference
implementation of HMMer was run entirely on the P4 and
so does not require job scheduling.

The HMMer program performs several tasks in
addition to running the core Viterbi algorithm. The most
time-consuming, which accounts for up to 25% of
running time on the P4, is reading in models from a
database and converting them to a “log-odds” form
required by the Viterbi algorithm. We eliminated this
work from both P4 HMMer and JackHMMer by
precomputing the log-odds form of each model and
storing its binary representation; this optimization could
be implemented in a production system. HMMer also
performs post-processing of significant hits between
models and the input sequence; while these operations
constitute only a few percent of total running time on the
P4, they are not currently implemented in JackHMMer.
We therefore omit post-processing from HMMer’s cost on
the P4 in our tests. A production implementation of
JackHMMer would offload post-processing, which
requires floating-point support, onto a host processor,
where it would run in parallel with the much more
compute-intensive Viterbi algorithm on the IXP.

JackHMMer and HMMer were tested by comparing
the Pfam_ls database [4] (version 14.0) to 4 input protein
sequences chosen at random from the SwissProt [5]
database, with an average length of 497.5. The average
number of positions per motif in Pfam_ls is 226, and there
are 7459 models in the database.

5.2 Optimization of HMMer for the P4
To ensure a fair comparison between the P4 and our

hand-written IXP assembly code version of HMMer, we
improved the P4’s implementation of the core Viterbi
algorithm (as distributed in HMMer 2.3.2) by manually
optimizing the C implementation, then further editing the
generated x86 assembly code. Unless otherwise indicated,

all performance comparisons in this section are to this
optimized P4 implementation.

The major change in our C code versus stock HMMer
was to alter the data layout in memory. Although the
existing code already lays out the motif model and
dynamic programming matrix to achieve good data cache
locality, accessing all the data necessary to execute the
inner loop of the Viterbi algorithm requires nine separate
base pointers. Our modified layout, similar to that used by
JackHMMer, recombines the various component arrays of
model and matrix so that only five pointers need be
maintained. Our implementation can therefore keep all
needed base pointers in x86 architectural registers,
eliminating the multiple memory reads needed to
maintain these pointers in HMMer's original
implementation.

We made numerous additional small changes to
HMMer's Viterbi implementation to generate the best
possible x86 assembly code using the Intel C Compiler
(version 8.1.026). Our C-level changes produced assembly
code for the Viterbi inner loop that we judged to be nearly
optimal, except for one register spill and a number of
missed opportunities to implement max operations with
conditional moves, rather than with more costly branches.
We did not use the x86 SIMD extensions because some
operations, e.g., max, were not available in the 32-bit
working precision required by HMMer. We corrected
these deficiencies by hand-editing the assembly code and
verified that our changes measurably decreased total
execution time.

We believe that our final x86 assembly code for
HMMer's Viterbi algorithm, particularly the code for the
inner loop, is comparable in efficiency to the best
implementation that could be hand-coded from scratch. In
particular, the code is of comparable quality to our hand-
coded IXP implementation. On a moderately sized model
(M = 544), our implementation of the Viterbi algorithm
runs 2.06x faster than HMMer's original implementation.

5.3 Comparative Performance
JackHMMer can match an input protein of length

n=544 against the entire Pfam_ls database in 7.73
seconds, whereas optimized HMMer on the hyper-
threaded P4 requires 14.05 seconds. In other words, the
IXP achieves a speedup over the P4 of 1.82 on this
computation, despite the latter’s 1.85x faster clock.
Section 5.6 will elaborate on why this is so.

Figure 4 shows runtimes for comparing protein
sequences of various lengths to the entire Pfam database.
As these figures show, the performance of both
JackHMMer and HMMer is fairly insensitive to specific
inputs. The time needed to process a single motif

increases roughly linearly with motif size and sequence
length, regardless of the actual model and sequence used.

While JackHMMer’s throughput for processing
models exceeds that of the P4, the latency required to
process each single model is much greater on the IXP.
When executing using only one ME, the IXP requires
79.76 seconds to run over our test data, while the P4
requires only 14.05 seconds. This result is unsurprising,
since each ME of the IXP is substantially slower than the
P4, though the IXP as a whole is faster. Fortunately,
latency is relatively unimportant for non-interactive batch
computations, such as running HMMer on a large
database of models.

5.4 Performance Details for the IXP 2850
A useful measure of throughput for JackHMMer is

“cells per second;” that is, how many entries in the
Viterbi algorithm’s matrix of intermediate probabilities
can the system fill in one second? The size of this matrix
is proportional to the product of the motif size and the
protein sequence length, and the entire matrix must be
filled in before the Viterbi computation can complete.
Figure 5 shows what happens to the cells-per-second
throughput metric as we increase the number of MEs used
in the computation. As we increase the number of MEs
from 1 to 12, our throughput increases nearly linearly,
demonstrating the IXP’s ability to exploit the available
thread-level parallelism of HMMer.

Above 12 MEs, we begin to see diminishing
throughput (due to SRAM contention as discussed below).
The increase in throughput from 12 to 13 MEs is quite
small (~1.3%, versus 12.2% were the increase linear).
These observations imply that for the IXP 2850, we could
use 4 MEs to provide additional functionality without
sacrificing performance.

The bottleneck for the IXP 2850 implementation is at
the SRAM control queues. We observe that, while the
SRAM channels are 50% utilized, increased utilization

Runtime vs.Sequence Length

0

10

20

30

40

50

60

70

0 200 400 600 800 1000
Sequence Length

S
ec

o
n

d
s

Original P4

Optimized P4

IXP 2850

 Figure 4: Runtime as a function of input sequence.

can be obtained only by using the maximum reference
count of 16 32-bit words on every SRAM operation,
rather than the 13 being used. This change would be
awkward and difficult, with little if any advantage. Our
observations suggest that we are saturating the SRAM
controllers and are experiencing contention for its input
queues. As a result of this contention, the MEs are idle
almost 50% of the time. (Note that using multiple threads
at each ME would not help due to full memory
utilization.) A preliminary proposal for overcoming this
barrier is discussed in the next section.

5.5 Scalability Limits of JackHMMer
Since JackHMMer is currently bottlenecked at the

IXP’s SRAM memory controllers, we are unlikely to see
great performance gains by simply increasing the clock
speed of the MEs. One promising alternative is to put all
the model data into the MEs’ local memory, eliminating
the need to access SRAM. Although this approach cannot
accommodate all models of useful size today, due to the
limited local memory available on the IXP 2850, it may
be attractive on a future IXP implementation with more
local memory.

We have implemented a version of JackHMMer that
keeps all its data in local memory, and have tested it using
the subset of small models in Pfam_ls that will fit in local
memory on the IXP 2850. This version achieves a 3.5x
speedup over the P4. Figure 6 presents a comparison
between this JackHMMer version and our original,
SRAM-based implementation. The local memory
implementation not only performs better, by a factor of
2.26x, but also scales better with the number of MEs. The
regular JackHMMer implementation begins to see
diminishing returns when using 12 or more MEs, whereas
the local memory JackHMMer continues its linear
increase in performance.

To assess whether local-memory JackHMMer’s
performance is likely to scale with increasing clock speed,

we investigated its performance on an IXP 2400, which
has a clock speed of 600 MHz and 8 MEs (no significant
changes were needed to the JackHMMer code). We
observed a throughput of 51.87 cells/sec, compared to
229.94 cells/sec on the 2850. The 2850 therefore achieved
a 4.43x speedup over the 2400, compared to an expected
4.66x increase given the former’s faster clock and larger
number of MEs. These results suggest that local-memory
JackHMMer is likely to scale well both with increasing
clock speed and with increasing numbers of MEs.

5.6 Discussion
In this section, we have seen that JackHMMer on the

IXP 2850 outperforms HMMer on the Pentium 4. This
indicates that the IXP is a more efficient architecture for
throughput-oriented Viterbi calculations. The IXP’s
efficiency is due to a number of factors.

Significant coarse-grained parallelism. Running 16
computations in parallel proved more effective than
harvesting ILP. The local memory JackHMMer also
indicates that, given some improvements discussed in
section 6.2, the 16-way simple CMP organization can be
more effective at keeping ALUs active than the
sophisticated superscalar pipeline in the Pentium 4.

Explicit, application-controlled mechanisms.
JackHMMer is a good match for the kind of fine-grained
control that programmers and code generators have when
programming the IXP MEs: the data can be arranged in
blocks for efficient memory usage; multiple memory
channels can be used to increase bandwidth and reduce
latency; and the working set size is known in advance.
The application is able to increase ME utilization by
requesting multiple blocks of data per request, by
explicitly prefetching loop data in advance, and by
building the loop body via software pipelining. Each of
these improvements is enabled by the explicit nature of
the ISA and the micro-architecture: the memory
operations allow variable-sized requests and optional

Throughput vs. MEs

0

50

100

150

200

250

0 5 10 15 20
MEs

C
el

ls
/S

ec

Localmem

Normal w/localmem
dataset

Figure 6: Throughput in cells/second of
JackHMMer and Local memory JackHMMer

IXP 2850 Throughput vs. MEs

0

20

40

60

80

100

120

140

0 5 10 15 20

MEs

C
el

ls
/u

se
c

 Figure 5: Throughput in cells/second of JackHMMer
as a function of MEs used.

blocking targeting specific memory controllers, and the
ME pipeline is simple enough to schedule efficiently via
software pipelining. Similar optimizations are not
possible in the Pentium 4 due to (a) lack of guaranteed
prefetching and (b) inability to effectively software
pipeline due to a small number of architectural registers
and the reordering carried out by the superscalar core.

Along with the superior performance and efficiency
shown on this workload, an IXP system consumes less
power and requires less space. The IXP 2850 is
implemented in a 0.18 micron process and consumes 27.5
W typically and 32 W maximum. The P4 is implemented
in with 0.13 micron process technology and typically
consumes around 63 W.

While developing JackHMMer, it became clear that a
small number of ISA modifications could have a
significant impact on code efficiency. The addition of a
conditional move instruction would remove branches from
our inner loop, resulting in reduced instruction count and
20% fewer unfilled branch delay slots. Also, while the
ME ISA has good support for bit and sub-word register
manipulations, non-networking code like the Viterbi
computation could achieve greater code density if
arithmetic sign extension modes were added to these
classes of instructions. The arithmetic shift right
instruction already supports this mode, so it would likely
be a small change that would improve our code density.

Of course, making use of the explicit, application-
controlled mechanisms in the IXP typically requires
programmer involvement. This increases the time and
attention given to code generation. However, for
performance critical code, the benefits often outweigh the
costs. Implicit mechanisms can often hinder high-
performance software development by keeping the
performance-relevant details out of the view of the code
generator. In this situation, the developer can neither
maximize performance nor know with confidence that
greater optimization is possible. We note that the cycle-
accurate IXP simulator was critical in allowing us to
identify system bottlenecks and work-arounds.

6. Estimates for Future Processors

In this paper, we have evaluated the performance of
HMMer/Viterbi on two contemporary processor
technologies. In this section, we explore whether the IXP
is likely to remain an attractive competitor to the Pentium
in this application domain. To this end, we next consider
the features of next-generation processors and their likely
effect on HMMer/Viterbi.

6.1 Intel x86 Family
In the past year, Intel has indicated that the major

architectural advance in future IA-32 processors will

come in the form of integrating multiple cores onto a
single die. In the next several years, we therefore expect
IA-32 products to integrate small numbers (2-4) of
superscalar cores onto individual chips.

Based on the performance results we have seen on the
P4, we expect the transition to dual- and quad-core
processors to improve HMMer/Viterbi performance by a
factor of 2-4x relative to the current Pentium 4
performance, assuming that the cache hit rate remains
high.

Other potential improvements include x86-64 and
additional hyper-threading. Running HMMer on an
Opteron processor, in both 32- and 64-bit mode, indicates
that the move to x86-64 will yield a further 10% speedup.
If additional threads bring the IPC to 3 (the maximum
possible), this would yield another 38%.

These improvements, plus an increase in clock speed
from 2.6 to 4 GHz, yield an expected speedup of 4.7-9.4x.

6.2 Intel IXP Family
In the next generation of IXP processors, we expect

three forms of relevant resource scaling: increased ME
count and clock frequency, more local memory at each
ME, and increased ME issue width.

6.2.1 ME Count and Clock Frequency

As demonstrated by our local memory
implementation, performance can potentially scale
linearly with both ME count and clock frequency,
assuming we could fit all model parameters into local
memory.

6.2.2 Increased Local Memory

Based on comments made recently by the Intel IXP
Architecture Team (at the 2004 Intel University Summit),
the next generation of IXP may feature a writeable control
store that enables unused locations (i.e., those not holding
instructions) to be used as local data memory.

This resource is particularly significant for
JackHMMer. If we assume an 8K control store, as
currently found on the IXP 2850, and note that our
current JackHMMer implementation uses only 566
control store entries, then this development would
increase our effective local memory size from 640 words
to over 8K words. Notably, this increases the effective
local memory size without increasing the ME footprint or
gate count.

JackHMMer’s current data working-set size, for all
models fewer than 1300 states in length, is around 7000
words. This implies that with 8K words of writable
control store, the local memory version of JackHMMer
will be usable for most models.

6.2.3 Increased ME Issue Width

The next-generation Intel IXP processor could double
instruction throughput by organizing each ME as a
statically scheduled dual-issue processor. Compared to the
previous two advances, this development is the most
speculative, since (to our knowledge) Intel has never
hinted at plans to increase the issue width of the ME.
However, there is precedent for such an increase among
NPs, most notably Cisco’s Toaster II network processor,
which featured an array of 4-wide VLIW cores [9].

Increasing issue width via static scheduling would
double peak compute performance while incurring
moderate increases in ME footprint and complexity. For
local memory JackHMMer, a dual-issue processor would
effectively double performance, since the inner loop has
been scheduled via software pipelining and is unrolled
twice. In essence, the inner loop would finish in half the
time.

6.2.4 Performance Relative to the IXP 2850

Based on our current JackHMMer performance on the
IXP 2850, the modifications above would improve
performance as follows.

Increased local memory: 2.26x. As indicated in
section 6.2.2, we expect the next generation of IXPs to
contain enough local memory to make our local memory
JackHMMer usable on most models. Our experiments
indicate that moving from our current JackHMMer
implementation to the local memory version will yield a
2.26x speedup.

Increase ME count from 16 to 32: 2x. With the
external memory bottleneck eliminated, performance
should scale linearly with ME count.

Increase ME clock frequency from 1.4 GHz to 3
GHz: 2.14x. Performance would also scale linearly with
ME clock frequency.

Increase ME issue width from 1 to 2: 2x. Our twice-
unrolled, software-pipelined loop body would condense to
about half its original size.

In all, we would expect the next generation IXP to see
an aggregate speedup of 19.34x. If we drop the
speculative suggestion of a dual-issue ME, leaving only
the highly probable developments, we are left with a
potential speedup of 9.6x relative to current IXP 2850
performance. While our characterization of future features
is by no means certain, it seems likely that the IXP
architecture will remain a competitive option in the
future.

7. Related Work

JackHMMer builds on previous work in accelerating
HMMer and in implementing bioinformatics applications
on network processors. Commercial implementations of

HMMer have been developed that place the core Viterbi
computation in reconfigurable FPGA hardware; one such
system is TimeLogic’s DeCypher engine [25]. TimeLogic
uses several FPGA PCI cards in conjunction with a
multiprocessor Sun Sparc host system to accelerate
HMMer. They claim to achieve performance equivalent of
2600 1 GHz Pentium III processors for this application. If
we assume that performance varies directly with clock
speed between the P3 and P4, this means it would take
roughly 540 IXP 2850s to equal the Timelogic system.

FPGA-based versions of HMMer, like JackHMMer,
typically implement scoring of sequences against a model
but require the host system to reconstruct the optimal
alignment path. Unlike JackHMMer, they typically use a
reduced version of the full motif HMM, in particular one
that does not include the serializing feedback loop
through the J state. With this change, FPGA
implementations are able to invert the order of the two
loops in the Viterbi algorithm and proceed in sequence-
major, rather than state-major, order; however, they lose
the capability to score multiple motifs in a single protein.
In contrast, JackHMMer’s Viterbi implementation
preserves the exact semantics of the original
implementation.

HMMer is not the first bioinformatics application to
be ported to a network processor. Bos and Huang [26]
implemented part of the BLAST algorithm for sequence-
to-sequence alignment using an IXP 1200, an earlier
version of the IXP architecture (6 MEs running at 232
MHz). They focused only on implementing BLAST for
DNA sequences and on the initial filtering stage of the
algorithm, which can be implemented efficiently as a
lookup in a dictionary of strings. Their implementation
achieved parity with a 1.8 GHz Pentium 4 processor,
suggesting the promise of the IXP for accelerating
fundamental bioinformatics computations. JackHMMer
presents further evidence that this application domain is a
good match for network processors.

8. Conclusion

When designing CMPs, architects can choose to
replicate either a small number of complex, superscalar
cores, or many simpler ones. We believe that the latter
design, currently used by network processors, can be
effective in domains beyond networking.

We have explored the relative merits of implementing
HMMer, a scientific workload from the domain of
bioinformatics, on both a network processor and a
traditional superscalar, represented by the the IXP 2850
and the Pentium 4 respectively. The IXP, despite its 1.85x
slower clock, achieves a 1.82x speedup on HMMer
compared to the Pentium, thanks to: the application’s
high degree of coarse-grained parallelism, relatively

modest memory usage, and predictable access patterns, all
of which enabled aggressive software pipelining of
multiple processors. Other uses of the Viterbi algorithm,
as well as other scientific computations with similar
characteristics, are potentially attractive targets for
acceleration on a network processor architecture.

While we worked relatively hard to hide the latency of
memory accesses in JackHMMer, future developments in
the IXP family of network processors seem likely to
remove the anticipated bottlenecks that limit the
scalability of ME clusters by greatly reducing the need for
all MEs to access a shared memory. If these developments
come to pass, we anticipate that future JackHMMer
implementations could run 10 to 20x faster than the
current version. We have shown a proof of concept model
for this in our local memory implementation. In contrast,
likely developments in general-purpose superscalar-based
CMP CPUs seem likely to yield at most a 10x speedup.
The clear path to potential performance improvement in
network processors, along with their attractive compute
density and high degree of user control over
optimizations, suggest that a relatively modest investment
in these architectures could make them a major force in
accelerating scientific computing applications.

9. Acknowledgements
This work was supported by a gift from Intel Corporation and by
NSF grants CCF-0430012, CCF-0427794, CNS-0435173, and
DBI-0237902.

10. References
[1] Intel Pentium 4 Processor Family Product Information.

http://www.intel.com/prodcuts/desktop/processors/pentium
4.

[2] HMMER: Sequence Analysis Using Profile Hidden Markov
Models. http://hmmer.wustl.edu, 2004.

[3] Hoel, P.G. Introduction to Mathematical Statistics, 3rd ed.
New York: Wiley, 1962, page 57.

[4] Alex Bateman, et al. The Pfam Protein Families Database.
Nucleic Acids Research(2004) 32:D138-D141.

[5] Boeckmann B., et al.: The Swiss-Prot protein
knowledgebase and its supplement TrEMBL in 2003.
Nucleic Acids Res. 31:365-370(2003).

[6] Austin, T.M., Burger, D.. The SimplScalar Tool Set,
Version 2.0. http://www.simplescalar.com, 2003.

[7] “Pthreads: POSIX threads standard”, IEEE Standard
1003.1c-1995.

[8] Chandra, P., et al. (2003). Intel IXP 2400 Network
Processor: A Second-Generation Intel NPU. Crowley, P., et
al. (Eds.), Network Processor Design Issues and Practices
vol. 1 (pp.259-275). San Fransisco, CA: Morgan Kaufmann
Publishers.

[9] Marshall, J. (2003). Toaster2. Crowley, P., et al. (Eds.),
Network Processor Design Issues and Practices vol. 1

(pp.235-248). San Francisco, CA: Morgan Kaufmann
Publishers.

[10] Montavista Software- Powering the Embedded Revolution.
http://www.mvista.com.

[11] Radisys: Embedded Systems and Solutions.
http://www.radisys.com.

[12] Intel 21555 Non-transparent PCI-toPCI Bridge.
http://www.intel.com/design/bridge/21555.htm.

[13] Rabiner, L.R. A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings of
the IEEE 77:257-86, 1989.

[14] Haussler, D., Krogh, et al. eds, Proc. of the 26th Annual
Hawaii Int’l Conf. on System Sciences, volume 1, 792-802,
IEEE Computer Society Press, 1993.

[15] Krogh, A. Hidden Markov models for labeled sequences. In
Proceedings of the 12th IAPR Int’l Conf. on Pattern
Recognition, 140-144, IEEE Computer Society Press, 1994.

[16] Graham, S., Kessler, P., and McKusick, M. gprof: A Call
Graph Execution Profiler. In Proc. of the SIGPLAN ’82
Symp. on Compiler Construction (Boston, MA, June 1982),
Association for Computing Machinery, pp. 120-126.

[17] Intel C++ Compiler for Linux User’s Guide. Intel
Corporation, 2003.

[18] Free Software Foundation (FSF), GCC Home Page.
http://www.gnu.org/software/gcc/gcc.html, 2004.

[19] J. Vlontzos, S. Kung . ``Hidden Markov Models for
Character Recognition'', IEEE transactions on image
processing, 1(4), oct 1992.

[20] A. Kundu, Y. He, P. Bahl, ``Recognition of handwritten
word: first and second order hidden markov model based
approach'', Pattern recognition, 22(3), 1989

[21] K. Aas, L. Eikvil, R.B. Huseby, ``Applications of hidden
Markov chains in image analysis'', Pattern recognition,
32(4), p. 703, 1999.

[22] , J. Li, A. Najmi, R.M. Gray, ``Image Classification by a
Two-Dimensional Hidden Markov Model'' IEEE
transactions on signal processing, 48(2), p. 517, Feb 2000.

[23] T. Ryden, et al, ``Stylized Facts of Daily Return Series and
the Hidden Markov Model'', Journal of applied
econometrics, 13(3), p. 217, May 1998.

[24] Dirk Outston et al. "Applications of hidden Markov models
to detecting multi-stage network attacks." In Proc. of the
36th Hawaii Int’l Conf. on System Sciences, IEEE
Computer Society Press, 334-344, 2003.

[25] DeCypherHMM Solution.
http://www.timelogic.com/decypher_hmm.htm, 2004.

[26] Bos, H. and Huang, K. “On the Feasibility of Using
Network Proceessor for DNA Queries”. In Proc. of the
Third Workshop on Network Processors & Applications
(NP-3), pp. 183-195, 2004.

[27] Intel Vtune Performance Analyzers.
www.intel.com/software/products/vtune/

[28] Chukkapalli G., Guda, C. and Subramaniam S.
SledgeHMMER: A web server for batch searching Pfam
database, Nucleic Acids Res. , 32:W542-544

[29] HMMERHEAD, Unpublished;
http://www.cs.huji.ac.il/labs/compbio/hmmerhead/

