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Abstract The first generation of general-purpose CMPs is

expected to employ a small number of sophisticated,

While general-purpose processors have only recently employedsuperscalar CPU cores; by contrast, NPs contain many,

chip multiprocessor (CMP) architectures, network processors much simpler single-issue cores. Desktop and server
(NPs) have used heterogeneous multi-core architectures Sian:rocessors focus on maximizing instruction-level
the late 1990s. NPs differ qualitatively from workstation and parallelism (ILP) and minimizing latency to memory,
server CMPs in that they replicate many simple, highly efficient yhile NPs are designed to exploit coarse-grained

performance of one such NP, the Intel IXP 2850, to that of theto maximize performance and efficiency on packet

Intel Pentium 4 when executing a scientific computing workload Processing Workl_oads; _however, we believe that_ m?‘_”y
with a high degree of thread-level parallelism. Our target other workloads, in particular tasks drawn from sciantifi

program, HMMer, is a bioinformatics tool that identifies COMputing, are better suited to NP-style CMPs than to
conserved motifs in protein sequences. HMMer representsCMPs based on superscalar cores.
motifs as hidden Markov models (HMMs) and spends most of its  In this work, we study a representative scientific
time executing the well-known Viterbi algorithm to align workload drawn from bioinformatics: the HMMer
proteins to these models. Our observations of HMMer on theprogram [2] for protein motif finding. HMMer compares
IXP are therefore relevant to computations in many other protein sequences to a databasemufifs — sequences
domains_ that rely on the Viterbi algorithm. We_show tha; the known to occur, with some variation, in a large fanaify
IXP achieves a speedup of 1.82 over the Pentium, despite thgyher proteins. These motifs are represented as hidden
Pentlums 1.85x fastgr plock. Mqreover, we argue that next- Markov models (HMMs) [14], which allows HMMer to
generation IXP NPs will likely provide a 10-20x speedup for our - . .
workload over the IXP 2850, in contrast to 5-10x speedup search fo_r them in a protein using well-developed
expected from a next-generation Pentium-based CMP. m_athematlcal machinery for parsing discrete sequences
with an HMM. Because HMMer works on a large
database of motifs, each of which can be compared
separately to a target protein, its computation canfibene
The oft-predicted shift among general-purpose greatly from systems with substantial coarse-grained
processors (GPPs) away from superscalar organizations goarallelism. This computation is therefore a natutaldfi
increasing sophistication towards chip multiprocessorsnetwork processor-style CMPs.
(CMPs) appears imminent, with all major desktop We have implementedackHMMer a version of
processor vendors planning to release dual- or quad-corélMMer that runs on an Intel IXP 2850 network
processors in the near future. GPPs are beginning it ado processor. The IXP implements the Viterbi algorithm fo
CMP organizations mainly because their designers can ndHMMs [13], which is the core component of HMMer’s
longer achieve satisfactory performance improvements b search algorithm. This paper recounts our experience
increasing clock frequencies and cache sizes. In contrasimplementing JackHMMer, quantifies its performance
commodity network processors (NPs) have used CMPgain relative to both the original HMMer and a hand-
organizations since the late 1990s to exploit packet-leveloptimized version on a hyper-threaded Pentium 4, and
parallelism in networking workloads. This shift toward draws lessons from our experience about how future NPs
CMP in general-purpose processor organization invitesmay be designed in order to better accelerate similas n
comparisons between these processors and NPs. networking workloads.

1. Introduction



motif” sequences may be inserted in the middle of it. Al
these forms of variation must be considered when sgekin
a motif in a protein sequence. Furthermore, several
distinct copies of one motif may appear within a single
protein.

To summarize the observed variability in a motif,
HMMer describes it probabilistically using hidden
Markov model (HMM)An HMM is a finite state diagram
in which each directed edge from stajeto stateq; is
assigned dransition probability p(gq | g). If ¢ is an
emitting state passing through it emits one symbol (i.e.

Figure 1: Example of hidden Markov model used by

HMMer search tool, with motif length m = 4. Start one amino acid); each possible symbdias anemission
and end states are represented by black dots. probability e(a | ¢). To generate a protein sequence of
Square states emit amino acids in the motif; length n from an HMM, one begins in its initial statg
triangular states emit non-motif amino acids, while and traces a path that passes throngtmitting states,
circular states are non-emitting. Any path from the and possibly some non-emitting states. The probaloifity
start state to the end state of the model generates a the sequence is the product of all transition probagsliti
protein sequence. on the path, times the emission probabilities ohaiino

The remainder of the paper is organized as follows. acids given the states from which they were emitted.
Section 2 provides background on both HMMer and the  The structure of the HMM used by HMMer is shown
IXP architecture. Section 3 examines the behavior ofin Figure 1. A motif of lengtmis comprised o “match
HMMer on a superscalar processor. Section 4 describestates”,M;...M,, whereM, emits the amino acid at the
the implementation of JackHMMer and the techniques motif's kth sequence position. A parallel sequence of non-
used to maximize performance on the IXP. Section 5emitting “deletion states” state®;...D, allow any
compares the performance of JackHMMer to that of asubstring of the motif to be skipped, while another $et o
hand-optimized HMMer on the P4 architecture, while “insertion states’l;...Iy.; allow sequence to be emitted
Section 6 suggests likely improvements to both between any two motif positions. The non-emittingesta
architectures and extrapolates the expected speedup if ouB andE anchor the motif's endpoints. Finally, sta{e<,
assumptions prove correct. Section 7 describes relateéindJ respectively emit non-motif sequences before, after,
work. The paper concludes in Section 8. and between two copies of the motif. In this way, the
model generates an entire protein containing one oe mor
2. Background copies of the motif. HMMer infers suitable transitiand

In this section, we review both the problem domain emission probabilities to describe a motif from a
and the target architecture for JackHMMer. We first give collection of example sequences for that motif.

a detailed account of the HMMer application, its purpose, 2.1.1 Finding Motifswith the Viterbi Algorithm

and its Ic?re searcl];l ﬁompu':atlon. V\Le_ then dveb;crlbe the 14 determine whether a protein sequesoélengthn
essential features of the Intel IXP architecture use contains a motif matching the mode¥l, HMMer

to accelerate this computation. calculates the probability thatis emitted by a series of
2.1 Protein Maotifsand HMMer states that form a path connecting the start and anesst

Proteins perform most metabolic and regulatory tasksf M. Any path through the HMM witim emitting states
in living cells. Families of evolutionarily related peins ~ Can generate the emitted sequermefollowing the
exhibit conservationof a common amino acid sequence Maximum likelihood principle [3], HMMer finds and
along part or all of their lengths. To help identify the €valuates only a single, most probable path. If thi pat
function of an unknown protein, biologists look for sggn ~ has a high enough probability relative to the chanaesth
of amino acids in its sequence that resemble the seegienc Was generated from a null model containing no motif,
of proteins with known functions. When a common then s is considered to “hit'M, and the path indicates

sequence appears in multiple proteins, it is callewf which amino acid in the protein (if any) corresponds to
Because exact preservation of a motifs sequence igach motif position. _
rarely necessary to maintain its biological functian, HMMer uses the Viterbi algorithm [13], a well-known

motif may be encoded by slightly different sequences ofdynamic programming method, to compute the most
amino acids in different proteins. Amino acids in the Probable path through an HMM for a sequence. Let
motif may change or may be deleted, and irrelevanmtno P(a. J) be the highest probability for any path through M



from stategy to stateq that emits the string[1..]j]. If state Although HMMer runs quickly on one protein and just

g is non-emitting, we have a few models, its cost rapidly mounts in high-throughput
P(g, j) = maxP(qd", j)) p(q]qd’). bioinformatics use. Publicly available motif databases
qtM such as Pfam-A and SCOP contain arourfdnddels, all
If stateq is emitting, we have of which must be compared to a protein of interest to
N ; Vo ' identify its component motifs. Typical applications of
= X _
P(a. ) =e(di]la) TD?\)IXP(q I =Dp(alg). HMMer include motif identification in all of an

organism’s proteins (5x£0for bacteria to 2x10 for
human), or, if discrete proteins have not been ideutifi
in a translation of organism’'s complete genomic DNA
(10" amino acids, equivalent to roughly 3%18verage-
sized proteins, for even a small bacterium).

A modern superscalar CPU requires between difd
10° seconds to compare a typical model to a typical
protein, leading to times on the order of 1-10 CPU-days
for high-throughput HMMer computations. Moreover,

statedp IS r(’aac_hed. : o ) databases of automatically, rather than manually, edrat
HMMer’s implementation of the Viterbi algorithm .o oqals such as Pfam-B. can be an order of

Fakes the form ?: a d_oubly_ges_tedf I(;op. The c;:;c_elr IOOpmagnitude larger than those mentioned above. The
iterates over each amino acid s[j] of the sequenadiile biological community’'s desire to accelerate these

the inner I(_)op lterates over the states of the quh's. computations can be seen in the development of massivel
loop orderm_g is dictated by the data dependenues n theparaIIeI HMMer implementations for computing clusters
model of Figure 1: In the _HMMS typically used by [28], of FPGA-based HMMer accelerators [25] and of
HMMer, m, the motif length, is on th_e order of t_ens 0 heuristics [29] to process more models per second at some
hundreds; hence,_n_early the entire inner loop IS SPeNbost to sensitivity. Developing fast architectures for
calculating probabilities for thil-, I, andD-states, with  j\1\er can therefore significantly benefit bioinfortis.
negligible time spent on the other states. In both our The utility of accelerating the Viterbi algorithm

implementation, descr_ibed in Se(_:tion 4, gnd the origir_1a| extends well beyond its application to HMMer. Searches
HMM_er sqftware, the inner loop is organized as a serie using hidden Markov models are useful for many
of m iterations, ea_ch Of.V.Vh'Ch processes the stilkes,, applications that involve recognizing complex patterns in
andDy for one m.Ot'f posmork._ . . sequential data. A classic engineering application of

T.W.O. further mplementatlo_n deta_|ls are crucial to_the HMMs is in speech recognition [13], where spoken words
feasibility of our !mplementanon. First, I_-|MMer caes must be reconstructed from a noisy time series of
out all computations in the log domain, so that the individual phonemes. Related applications include text

productl\; in the \r/1|telrb| recgrrspt_:e can belrt(ajplac_ed byrecognition [19], image processing and computer vision
sums. Moreover, the log probabilities are scaled tegert [19], and time-series analysis of scientific and ecdoom

scores, _allowi_ng th_e entire computation to_be don(_a indata sets [23]. More recently, HMMs and related
le(_ad-pomt grlthmqtlc. Hence, the computation requires probabilistic techniques have been used to recognize
nelther floating-point nor fast multiplication, whicre patterns of behavior in network traffic, particularly f
lacking on the IXP. intrusion detection [24]. All of these applications inel

If ge is the unique final state d¥1, then a most
probable path fors has probability P(q.,,s) This
probability can be computed in tin@n|M|), where|M|
is the total number of states in the model. Given epac
O(n|M|) to store the full matrix of intermediate
probabilitiesP(q, j), one can recover a most probable path
by tracing back the transitions chosen by the alguworith
starting with the end statg and continuing until the start

2.1.2 Significance of the Viterbi Algorithm comparing a large volume of information to a collection
HMMer’s basic computation is as follows: given a of HMMs using the Viterbi algorithm or its close
protein sequenceand a database of motif mod#s...M, relatives, so all are potentially amenable to paradiéon

, compute the score of a most probable patls farough using an implementation like that described in this work.

each M; using the Viterbi algorithm. Subsequent 22 Packet Processing and the Intel IXP
computation identifies paths scoring highly enough to The Intel IXP family of NPs [8] is designed to

report, but this work is negligible compared to that . . -
. . . implement packet processing tasks within packet-based
required to search a large motif database. The time : e )
. networking and communications equipment, such as
needed to read the motif database can also be madg near] : . )

L . A i router line cards, cellular phone base stations, wiretl a

negligible by storing each model in its binary, in-meyno : : ; .
representation. Hence. nearlv 100% of useful com uteereless access points, and security devices. Each IXP
P i ' y 0 P product targets a different link speed; the IXP 2850

time in HMMer is spent in the Viterbi algorithm. supports line-rate packet processing at up to 10 Gbps. The
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Figure 2: Organization of the IXP 2850 NP. 14— 4F

IXP, like other NPs, uses multiple processors, threads, Figure 3: Organization of the IXP Micro-Engine.

an(_j memory channels to increase per-packet Computat'mépeciﬁed in the ISA and are asserted when requested
while hiding memory latency.

Figure 2 shows the major components and top_Ieveloperatlons have completed. This message-passing style

organization of the IXP 2850. It consists of a number of gnd the use of hardware signals allow ME software to

units, each linked to a shared interconnect. Whik fitot initiate multiple external requ_ests, without blocking so
: : . ; long as subsequent computation does not depend on the
apparent in the figure, the interconnect is made up of

. Con completion of these requests. This asynchronous memory
multiple uni-directional command and data buses, each. : o )
. . . interaction, which is a unique feature of the IXP ME)
unit having a connection to each bus. . . . . . o

; . . is exploited in Section 4.4 to pipeline the Viterbi
The IXP features a variety of resources, including .
. . ! computation.
multiple memories and both programmable and fixed-
function units. The microengine (ME) clusters are the 3, HMMer on a Superscalar Processor
central resource. Each ME is a 32-bit, 6-stage pipelined
processor. The MEs implement a small, RISC-like ISA
tailored to packet processing. The XScale processor is

As described in Section 2, HMMer execution is
gominated by the Viterbi computation. Indeed, profiling

standard ARM-compatible processor that implements TMMer using gprof [16] shows that 82.9% of execution

control and management functions on top of Linux or g time is spent in the function that implements the Nite

commercial real-time OS. Other units provide critical &lg0rithm; almost all of the remainder is spent in
functions or resources in hardware, including a Preprocessing of the model database, which can be moved

configurable hash unit and 16KB of on-chip scratch off-line relative to the search. To better understémd

memory. Each IXP integrates DRAM and SRAM crucial function, we used Intel's Vtune [12] program to
controllers on chip. The IXP 2850 includes three Rambus€Mpirically characterize its execution on the Pentium 4
RDRAM and four QDR SRAM controllers and channels The version of HMMer that we characterize here is
for bulk and latency-sensitive data storage, respectively "0t the standard distribution but a modified, highly
Most units on the IXP 2850 are clocked at 1.4 GHz, with optimized version that is described in section 5.2.dvor

the exception of the XScale, interconnect, and memory€XPeriments, we used an input protein of length 544
controllers. which are clocked at 700 MHz or less. and a representative sample of motif models from the

Figure 3 shows a high-level view of the IXP ME Pfam_|s database [4]. Using a different set of input
organization. Each IXP ME provides hardware support proteins and motif models would influence runtime but
for 8 hardware thread contexts, including register storage, (@S We ’Iater show) would not materially change the
multithreading ISA extensions, and a thread arbiter. EachProgram's behavior.

ME has its own local data and instruction storage, both3.1 Instruction and Data L ocality

implemented as SRAMs. An ME communicales  The Viterbi computation is a relatively small function
asynchronously with other units via I/O commands and requiring only several hundred lines of C code.

transfer registers. A DRAM read, for example, is cairrie Consequently, instruction cache performance should be
out by sending a read operation to the DRAM controller good. This is confirmed by Vtune results which show a
(via the Command Outlet FIFO) that specifies the désire {y5ce cache miss rate of 0.001%. Data locality is also
address as well as the target incoming transfer regjisier good, as there is a first level cache miss rate oitha

which the data should be delivered. Hardware signals ar€qcond level cache miss rate of 0.7%. These resulig sho



that the 512 KB cache on our P4 can service the vasiXP in this work reference this dual-threaded version on
majority of memory requests. the hyper-threaded P4.
3.2 Instruction Mix To summarize, our observations _of HMMer using
_ i Vtune and SimpleScalar suggest that it has a small cache
Most ) mstructlons_: _execut_ed by ) HMMer are footprint, easily predicted branches, and limited
computation and logic instructions, which account for instruction-level parallelism, but massive coarse-grdin
58% of all dynamic instructions. Memory operations are ., 4|elism. These characteristics tend to defeattsfto

the S?‘C"”d most fr_equent class, with load and SIOr€;ceelerate the computation using the dominant design
operations representing 16.2% and 16.6%, reSpeC_t'Velytechniques for improving superscalar performance, but

Control flow instructions represent 9.2% of all op@msi. o\ are much more attractive for deployment on aayarr
With its high cache hit rates, and a branch mispremicti ¢ "5y relatively simple processors. JackHMMer
rate of only 0.3%, HMMer on the P4 is limited principally e efore organizes its computation to maximally exploit

by the amount of ILP the processor can exploit. HMMer's coarse-grained parallelism on the IXP
3.3 Prospectsfor ILP architecture.

We used the SimpleScalar toolkit, version 3 [6] to 4. JackHMMer: HMMer on the IXP
investigate the prospects for ILP within HMMer by '

observing how instructions issued per cycle (IPC) changed In this section, we describe the design and
as a function of issue width. In the simulations used toimplementation of JackHMMer. The XScale control
gather this information, sufficiently large cachesarwh processor is responsible for dispatching jobs to the,MEs
predictors, and reorder buffers were used at each issuwhich perform the Viterbi calculation. Because current
width to avoid structural hazards. IPC peaks at aroundIXP implementations provide relatively little memory
3.6, but only when a very aggressive superscalar width ofclose to the MEs, a principal design challenge was tp kee
128 is used. For narrower superscalar processors, an IP@ll MEs busy while retaining models and intermediate
of between 1 and 2 is more realistic. This is confarhg data in a shared, relatively high-latency memory. We
Vtune, which shows the actual IPC on the hyper-threadedaddressed this challenge by minimizing the number of
P4 to be 1.87 for 1 thread and 2.16 for 2 threads (1.08 pedistinct commands processed by the memory controllers
thread). and by pipelining the Viterbi algorithm to overlap
The available ILP in HMMer's Viterbi computation is memory latency with computation.
limited for two reasons. First, the core inner loopludes 4.1 Application Partition
a number of loop-carried dependencies that limit JackHMM K ith inale inout e
opportunities for parallel instruction issue. Moreovée t ac er works with - a single input protein
inner loop contains around 50 instructions, many of sequences an_d a database of HMMs. The database is
which have data dependencies between them. Thesg'v'_ded |ntoV|terb|_ packets(M, 6), one_pacl_<et for each
dependencies leave little room for out-of-order scheduling'mj'v'du""I mOdEI in the database. Viterbi packets are
either within or between loops. The low level of itatale cre_ated offline _(for bOt_h the IXP and P4 versm_ny) b
ILP in HMMer limits the potential for acceleratiory b laying OUt_M in a binary format and computl_ng_ a
complex out-of-order execution schemes. corre_spondlng score threshaofy SL_Jc_h that a protein is
considered to “hit” a modeé¥l only if its score againgtl
3.4 Prospectsfor TLP is at leastd. At runtime, the XScale distributes these
While parallelism between instructions in a single packets of work to the MEs, which compare elicto the
Viterbi calculation appears limited, there is no retioh sequences and identifies those models whose score
on the number of distinct Viterbi calculations tham dze againsts is high enough to trigger a hit. Individual
carried out on distinct models simultaneously. In fact, Viterbi packets can be processed independently, so each
because HMMer is frequently used to check one or severaME acts as an independent worker that asynchronously
sequences against a large model database, there is atcepts packets and returns results to the XScale.
ample supply of thread-level parallelism if different For each job that triggers a report, a most probable
models are processed in different threads. Indeed, thegpath through the model must be reconstructed.
HMMer distribution includes a version of the program Reconstruction of this path within the IXP is feasiblt
that uses the pthreads library [7] to exploit this is deferred to future work, and it represents a small
parallelism on SMP architectures. Running our hand-amount of the work (1% or less) in the full HMMer
optimized version of HMMer (described in Section 5.2) implementation. To make all comparisons fair, the tesul
using 2 threads on a hyper-threaded Pentium processoreported in this paper exclude the cost of reconstruction
increased performance by 14.8%. All comparisons to thefor both the IXP and P4 versions of HMMer.



4.2 Memory Requirements and L ayout reads and writes are properly aligned, avoiding costly
In our implementation, each of the IXP 2850’s sixteen read-modify-write cycles in the IXP’s memory conlees.

MEs can independently and asynchronously accept units$.3 XScaleand ME Interaction
of work from the XScale. However, the storage needed to0  The XScale implements a job dispatcher, which is
complete each unit substantially exceeds the MES’ |°Ca|responsible for sending Viterbi packets to the MEs and
memory capacities, requiring the use of shared SRAMeading the results of each computation back out of
and DRAM memories. DRAM. The XScale first reads the database from dver t
To complete a Viterbi packeM( 8), a ME needs the  npetwork and caches it in DRAM. This is necessary
model M and the input sequeneg plus storage for the  pecause our development platform lacks a local hard disk.
intermediate value®(q, j). A sequence ofi amino acids  \when an ME becomes free, it signals the XScale. The
occupiesn bytes of storage, while the model for a motif of xscale writes several control parameters into thesME
lengthm occupies roughly 10M bytes. If the IXP does not  registers, including a pointer to the next Viterbi packet,
retain the full matrix of intermediate probabilities to and signals the ME. The ME then transfers the packet
compute the most probable path, its intermediate storaggnto SRAM and begins its computation.
requirements are a furthermd34 32-bit integers. The It may seem wasteful for the MEs to transfer models
protein and motif lengthsn and n are typically in the  from DRAM to SRAM only to read them back from
range 200-400, though longer examples of each can b&raAM. There are several reasons for this organizatio
found. Hence, both model and intermediate storage arerhe first is memory alignment: DRAM can only be
typically too large to fit within the 2400 bytes of memor  accessed on 8 byte boundaries, which is inconvenieht an
local to each ME in the IXP 2850. wasteful in our Viterbi implementation, whereas access
The data used in the Viterbi computation is distributed from SRAM avoids such problems. Secondly, the bulk
across multiple memories attached to the IXP. Thisiansfer leaves our design more flexible; a future

distribution splits the memory traffic of the computatio jmplementation may make use of the IXP's DMA
among the IXP's different memory controllers and data controllers to achieve the same function without

bandwidth. We place the models and intermediate storagepresent less than 1% of work done by the MEs.

in SRAM and DRAM respectively, principally because T . . .
DRAM is the only memory large enough to hold 4.4 Pipdlining the Viterbi Algorithm
intermediate results for all MEs if we choose toiretae The MEs on the IXP lack any form of automatically
full matrix. The common sequenseised with all Viterbi ~ managed cache and have local memories that are too
packets is accessed much less frequently than eithemall to hold all the data necessary to perform therbii
model or intermediate data and so can be placed almostomputation. To achieve good performance on this
any\Nhere with minimal performance impact; Curren$|y, memory-intensive task, it is therefore essentiaﬂrganize
is placed in scratch RAM attached to the IXP’s hash uni the computation so as to hide the long latencies agsdci
We lay out the model parameters and intermediateWith memory accesses. We use two techniques to reduce
\/a|uesP(q, J) in memory so as to most efﬁcienﬂy support memory Iatency in our implementation: batching of reads
the loop structure described in Section 2.1.2. Eachand writes, and pipelining of memory operations.
iteration of the inner |oop processes staksl, ande The ME instruction set Supports multiword read and
for one motif positionk. We therefore pack together the Write commands of up to 16 32-bit words to SRAM and
model transition probabilities associated with thésee ~ Up to 16 64-bit dwords to DRAM. Both these sizes are
states for one value df into a contiguous block of greater than the sizes of the transition probatsli{@2
memory that can be retrieved with a single multiword bytes), emission probabilities (4 bytes), and interatedi
SRAM read operation. Similarly, we paBkM, j), P(l j) values (12 bytes) used for one motif positiain the inner
andP(Dy, j) into a single 3-word block in DRAM for each loop of the Viterbi algorithm. However, actually reaglin
k. Because the current sequence Charggﬁ?r remains and Writing memory once for eaghis inefficient for two
constant over each pass through the outer loop, wee€asons: first, it needlessly multiplies the number of
arrange the emission probabilities fdf andl so that all ~ distinct accesses queued by the SRAM and DRAM
the probabilities for one amino acid are stored controllers; and second, it fails to take advantage of
contiguously; for eacha, pairs B(@My), e(@ily)] are DRA_M’s_ ability to transfer data in large mu_ltiword bugst
packed into a single block for eakhsince the two values Multiplying the number of read and write commands

are always used together. All blocks are padded so thatcreases the queue depth in the IXP's memory
controllers, leading to longer latencies for all asessand

stalls when the queues fill.



To maximize the efficiency of memory operations, we busy, and require similar numbers of instructions to
organize our computation so that data for multiple inner execute HMMer, the JackHMMer implementation should
loop iterations can be transferred in a few large outperform the P4 by almost 3x. Of course, these
operations. All of the model transition probabilities assumptions do not necessarily hold; hence, a more
needed to proceddy, I, andDy for two consecutive motif  careful empirical comparison is needed.
positionsk can _be fetched by one muItiword_S_RAM read 5.1 Experimental Setup
command. A single SRAM read is also sufficient to load
all the emission probabilities needed for 10 consecutive
motif positions. Similarly, we can read and write thlé
intermediate probabilities for 10 motif positions using on
DRAM burst read and one burst write. When the amount
of data to be transferred at once exceeds the storag
available in the IXP’s register set, we use the local
memory of each ME to hold the data until it can be
consumed by the computation (for reads) or written back
(for writes).

Batching memory operations is effective in reducing
total latency to the extent that fewer, larger opere; o .
particularly to DRAM, require less total time to retuie so does not require job scheduling. _
same number of bytes. However, batching cannot agtuall The HMMer_ program pe_rforrr_ls seyeral tasks in
hide latency. Fortunately, the IXP architecture’s support a_ldd't'on to running the core Viterbi algorithm. The most
for asynchronous memory operations provides atlme-_cons_ummg, which a_ccounts_ for_ up to 25% of
mechanism by which the Viterbi algorithm can be MUNNIN9 time on the P.4’ is reading in “models 1:r0m a
effectively pipelined. We use asynchronous operations todatapase and cor_wert_lng thgm to a I(_)g-_odds fo_rm
prefetch data ahead of when it will be needed — two motifrequlred by the Viterbi algorithm. We eliminated  this
positions ahead for transition probabilities, ten pos# work from both P4 HMMer and JackHMMer by

ahead for other model parameters and intermediatd’récomputing the log-odds _for_m of each model and
probabilities. Similarly, we issue a DRAM write fogrt storing its binary representation; this optimizatiamuld

iterations’ worth of intermediate probabilities, then be implemented in a production system. HMMer also

compute for a further 10 iterations before requiring that pergorlms péos;-prpcessing of signifriﬁanthhlts betwe_en
write to complete. Although such pipelining places great MOCEIS an the input sequence; while t. ese operations
demands on the IXP's limited number of transfer constitute only a few percen_t of total running timetioa
registers, we avoid this hazard by moving batched valued 4. they are not currently |mp_lemented N JackaMMer.
to local memory as soon as they become availdideeby We thergfore omit post-processmg fror_n HMMer's C.OSt on
freeing their transfer registers for the next operation thek::;\l/ll\l/ln our telzts. /% p:deuctlon |mplementat|orr]1_ rc})f
With the above optimizations, an IXP 2850 attached Jac X er would offload  post-processing, ~whic

to commodity SRAM and DRAM chips and running one requires floatlng-pomt_ support, on_to a host processor,
instance of the Viterbi algorithm per ME supports where it would run in parallel with the much more

simultaneous operation of up to twelve MEs without compu':(el_-li'\r)l';\insive gitﬁm\ﬂalgorithm on thde LXP' _
saturating the command queues of the IXP's memory Jac er an er were tested by comparing

controllers and with relatively few idle cycles inyan the Pfam_Is database [4] (version 14.0) to 4 input protein

engine due to memory latency (see section 5.4). sequences chosen at random from the SwissProt [5]
g y y( ) database, with an average length of 497.5. The average

5. Experimental Evaluation number of positions per motif in Pfam_|s is 226, and there
are 7459 models in the database.

JackHMMer was implemented on an Intel IXDP 2810
development platform [11] containing two IXP 2850
processors, of which we use only one. Attached to the
2850 are 768 MB of SDRAM and 32 MB of QDR SRAM.

he operating system on the IXP is MontaVista Linux 3.1
10]. The P4 implementation was run on a 2.6 GHz P4
with SUSE Linux 9.1 as an operating system.

JackHMMer’s Viterbi computation was run on the
MEs of the IXP 2850, with the scheduler/job dispatcher
run on the IXP’s XScale control processor. The refege
implementation of HMMer was run entirely on the P4 and

In this section, we compare the performance of the o
optimized HMMer application running on the P4 to 5.2 Optimization of HMMer for the P4
JackHMMer running on the IXP 2850. The IXP’s 16 MEs To ensure a fair comparison between the P4 and our
can each issue 1 instruction per cycle; with a 1.4 GHzhand-written IXP assembly code version of HMMer, we
clock, this means it can perform 22.4 Gops/sec at peakimproved the P4's implementation of the core Viterbi
The P4, which can retire 3 micro-ops in 1 cycle and is algorithm (as distributed in HMMer 2.3.2) by manually
clocked at 2.6 GHz, can retire 7.8 Gops/sec at peak. Thisptimizing the C implementation, then further editing the
means that if both implementations are CPU-bound, cangenerated x86 assembly code. Unless otherwise indicated,
find enough parallelism to keep their functional units



all performance comparisons in this section are ts th
optimized P4 implementation.
The major change in our C code versus stock HMMer 70 -

Runtime vs.Sequence Length

was to alter the data layout in memory. Although the g, | cranatPe
existing code already lays out the motif model and 50 Optimized P4
dynamic programming matrix to achieve good data cache

locality, accessing all the data necessary to exetate t £40 ¢ 1XP 2850

inner loop of the Viterbi algorithm requires nine separa 30 -
base pointers. Our modified layout, similar to that uged b mzo ]
JackHMMer, recombines the various component arrays of 10

model and matrix so that only five pointers need be w/*//"///‘
maintained. Our implementation can therefore keep all ° ‘ ‘ ‘ ‘ ‘

nt_aeded_ base pointer_s in x86 architectural registers, 200 Se‘éouoence nggth 800 1000
eliminating the multiple memory reads needed to

maintain  these pointers in  HMMer's original Figure 4: Runtime as a function of input sequence.
implementation. increases roughly linearly with motif size and sequence

We made numerous additional small changes tolength, regardless of the actual model and sequence used.
HMMer's Viterbi implementation to generate the best  While JackHMMer's throughput for processing
possible x86 assembly code using the Intel C Compilermodels exceeds that of the P4, the latency required to
(version 8.1.026). Our C-level changes produced assemblyrocess each single model is much greater on the IXP.
code for the Viterbi inner loop that we judged to be lyear When executing using only one ME, the IXP requires
optimal, except for one register spill and a number of 79.76 seconds to run over our test data, while the P4
missed opportunities to implementax operations with  requires only 14.05 seconds. This result is unsurprising,
conditional moves, rather than with more costly loteas. since each ME of the IXP is substantially slowemtlize
We did not use the x86 SIMD extensions because somd>4, though the IXP as a whole is faster. Fortunately,
operations, e.g., max, were not available in the 32-bitlatency is relatively unimportant for non-interactbha&tch
working precision required by HMMer. We corrected computations, such as running HMMer on a large
these deficiencies by hand-editing the assembly code andatabase of models.
verified_ thgt our changes measurably decreased totalc—)_4 Performance Details for the | XP 2850
execution time.

We believe that our final x86 assembly code for |
HMMer's Viterbi algorithm, particularly the code foreth = o _ ) . e
inner loop, is comparable in efficiency to the best Viterbi algorlthm_s_matnx of mtermedlat_e proba_bll_ﬂ;le
implementation that could be hand-coded from scratch. In¢an the system fill in one second? The Sliz€ c_)frtim;nx
particular, the code is of comparable quality to our hand-'S pr(_)portlonal to the product of the rT‘O“f size and the
coded IXP implementation. On a moderately sized modelprore'rl seéquence Iength, f"md the er_mre matrix must be
(M = 544), our implementation of the Viterbi algorithm filled in before the Viterbi computation can complete.

runs 2.06x faster than HMMer's original implementation. Figure 5 shows what happens to the cells-per-second
throughput metric as we increase the number of MEs used

5.3 Comparative Performance in the computation. As we increase the number of MEs
JackHMMer can match an input protein of length from 1 to 12, our throughput increases nearly linearly,
n=544 against the entire Pfam_Is database in 7.73demonstrating the IXP’s ability to exploit the avaikabl
seconds, whereas optimized HMMer on the hyper-thread-level parallelism of HMMer.
threaded P4 requires 14.05 seconds. In other words, the Above 12 MEs, we begin to see diminishing
IXP achieves a speedup over the P4 of 1.82 on thisthroughput (due to SRAM contention as discussed below).
computation, despite the latter's 1.85x faster clock. The increase in throughput from 12 to 13 MEs is quite
Section 5.6 will elaborate on why this is so. small (~1.3%, versus 12.2% were the increase linear).
Figure 4 shows runtimes for comparing protein These observations imply that for the IXP 2850, we could
sequences of various lengths to the entire Pfam databaseise 4 MEs to provide additional functionality without
As these figures show, the performance of both sacrificing performance.
JackHMMer and HMMer is fairly insensitive to specific The bottleneck for the IXP 2850 implementation is at
inputs. The time needed to process a single motifthe SRAM control queues. We observe that, while the
SRAM channels are 50% utilized, increased utilization

A useful measure of throughput for JackHMMer is
‘cells per second;” that is, how many entries in the
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Figure 6: Throughput in cells/second of
JackHMMer and Local memory JackHMMer

. . . we investigated its performance on an IXP 2400, which
can be obtained iny by using the maximum refer_encehas a clock speed of 600 MHz and 8 MEs (no significant
count of 16 32-bit wo_rds on every SRAM operation, changes were needed to the JackHMMer code). We
rather than the_ _13 be”?g u_sed._ This change would beobserved a throughput of 51.87 cells/sec, compared to
awkward and difficult, with little if any advantage. OUr 559 94 celis/sec on the 2850. The 2850 therefore achieved
observations suggest tha_t we are saturgtlng th_e SRANE\ 4.43x speedup over the 2400, compared to an expected
controllers and are experiencing contention for its INPUt 4 66x increase given the former’s faster clock and larger
queues. As a resul_t of this contentlon, the MES are Idlenumber of MEs. These results suggest that local-memory
almost 50% of the time. (Note that using multiple threads ;. .LimMer is likely to scale well both with increagi

at__ea(_:h ME WO.UIC.j not help due to ful MEeMOry  ¢iock speed and with increasing numbers of MEs.
utilization.) A preliminary proposal for overcoming this

barrier is discussed in the next section. 5.6 Discussion
5.5 Scalability Limits of JackHMMer In this section, we have seen that JackHMMer on the

) _ IXP 2850 outperforms HMMer on the Pentium 4. This
Since JackHMMer is currently bottlenecked at the jjicates that the IXP is a more efficient architeetfor

IXP's SRAM memory gontrolle_rs, we are un_likely to see throughput-oriented Viterbi calculations. The IXP’s
great performance gains by simply increasing the CIOCkeﬁiciency is due to a number of factors

speed of the MEs. One promising alternative is to put all Significant coar se-grained parallelis.m Running 16
the model data into the MEs' local memary, elimingtin computations in parallel proved more effective than
the need to access SRAM. Although this approach Cannoharvesting ILP. The local memory JackHMMer also

a_lcgommodate all models_of useful size today, dug to theindicates that, given some improvements discussed in
limited local memory available on the IXP 2850, it may ¢.ion 6.2 the 16-way simple CMP organization can be
be attractive on a future IXP implementation with more more effe(,:tive at keeping ALUs active than the

local memory. - L2 .
. . sophisticated superscalar pipeline in the Pentium 4.
We have implemented a version of JackHMMer that pEpricit a%plicationf)cgntrolled mechanisms
keeps all its data in local memory, and have testedrigus ;5 iMvier is a good match for the kind of fine-grained

the subset of small models in F_’fam_ls_ that Wi_" fifdoal control that programmers and code generators have when
memory on the IXP 2850. This version achieves a 3.5x rogramming the IXP MEs: the data can be arranged in

speedup over the PA. Figure 6 presents a compariso locks for efficient memory usage; multiple memory

between this JackHMMer version and our original, channels can be used to increase bandwidth and reduce

%Rpﬁgﬂn;gi?aegon ianF;IeorzE/n;)aet:’cf)c?r.ms-rgeetterlogilla ggg:)ry latency; and the working set size is known in advance.
. ’ The application is able to increase ME dutilization b
2.26x, but also scales better with the number of MEs. The bp y

. ) . requesting multiple blocks of data per request, by
regular JackHMMer implementation begins to see explicitly prefetching loop data in advance, and by

dr']mmI'Sh'?g returns WGenkl;Isl\l/lnl\gA] 12or more MES’ Wlhereasbuilding the loop body via software pipelining. Each of
the local mer];nory ac er continues its linear yhqqq improvements is enabled by the explicit nature of
Increase In pertormance. the ISA and the micro-architecture: the memory

o assess _whether '°C‘?"”?em°ry_ JackHMMer's operations allow variable-sized requests and optional
performance is likely to scale with increasing clockeshe

Figure 5: Throughput in cells/second of JackHMMer
as a function of MEs used.



blocking targeting specific memory controllers, and the come in the form of integrating multiple cores onto a
ME pipeline is simple enough to schedule efficiently via single die. In the next several years, we thereforeotxpe
software pipelining. Similar optimizations are not IA-32 products to integrate small numbers (2-4) of
possible in the Pentium 4 due to (a) lack of guaranteedsuperscalar cores onto individual chips.
prefetching and (b) inability to effectively software Based on the performance results we have seen on the
pipeline due to a small number of architectural registersP4, we expect the transition to dual- and quad-core
and the reordering carried out by the superscalar core.  processors to improve HMMer/Viterbi performance by a
Along with the superior performance and efficiency factor of 2-4x relative to the current Pentium 4
shown on this workload, an IXP system consumes lessperformance, assuming that the cache hit rate remains
power and requires less space. The IXP 2850 ishigh.
implemented in a 0.18 micron process and consumes 27.5 Other potential improvements include x86-64 and
W typically and 32 W maximum. The P4 is implemented additional hyper-threading. Running HMMer on an
in with 0.13 micron process technology and typically Opteron processor, in both 32- and 64-bit mode, indicates
consumes around 63 W. that the move to x86-64 will yield a further 10% speedup.
While developing JackHMMer, it became clear that a If additional threads bring the IPC to 3 (the maximum
small number of ISA modifications could have a possible), this would yield another 38%.
significant impact on code efficiency. The addition of a These improvements, plus an increase in clock speed
conditional move instruction would remove branches from from 2.6 to 4 GHz, yield an expected speedup of 4.7-9.4x.
our inner loop, resulting in reduced instruction count and 6.2 Intel IXP Family
20% fewer unfilled branch delay slots. Also, while the

ME ISA has good support for bit and sub-word register h ¢ ¢ ol fng: i & M
manipulations, non-networking code like the Viterbi three forms of relevant resource scaling: increas

computation could achieve greater code density if count and clock frequency, more local memory at each

arithmetic sign extension modes were added to thesd"IE: and increased ME issue width.

classes of instructions. The arithmetic shift right 6.2.1 ME Count and Clock Frequency

instruction already supports this mode, so it would likely ~ As  demonstrated by our local memory

be a small change that would improve our code density. implementation, performance can potentially scale
Of course, making use of the explicit, application- |inearly with both ME count and clock frequency,

controlled mechanisms in the IXP typically requires assuming we could fit all model parameters into local
programmer involvement. This increases the time andmemory.

attention given to code generation. However, for goo5 |oreased L ocal Memory

performance critical code, the benefits often outweigh
costs. Implicit mechanisms can often hinder high- Based on comments made recently by the Intel IXP

performance software development by keeping theArchitecture Team (at the 2004 Intel University Summit),
performance-relevant details out of the view of thdeco th€ NExt generation of IXP may feature a writeablercbn
generator. In this situation, the developer can neitherStore that enables unused locations (i.e., thoseaidinig

maximize performance nor know with confidence that instructions) to be used as local data memory.

greater optimization is possible. We note that thdeeyc This resource is particularly  significant for
accurate IXP simulator was critical in allowing us to JackHMMer. If we assume an 8K control store, as

identify system bottlenecks and work-arounds. currently found on the IXP 2850, and note that our
current JackHMMer implementation uses only 566

6. Estimatesfor Future Processors control store entries, then this development would
fincrease our effective local memory size from 640 words
to over 8K words. Notably, this increases the effecti
local memory size without increasing the ME footpant
gate count.

JackHMMer’s current data working-set size, for all
models fewer than 1300 states in length, is around 7000

In the next generation of IXP processors, we expect

In this paper, we have evaluated the performance o
HMMer/Viterbi on two contemporary processor
technologies. In this section, we explore whether| Xie
is likely to remain an attractive competitor to thenfum
in this application domain. To this end, we next consider

the features of next-generation processors and thely like words. This implies that with 8K words of writable

effect on HMMer/Viterbi. control store, the local memory version of JackHMMer
6.1 Intel x86 Family will be usable for most models.

In the past year, Intel has indicated that the major
architectural advance in future IA-32 processors will



6.2.3 Increased ME Issue Width HMMer have been developed that place the core Viterbi

The next-generation Intel IXP processor could double computation in reconfigurable FPGA hardware; one such
instruction throughput by organizing each ME as a System is TimeLogic's DeCypher engine [25]. TimeLogic
statically scheduled dual-issue processor. Compared to théSes several FPGA PCI cards in conjunction with a
previous two advances, this development is the mostMultiprocessor Sun Sparc host system to accelerate
speculative, since (to our knowledge) Intel has never HMMer. They claim to achieve performance equivalent of
hinted at plans to increase the issue width of the ME. 2600 1 GHz Pentium lll processors for this application. If
However, there is precedent for such an increase amony/€ assume that performance varies directly with clock
NPs, most notably Cisco’s Toaster Il network progesso speed between the P3 and P4, this means it would take
which featured an array of 4-wide VLIW cores [9]. roughly 540 IXP 2850s to equal the Timelogic system.

Increasing issue width via static scheduling would ~ FPGA-based versions of HMMer, like JackHMMer,
double peak compute performance while incurring typically |_mplement scoring of sequences against a model
moderate increases in ME footprint and complexity. For Put require the host system to reconstruct the optimal
local memory JackHMMer, a dual-issue processor would @lignment path. Unlike JackHMMer, they typically use a
effectively double performance, since the inner loop ha reduced versiomnf the full motif HMM, in particular one
been scheduled via software pipelining and is unrolledthat does not include the serializing feedback loop

twice. In essence, the inner loop would finish in hag ~ through the J state. With this change, FPGA
time. implementations are able to invert the order of the t

. loops in the Viterbi algorithm and proceed in sequence-
6.24 Performance Relativeto the | XP 2850 major, rather than sta?e-major, ordgr; however, 1%39
Based on our current JackHMMer performance on thethe capability to score multiple motifs in a single piot
IXP 2850, the modifications above would improve |n contrast, JackHMMer's Viterbi implementation
performance as follows. preserves the exact semantics of the original
Increased local memory: 2.26x. As indicated in implementation.
section 6.2.2, we expect the next generation of IXPs to  HmMer is not the first bioinformatics application to
contain enough local memory to make our local memory pe ported to a network processor. Bos and Huang [26]
JackHMMer usable on most models. Our experimentsimp|emented part of the BLAST algorithm for sequence-
indicate that mOVing from our current JackHMMer to-sequence a“gnment using an IXP 1200, an earlier
implementation to the local memory version will el version of the IXP architecture (6 MEs running at 232
2.26x speedup. MHz). They focused only on implementing BLAST for
Increase ME count from 16 to 320 2x. With the ~ DNA sequences and on the initial filtering stage of the
external memory bottleneck eliminated, performance gigorithm, which can be implemented efficiently as a

should scale linearly with ME count. lookup in a dictionary of strings. Their implementation
Increase ME clock frequency from 1.4 GHz to 3 achieved parity with a 1.8 GHz Pentium 4 processor,
GHz: 2.14x. Performance would also scale linearly with suyggesting the promise of the IXP for accelerating
ME clock frequency. fundamental bioinformatics computations. JackHMMer
Increase ME issue width from 1to 2: 2x. Our twice-  presents further evidence that this application domaan is

unrolled, software-pipelined loop body would condense to good match for network processors.
about half its original size. .
In all, we would expect the next generation IXP to see 8. Conclusion

an aggregate speedup of 19.34x. If we drop the \yhen designing CMPs, architects can choose to
speculative suggestion of a dual-issue ME, leaving only epjicate either a small number of complex, superscalar
the highly probable developments, we are left with a cqreg o many simpler ones. We believe that tterla

potential speedup of 9.6x relative to current IXP 2850 design, currently used by network processors, can be
performance. While our characterization of future fe28uUr  ftactive in domains beyond networking.

is by no means certa_in, it seems_l_ikely that the IXP" \we have explored the relative merits of implementing
architecture will remain a competitive option in the pvmer. a scientific workload from the domain of
future. bioinformatics, on both a network processor and a
7. Redated Work traditional superscalar, represented by the the IXP 2850
and the Pentium 4 respectively. The IXP, despite its 1.85x
JackHMMer builds on previous work in accelerating slower clock, achieves a 1.82x speedup on HMMer
HMMer and in implementing bioinformatics applications compared to the Pentium, thanks to: the application’s
on network processors. Commercial implementations ofhigh degree of coarse-grained parallelism, relatively



modest memory usage, and predictable access patterns, all (pp.235-248). San Francisco, CA: Morgan Kaufmann
of which enabled aggressive software pipelining of Publishers. _
multiple processors. Other uses of the Viterbi algorjthm [10] hMt:)n;/avista So_ft‘t"’are' Powering the Embedded Revolution.
ientific computations with similar RIAWWW.MVIS'8.Com :
Characterisics, are. potentialy atyacive  targets ;. [11] Radsys: Embedded Sysems and Soluions.
. ' . http://www.radisys.com
acceleratlon ona network_ processor arc_hltecture. [12] Intel 21555  Non-transparent PCltoPCl  Bridge.
While we worked relatively hard to hide the latency of http://www.intel.com/design/bridge/21555.htm
memory accesses in JackHMMer, future developments in[13] Rabiner, L.R. A tutorial on hidden Markov models and
the IXP family of network processors seem likely to selected applications in speech recognition. Proceedings of
remove the anticipated bottlenecks that Ilimit the the IEEE 77:257-86, 1989.
scalability of ME clusters by greatly reducing the need f [14] Haussler, D., Krogh, et al. eds, Proc. of thé 2Ginual
all MEs to access a shared memory. If these develdsmen Hawaii Int’l Conf. on System Sciences, volume 1, 792-802,

- IEEE Computer Society Press, 1993.
hat futur kHMMer )
_Comle to tp?ss, we Izntrlcfa;% tt atzozni ete\]rac;han tf?e [15] Krogh, A. Hidden Markov models for labeled sequences. In
impiemen a_lons cou u N as Proceedings of the 12th IAPR Int'l Conf. on Pattern
current version. We have shown a proof of concept model Recognition, 140-144, IEEE Computer Society Press, 1994.

for this in our local memory implementation. In cearst, (516] Graham, S., Kessler, P., and McKusick, grof: A Call
likely developments in general-purpose superscalar-base Graph Execution Profilerin Proc. of the SIGPLAN '82
CMP CPUs seem likely to yield at most a 10x speedup.  Symp. on Compiler Construction (Boston, MA, June 1982),
The clear path to potential performance improvement in Association for Computing Machinery, pp. 120-126.
network processors, along with their attractive compute[17] Intel C++ Compiler for Linux User's Guide. Intel
density and high degree of user control over Corporation, 2003. _

optimizations, suggest that a relatively modest investme [18] Free Software FoundationFSF), GCC Home Page.
in these architectures could make them a major force in http://www.gnu.org/software/gcc/gee.htn2004.
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