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Abstract 
 
While general-purpose processors have only recently employed 
chip multiprocessor (CMP) architectures, network processors 
(NPs) have used heterogeneous multi-core architectures since 
the late 1990s. NPs differ qualitatively from workstation and 
server CMPs in that they replicate many simple, highly efficient 
processor cores on a chip, rather than a small number of 
sophisticated superscalar CPUs. In this paper, we compare the 
performance of one such NP, the Intel IXP 2850, to that of the 
Intel Pentium 4 when executing a scientific computing workload 
with a high degree of thread-level parallelism. Our target 
program, HMMer, is a bioinformatics tool that identifies 
conserved motifs in protein sequences. HMMer represents 
motifs as hidden Markov models (HMMs) and spends most of its 
time executing the well-known Viterbi algorithm to align 
proteins to these models. Our observations of HMMer on the 
IXP are therefore relevant to computations in many other 
domains that rely on the Viterbi algorithm. We show that the 
IXP achieves a speedup of 1.82 over the Pentium, despite the 
Pentium’s 1.85x faster clock. Moreover, we argue that next-
generation IXP NPs will likely provide a 10-20x speedup for our 
workload over the IXP 2850, in contrast to 5-10x speedup 
expected from a next-generation Pentium-based CMP. 

1. Introduction 

The oft-predicted shift among general-purpose 
processors (GPPs) away from superscalar organizations of 
increasing sophistication towards chip multiprocessors 
(CMPs) appears imminent, with all major desktop 
processor vendors planning to release dual- or quad-core 
processors in the near future. GPPs are beginning to adopt 
CMP organizations mainly because their designers can no 
longer achieve satisfactory performance improvements by 
increasing clock frequencies and cache sizes. In contrast, 
commodity network processors (NPs) have used CMP 
organizations since the late 1990s to exploit packet-level 
parallelism in networking workloads. This shift toward 
CMP in general-purpose processor organization invites 
comparisons between these processors and NPs. 

The first generation of general-purpose CMPs is 
expected to employ a small number of sophisticated, 
superscalar CPU cores; by contrast, NPs contain many, 
much simpler single-issue cores. Desktop and server 
processors focus on maximizing instruction-level 
parallelism (ILP) and minimizing latency to memory, 
while NPs are designed to exploit coarse-grained 
parallelism and maximize throughput. NPs are designed 
to maximize performance and efficiency on packet 
processing workloads; however, we believe that many 
other workloads, in particular tasks drawn from scientific 
computing, are better suited to NP-style CMPs than to 
CMPs based on superscalar cores. 

In this work, we study a representative scientific 
workload drawn from bioinformatics: the HMMer 
program [2] for protein motif finding. HMMer compares 
protein sequences to a database of motifs – sequences 
known to occur, with some variation, in a large family of 
other proteins. These motifs are represented as hidden 
Markov models (HMMs) [14], which allows HMMer to 
search for them in a protein using well-developed 
mathematical machinery for parsing discrete sequences 
with an HMM. Because HMMer works on a large 
database of motifs, each of which can be compared 
separately to a target protein, its computation can benefit 
greatly from systems with substantial coarse-grained 
parallelism. This computation is therefore a natural fit to 
network processor-style CMPs. 

We have implemented JackHMMer, a version of 
HMMer that runs on an Intel IXP 2850 network 
processor. The IXP implements the Viterbi algorithm for 
HMMs [13], which is the core component of HMMer’s 
search algorithm. This paper recounts our experience 
implementing JackHMMer, quantifies its performance 
gain relative to both the original HMMer and a hand-
optimized version on a hyper-threaded Pentium 4, and 
draws lessons from our experience about how future NPs 
may be designed in order to better accelerate similar non-
networking workloads. 



The remainder of the paper is organized as follows. 
Section 2 provides background on both HMMer and the 
IXP architecture. Section 3 examines the behavior of 
HMMer on a superscalar processor. Section 4 describes 
the implementation of JackHMMer and the techniques 
used to maximize performance on the IXP. Section 5 
compares the performance of JackHMMer to that of a 
hand-optimized HMMer on the P4 architecture, while 
Section 6 suggests likely improvements to both 
architectures and extrapolates the expected speedup if our 
assumptions prove correct. Section 7 describes related 
work. The paper concludes in Section 8.  

2. Background 

In this section, we review both the problem domain 
and the target architecture for JackHMMer. We first give 
a detailed account of the HMMer application, its purpose, 
and its core search computation. We then describe the 
essential features of the Intel IXP architecture that we use 
to accelerate this computation. 

2.1 Protein Motifs and HMMer 
Proteins perform most metabolic and regulatory tasks 

in living cells. Families of evolutionarily related proteins 
exhibit conservation of a common amino acid sequence 
along part or all of their lengths. To help identify the 
function of an unknown protein, biologists look for strings 
of amino acids in its sequence that resemble the sequences 
of proteins with known functions. When a common 
sequence appears in multiple proteins, it is called a motif. 

Because exact preservation of a motif's sequence is 
rarely necessary to maintain its biological function, a 
motif may be encoded by slightly different sequences of 
amino acids in different proteins. Amino acids in the 
motif may change or may be deleted, and irrelevant “non-

motif” sequences may be inserted in the middle of it. All 
these forms of variation must be considered when seeking 
a motif in a protein sequence. Furthermore, several 
distinct copies of one motif may appear within a single 
protein. 

To summarize the observed variability in a motif, 
HMMer describes it probabilistically using a hidden 
Markov model (HMM). An HMM is a finite state diagram 
in which each directed edge from state qi to state qj is 
assigned a transition probability p(qj | qi). If qj is an 
emitting state, passing through it emits one symbol (i.e. 
one amino acid); each possible symbol α has an emission 
probability e(α | qj). To generate a protein sequence of 
length n from an HMM, one begins in its initial state q0 
and traces a path that passes through n emitting states, 
and possibly some non-emitting states. The probability of 
the sequence is the product of all transition probabilities 
on the path, times the emission probabilities of all amino 
acids given the states from which they were emitted. 

The structure of the HMM used by HMMer is shown 
in Figure 1. A motif of length m is comprised of m “match 
states”, M1…Mm, where Mk emits the amino acid at the 
motif's kth sequence position. A parallel sequence of non-
emitting “deletion states” states D1…Dm allow any 
substring of the motif to be skipped, while another set of 
“insertion states” I1…Im-1 allow sequence to be emitted 
between any two motif positions. The non-emitting states 
B and E anchor the motif's endpoints. Finally, states N, C, 
and J respectively emit non-motif sequences before, after, 
and between two copies of the motif. In this way, the 
model generates an entire protein containing one or more 
copies of the motif. HMMer infers suitable transition and 
emission probabilities to describe a motif from a 
collection of example sequences for that motif. 

2.1.1 Finding Motifs with the Viterbi Algorithm 

To determine whether a protein sequence s of length n 
contains a motif matching the model M, HMMer 
calculates the probability that s is emitted by a series of 
states that form a path connecting the start and end states 
of M. Any path through the HMM with n emitting states 
can generate the emitted sequence s; following the 
maximum likelihood principle [3], HMMer finds and 
evaluates only a single, most probable path. If this path 
has a high enough probability relative to the chance that s 
was generated from a null model containing no motif, 
then s is considered to “hit” M, and the path indicates 
which amino acid in the protein (if any) corresponds to 
each motif position. 

HMMer uses the Viterbi algorithm [13], a well-known 
dynamic programming method, to compute the most 
probable path through an HMM M for a sequence s. Let 
P(q, j) be the highest probability for any path through M 
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Figure 1: Example of hidden Markov model used by  
HMMer search tool, with motif length m = 4. Start 
and end states are represented by black dots. 
Square states emit amino acids in the motif; 
triangular states emit non-motif amino acids, while 
circular states are non-emitting. Any path from the 
start state to the end state of the model generates a 
protein sequence. 



from state q0 to state q that emits the string s[1..j] . If state 
q is non-emitting, we have  
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If qe is the unique final state of M, then a most 
probable path for s has probability P(qe,,s). This 
probability can be computed in time Θ(n|M|), where |M| 
is the total number of states in the model. Given space 
Θ(n|M|) to store the full matrix of intermediate 
probabilities P(q, j), one can recover a most probable path 
by tracing back the transitions chosen by the algorithm, 
starting with the end state qe and continuing until the start 
state q0 is reached. 

HMMer’s implementation of the Viterbi algorithm 
takes the form of a doubly nested loop. The outer loop 
iterates over each amino acid s[j] of the sequence s, while 
the inner loop iterates over the states of the model M. This 
loop ordering is dictated by the data dependencies in the 
model of Figure 1. In the HMMs typically used by 
HMMer, m, the motif length, is on the order of tens to 
hundreds; hence, nearly the entire inner loop is spent 
calculating probabilities for the M-, I-, and D-states, with 
negligible time spent on the other states. In both our 
implementation, described in Section 4, and the original 
HMMer software, the inner loop is organized as a series 
of m iterations, each of which processes the states Mk, Ik, 
and Dk for one motif position k. 

Two further implementation details are crucial to the 
feasibility of our implementation. First, HMMer carries 
out all computations in the log domain, so that the 
products in the Viterbi recurrence can be replaced by 
sums. Moreover, the log probabilities are scaled to integer 
scores, allowing the entire computation to be done in 
fixed-point arithmetic. Hence, the computation requires 
neither floating-point nor fast multiplication, which are 
lacking on the IXP.  

2.1.2 Significance of the Viterbi Algorithm 

HMMer’s basic computation is as follows: given a 
protein sequence s and a database of motif models M1…Mz 
, compute the score of a most probable path for s through 
each Mj using the Viterbi algorithm. Subsequent 
computation identifies paths scoring highly enough to 
report, but this work is negligible compared to that 
required to search a large motif database. The time 
needed to read the motif database can also be made nearly 
negligible by storing each model in its binary, in-memory 
representation. Hence, nearly 100% of useful compute 
time in HMMer is spent in the Viterbi algorithm. 

Although HMMer runs quickly on one protein and just 
a few models, its cost rapidly mounts in high-throughput 
bioinformatics use. Publicly available motif databases 
such as Pfam-A and SCOP contain around 104 models, all 
of which must be compared to a protein of interest to 
identify its component motifs. Typical applications of 
HMMer include motif identification in all of an 
organism’s proteins (5x103 for bacteria to 2x104 for 
human), or, if discrete proteins have not been identified, 
in a translation of organism’s complete genomic DNA 
(107 amino acids, equivalent to roughly 3x104 average-
sized proteins, for even a small bacterium). 

A modern superscalar CPU requires between 10-3 and 
10-2 seconds to compare a typical model to a typical 
protein, leading to times on the order of 1-10 CPU-days 
for high-throughput HMMer computations. Moreover, 
databases of automatically, rather than manually, curated 
motif models, such as Pfam-B, can be an order of 
magnitude larger than those mentioned above. The 
biological community’s desire to accelerate these 
computations can be seen in the development of massively 
parallel HMMer implementations for computing clusters 
[28], of FPGA-based HMMer accelerators [25] and of 
heuristics [29] to process more models per second at some 
cost to sensitivity. Developing fast architectures for 
HMMer can therefore significantly benefit bioinformatics. 

The utility of accelerating the Viterbi algorithm 
extends well beyond its application to HMMer. Searches 
using hidden Markov models are useful for many 
applications that involve recognizing complex patterns in 
sequential data. A classic engineering application of 
HMMs is in speech recognition [13], where spoken words 
must be reconstructed from a noisy time series of 
individual phonemes. Related applications include text 
recognition [19], image processing and computer vision 
[19], and time-series analysis of scientific and economic 
data sets [23]. More recently, HMMs and related 
probabilistic techniques have been used to recognize 
patterns of behavior in network traffic, particularly for 
intrusion detection [24]. All of these applications involve 
comparing a large volume of information to a collection 
of HMMs using the Viterbi algorithm or its close 
relatives, so all are potentially amenable to parallelization 
using an implementation like that described in this work. 

2.2 Packet Processing and the Intel IXP 
The Intel IXP family of NPs [8] is designed to 

implement packet processing tasks within packet-based 
networking and communications equipment, such as 
router line cards, cellular phone base stations, wired and 
wireless access points, and security devices. Each IXP 
product targets a different link speed; the IXP 2850 
supports line-rate packet processing at up to 10 Gbps. The 



IXP, like other NPs, uses multiple processors, threads, 
and memory channels to increase per-packet computation 
while hiding memory latency. 

Figure 2 shows the major components and top-level 
organization of the IXP 2850. It consists of a number of 
units, each linked to a shared interconnect. While it is not 
apparent in the figure, the interconnect is made up of 
multiple uni-directional command and data buses, each 
unit having a connection to each bus.  

The IXP features a variety of resources, including  
multiple memories and both programmable and fixed-
function units. The microengine (ME) clusters are the 
central resource. Each ME is a 32-bit, 6-stage pipelined 
processor. The MEs implement a small, RISC-like ISA 
tailored to packet processing. The XScale processor is a 
standard ARM-compatible processor that implements 
control and management functions on top of Linux or a 
commercial real-time OS. Other units provide critical 
functions or resources in hardware, including a 
configurable hash unit and 16KB of on-chip scratch 
memory. Each IXP integrates DRAM and SRAM 
controllers on chip. The IXP 2850 includes three Rambus 
RDRAM and four QDR SRAM controllers and channels 
for bulk and latency-sensitive data storage, respectively. 
Most units on the IXP 2850 are clocked at 1.4 GHz, with 
the exception of the XScale, interconnect, and memory 
controllers, which are clocked at 700 MHz or less. 

Figure 3 shows a high-level view of the IXP ME 
organization. Each IXP ME provides hardware support 
for 8 hardware thread contexts, including register storage, 
multithreading ISA extensions, and a thread arbiter. Each 
ME has its own local data and instruction storage, both 
implemented as SRAMs. An ME communicates 
asynchronously with other units via I/O commands and 
transfer registers. A DRAM read, for example, is carried 
out by sending a read operation to the DRAM controller 
(via the Command Outlet FIFO) that specifies the desired 
address as well as the target incoming transfer registers to 
which the data should be delivered. Hardware signals are 

specified in the ISA and are asserted when requested 
operations have completed. This message-passing style 
and the use of hardware signals allow ME software to 
initiate multiple external requests, without blocking so 
long as subsequent computation does not depend on the 
completion of these requests. This asynchronous memory 
interaction, which is a unique feature of the IXP ME ISA, 
is exploited in Section 4.4 to pipeline the Viterbi 
computation. 

3. HMMer on a Superscalar Processor 

As described in Section 2, HMMer execution is 
dominated by the Viterbi computation. Indeed, profiling 
HMMer using gprof [16] shows that 82.9% of execution 
time is spent in the function that implements the Viterbi 
algorithm; almost all of the remainder is spent in 
preprocessing of the model database, which can be moved 
off-line relative to the search. To better understand this 
crucial function, we used Intel’s Vtune [12] program to 
empirically characterize its execution on the Pentium 4. 

The version of HMMer that we characterize here is 
not the standard distribution but a modified, highly 
optimized version that is described in section 5.2. For our 
experiments, we used an input protein of length n = 544 
and a representative sample of motif models from the 
Pfam_ls database [4]. Using a different set of input 
proteins and motif models would influence runtime but 
(as we later show) would not materially change the 
program’s behavior. 

3.1 Instruction and Data Locality 
The Viterbi computation is a relatively small function, 

requiring only several hundred lines of C code. 
Consequently, instruction cache performance should be 
good. This is confirmed by Vtune results which show a 
trace cache miss rate of 0.001%. Data locality is also 
good, as there is a first level cache miss rate of 7% and a 
second level cache miss rate of 0.7%. These results show 
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Figure 2: Organization of the IXP 2850 NP. 
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Figure 3: Organization of the IXP Micro-Engine. 



that the 512 KB cache on our P4 can service the vast 
majority of memory requests.  

3.2 Instruction Mix 
Most instructions executed by HMMer are 

computation and logic instructions, which account for 
58% of all dynamic instructions. Memory operations are 
the second most frequent class, with load and store 
operations representing 16.2% and 16.6%, respectively. 
Control flow instructions represent 9.2% of all operations. 
With its high cache hit rates, and a branch misprediction 
rate of only 0.3%, HMMer on the P4 is limited principally 
by the amount of ILP the processor can exploit.  

3.3 Prospects for ILP 
We used the SimpleScalar toolkit, version 3 [6] to 

investigate the prospects for ILP within HMMer by 
observing how instructions issued per cycle (IPC) changed 
as a function of issue width. In the simulations used to 
gather this information, sufficiently large caches, branch 
predictors, and reorder buffers were used at each issue 
width to avoid structural hazards. IPC peaks at around 
3.6, but only when a very aggressive superscalar width of 
128 is used. For narrower superscalar processors, an IPC 
of between 1 and 2 is more realistic. This is confirmed by 
Vtune, which shows the actual IPC on the hyper-threaded 
P4 to be 1.87 for 1 thread and 2.16 for 2 threads (1.08 per 
thread).  

The available ILP in HMMer’s Viterbi computation is 
limited for two reasons. First, the core inner loop includes 
a number of loop-carried dependencies that limit 
opportunities for parallel instruction issue. Moreover, the 
inner loop contains around 50 instructions, many of 
which have data dependencies between them. These 
dependencies leave little room for out-of-order scheduling 
either within or between loops. The low level of available 
ILP in HMMer limits the potential for acceleration by 
complex out-of-order execution schemes.  

3.4 Prospects for TLP 
While parallelism between instructions in a single 

Viterbi calculation appears limited, there is no restriction 
on the number of distinct Viterbi calculations that can be 
carried out on distinct models simultaneously. In fact, 
because HMMer is frequently used to check one or several 
sequences against a large model database, there is an 
ample supply of thread-level parallelism if different 
models are processed in different threads. Indeed, the 
HMMer distribution includes a version of the program 
that uses the pthreads library [7] to exploit this 
parallelism on SMP architectures. Running our hand-
optimized version of HMMer (described in Section 5.2) 
using 2 threads on a hyper-threaded Pentium processor 
increased performance by 14.8%. All comparisons to the 

IXP in this work reference this dual-threaded version on 
the hyper-threaded P4. 

To summarize, our observations of HMMer using 
Vtune and SimpleScalar suggest that it has a small cache 
footprint, easily predicted branches, and limited 
instruction-level parallelism, but massive coarse-grained 
parallelism. These characteristics tend to defeat efforts to 
accelerate the computation using the dominant design 
techniques for improving superscalar performance, but 
they are much more attractive for deployment on an array 
of small, relatively simple processors. JackHMMer 
therefore organizes its computation to maximally exploit 
HMMer’s coarse-grained parallelism on the IXP 
architecture. 

4. JackHMMer: HMMer on the IXP 

In this section, we describe the design and 
implementation of JackHMMer. The XScale control 
processor is responsible for dispatching jobs to the MEs, 
which perform the Viterbi calculation. Because current 
IXP implementations provide relatively little memory 
close to the MEs, a principal design challenge was to keep 
all MEs busy while retaining models and intermediate 
data in a shared, relatively high-latency memory. We 
addressed this challenge by minimizing the number of 
distinct commands processed by the memory controllers 
and by pipelining the Viterbi algorithm to overlap 
memory latency with computation. 

4.1 Application Partition 
JackHMMer works with a single input protein 

sequence s and a database of HMMs. The database is 
divided into Viterbi packets (M, θ), one packet for each 
individual model in the database. Viterbi packets are 
created offline (for both the IXP and P4 versions) by 
laying out M in a binary format and computing a 
corresponding score threshold θ, such that a protein is 
considered to “hit” a model M only if its score against M 
is at least θ. At runtime, the XScale distributes these 
packets of work to the MEs, which compare each M to the 
sequence s and identifies those models whose score 
against s is high enough to trigger a hit. Individual 
Viterbi packets can be processed independently, so each 
ME acts as an independent worker that asynchronously 
accepts packets and returns results to the XScale. 

For each job that triggers a report, a most probable 
path through the model must be reconstructed. 
Reconstruction of this path within the IXP is feasible but 
is deferred to future work, and it represents a small 
amount of the work (1% or less) in the full HMMer 
implementation. To make all comparisons fair, the results 
reported in this paper exclude the cost of reconstruction 
for both the IXP and P4 versions of HMMer.  



4.2 Memory Requirements and Layout 
In our implementation, each of the IXP 2850’s sixteen 

MEs can independently and asynchronously accept units 
of work from the XScale. However, the storage needed to 
complete each unit substantially exceeds the MEs’ local 
memory capacities, requiring the use of shared SRAM 
and DRAM memories. 

To complete a Viterbi packet (M, θ), a ME needs the 
model M and the input sequence s, plus storage for the 
intermediate values P(q, j). A sequence of n amino acids 
occupies n bytes of storage, while the model for a motif of 
length m occupies roughly 104m bytes. If the IXP does not 
retain the full matrix of intermediate probabilities to 
compute the most probable path, its intermediate storage 
requirements are a further 3m+4 32-bit integers. The 
protein and motif lengths m and n are typically in the 
range 200-400, though longer examples of each can be 
found. Hence, both model and intermediate storage are 
typically too large to fit within the 2400 bytes of memory 
local to each ME in the IXP 2850. 

The data used in the Viterbi computation is distributed 
across multiple memories attached to the IXP. This 
distribution splits the memory traffic of the computation 
among the IXP’s different memory controllers and data 
buses, thereby substantially increasing total available 
bandwidth. We place the models and intermediate storage 
in SRAM and DRAM respectively, principally because 
DRAM is the only memory large enough to hold 
intermediate results for all MEs if we choose to retain the 
full matrix. The common sequence s used with all Viterbi 
packets is accessed much less frequently than either 
model or intermediate data and so can be placed almost 
anywhere with minimal performance impact; currently, s 
is placed in scratch RAM attached to the IXP’s hash unit. 

We lay out the model parameters and intermediate 
values P(q, j) in memory so as to most efficiently support 
the loop structure described in Section 2.1.2. Each 
iteration of the inner loop processes states Mk, Ik, and Dk 
for one motif position k. We therefore pack together the 
model transition probabilities associated with these three 
states for one value of k into a contiguous block of 
memory that can be retrieved with a single multiword 
SRAM read operation. Similarly, we pack P(Mk, j), P(Ik, j) 
and P(Dk, j) into a single 3-word block in DRAM for each 
k. Because the current sequence character s[j]  remains 
constant over each pass through the outer loop, we 
arrange the emission probabilities for Mk and Ik so that all 
the probabilities for one amino acid α are stored 
contiguously; for each α, pairs [e(α|Mk), e(α|Ik)] are 
packed into a single block for each k, since the two values 
are always used together. All blocks are padded so that 

reads and writes are properly aligned, avoiding costly 
read-modify-write cycles in the IXP’s memory controllers. 

4.3 XScale and ME Interaction 
The XScale implements a job dispatcher, which is 

responsible for sending Viterbi packets to the MEs and 
reading the results of each computation back out of 
DRAM. The XScale first reads the database from over the 
network and caches it in DRAM. This is necessary 
because our development platform lacks a local hard disk. 
When an ME becomes free, it signals the XScale. The 
XScale writes several control parameters into the ME’s 
registers, including a pointer to the next Viterbi packet, 
and signals the ME. The ME then transfers the packet 
into SRAM and begins its computation.  

It may seem wasteful for the MEs to transfer models 
from DRAM to SRAM only to read them back from 
SRAM. There are several reasons for this organization. 
The first is memory alignment: DRAM can only be 
accessed on 8 byte boundaries, which is inconvenient and 
wasteful in our Viterbi implementation, whereas access 
from SRAM avoids such problems. Secondly, the bulk 
transfer leaves our design more flexible; a future 
implementation may make use of the IXP’s DMA 
controllers to achieve the same function without 
occupying the MEs. Finally, the transfer operations 
represent less than 1% of work done by the MEs.  

4.4 Pipelining the Viterbi Algorithm 
The MEs on the IXP lack any form of automatically 

managed cache and have local memories that are too 
small to hold all the data necessary to perform the Viterbi 
computation. To achieve good performance on this 
memory-intensive task, it is therefore essential to organize 
the computation so as to hide the long latencies associated 
with memory accesses. We use two techniques to reduce 
memory latency in our implementation: batching of reads 
and writes, and pipelining of memory operations. 

The ME instruction set supports multiword read and 
write commands of up to 16 32-bit words to SRAM and 
up to 16 64-bit dwords to DRAM. Both these sizes are 
greater than the sizes of the transition probabilities (22 
bytes), emission probabilities (4 bytes), and intermediate 
values (12 bytes) used for one motif position k in the inner 
loop of the Viterbi algorithm. However, actually reading 
and writing memory once for each k is inefficient for two 
reasons: first, it needlessly multiplies the number of 
distinct accesses queued by the SRAM and DRAM 
controllers; and second, it fails to take advantage of 
DRAM’s ability to transfer data in large multiword bursts. 
Multiplying the number of read and write commands 
increases the queue depth in the IXP’s memory 
controllers, leading to longer latencies for all accesses and 
stalls when the queues fill. 



To maximize the efficiency of memory operations, we 
organize our computation so that data for multiple inner 
loop iterations can be transferred in a few large 
operations. All of the model transition probabilities 
needed to process Mk, Ik, and Dk for two consecutive motif 
positions k can be fetched by one multiword SRAM read 
command. A single SRAM read is also sufficient to load 
all the emission probabilities needed for 10 consecutive 
motif positions. Similarly, we can read and write all the 
intermediate probabilities for 10 motif positions using one 
DRAM burst read and one burst write. When the amount 
of data to be transferred at once exceeds the storage 
available in the IXP’s register set, we use the local 
memory of each ME to hold the data until it can be 
consumed by the computation (for reads) or written back 
(for writes). 

Batching memory operations is effective in reducing 
total latency to the extent that fewer, larger operations, 
particularly to DRAM, require less total time to return the 
same number of bytes. However, batching cannot actually 
hide latency. Fortunately, the IXP architecture’s support 
for asynchronous memory operations provides a 
mechanism by which the Viterbi algorithm can be 
effectively pipelined. We use asynchronous operations to 
prefetch data ahead of when it will be needed – two motif 
positions ahead for transition probabilities, ten positions 
ahead for other model parameters and intermediate 
probabilities. Similarly, we issue a DRAM write for ten 
iterations’ worth of intermediate probabilities, then 
compute for a further 10 iterations before requiring that 
write to complete. Although such pipelining places great 
demands on the IXP’s limited number of transfer 
registers, we avoid this hazard by moving batched values 
to local memory as soon as they become available, thereby 
freeing their transfer registers for the next operation.  

With the above optimizations, an IXP 2850 attached 
to commodity SRAM and DRAM chips and running one 
instance of the Viterbi algorithm per ME supports 
simultaneous operation of up to twelve MEs without 
saturating the command queues of the IXP’s memory 
controllers and with relatively few idle cycles in any 
engine due to memory latency (see section 5.4). 

5. Experimental Evaluation 

 In this section, we compare the performance of the 
optimized HMMer application running on the P4 to 
JackHMMer running on the IXP 2850. The IXP’s 16 MEs 
can each issue 1 instruction per cycle; with a 1.4 GHz 
clock, this means it can perform 22.4 Gops/sec at peak. 
The P4, which can retire 3 micro-ops in 1 cycle and is 
clocked at 2.6 GHz, can retire 7.8 Gops/sec at peak. This 
means that if both implementations are CPU-bound, can 
find enough parallelism to keep their functional units 

busy, and require similar numbers of instructions to 
execute HMMer, the JackHMMer implementation should 
outperform the P4 by almost 3x. Of course, these 
assumptions do not necessarily hold; hence, a more 
careful empirical comparison is needed.  

5.1 Experimental Setup 
JackHMMer was implemented on an Intel IXDP 2810 

development platform [11] containing two IXP 2850 
processors, of which we use only one. Attached to the 
2850 are 768 MB of SDRAM and 32 MB of QDR SRAM. 
The operating system on the IXP is MontaVista Linux 3.1 
[10]. The P4 implementation was run on a 2.6 GHz P4 
with SUSE Linux 9.1 as an operating system.  

JackHMMer’s Viterbi computation was run on the 
MEs of the IXP 2850, with the scheduler/job dispatcher 
run on the IXP’s XScale control processor. The reference 
implementation of HMMer was run entirely on the P4 and 
so does not require job scheduling.  

The HMMer program performs several tasks in 
addition to running the core Viterbi algorithm. The most 
time-consuming, which accounts for up to 25% of 
running time on the P4, is reading in models from a 
database and converting them to a “log-odds” form 
required by the Viterbi algorithm. We eliminated this 
work from both P4 HMMer and JackHMMer by 
precomputing the log-odds form of each model and 
storing its binary representation; this optimization could 
be implemented in a production system. HMMer also 
performs post-processing of significant hits between 
models and the input sequence; while these operations 
constitute only a few percent of total running time on the 
P4, they are not currently implemented in JackHMMer. 
We therefore omit post-processing from HMMer’s cost on 
the P4 in our tests. A production implementation of 
JackHMMer would offload post-processing, which 
requires floating-point support, onto a host processor, 
where it would run in parallel with the much more 
compute-intensive Viterbi algorithm on the IXP. 

JackHMMer and HMMer were tested by comparing 
the Pfam_ls database [4] (version 14.0) to 4 input protein 
sequences chosen at random from the SwissProt [5] 
database, with an average length of 497.5. The average 
number of positions per motif in Pfam_ls is 226, and there 
are 7459 models in the database. 

5.2 Optimization of HMMer for the P4 
To ensure a fair comparison between the P4 and our 

hand-written IXP assembly code version of HMMer, we 
improved the P4’s implementation of the core Viterbi 
algorithm (as distributed in HMMer 2.3.2) by manually 
optimizing the C implementation, then further editing the 
generated x86 assembly code. Unless otherwise indicated, 



all performance comparisons in this section are to this 
optimized P4 implementation. 

The major change in our C code versus stock HMMer 
was to alter the data layout in memory. Although the 
existing code already lays out the motif model and 
dynamic programming matrix to achieve good data cache 
locality, accessing all the data necessary to execute the 
inner loop of the Viterbi algorithm requires nine separate 
base pointers. Our modified layout, similar to that used by 
JackHMMer, recombines the various component arrays of 
model and matrix so that only five pointers need be 
maintained. Our implementation can therefore keep all 
needed base pointers in x86 architectural registers, 
eliminating the multiple memory reads needed to 
maintain these pointers in HMMer's original 
implementation. 

We made numerous additional small changes to 
HMMer's Viterbi implementation to generate the best 
possible x86 assembly code using the Intel C Compiler 
(version 8.1.026). Our C-level changes produced assembly 
code for the Viterbi inner loop that we judged to be nearly 
optimal, except for one register spill and a number of 
missed opportunities to implement max operations with 
conditional moves, rather than with more costly branches. 
We did not use the x86 SIMD extensions because some 
operations, e.g., max, were not available in the 32-bit 
working precision required by HMMer. We corrected 
these deficiencies by hand-editing the assembly code and 
verified that our changes measurably decreased total 
execution time. 

We believe that our final x86 assembly code for 
HMMer's Viterbi algorithm, particularly the code for the 
inner loop, is comparable in efficiency to the best 
implementation that could be hand-coded from scratch. In 
particular, the code is of comparable quality to our hand-
coded IXP implementation. On a moderately sized model 
(M = 544), our implementation of the Viterbi algorithm 
runs 2.06x faster than HMMer's original implementation.  

5.3 Comparative Performance 
JackHMMer can match an input protein of length 

n=544 against the entire Pfam_ls database in 7.73 
seconds, whereas optimized HMMer on the hyper-
threaded P4 requires 14.05 seconds. In other words, the 
IXP achieves a speedup over the P4 of 1.82 on this 
computation, despite the latter’s 1.85x faster clock. 
Section 5.6 will elaborate on why this is so.  

Figure 4 shows runtimes for comparing protein 
sequences of various lengths to the entire Pfam database. 
As these figures show, the performance of both 
JackHMMer and HMMer is fairly insensitive to specific 
inputs. The time needed to process a single motif 

increases roughly linearly with motif size and sequence 
length, regardless of the actual model and sequence used.  

While JackHMMer’s throughput for processing 
models exceeds that of the P4, the latency required to 
process each single model is much greater on the IXP. 
When executing using only one ME, the IXP requires 
79.76 seconds to run over our test data, while the P4 
requires only 14.05 seconds. This result is unsurprising, 
since each ME of the IXP is substantially slower than the 
P4, though the IXP as a whole is faster. Fortunately, 
latency is relatively unimportant for non-interactive batch 
computations, such as running HMMer on a large 
database of models. 

5.4 Performance Details for the IXP 2850 
A useful measure of throughput for JackHMMer is 

“cells per second;” that is, how many entries in the 
Viterbi algorithm’s matrix of intermediate probabilities 
can the system fill in one second? The size of this matrix 
is proportional to the product of the motif size and the 
protein sequence length, and the entire matrix must be 
filled in before the Viterbi computation can complete. 
Figure 5 shows what happens to the cells-per-second 
throughput metric as we increase the number of MEs used 
in the computation. As we increase the number of MEs 
from 1 to 12, our throughput increases nearly linearly, 
demonstrating the IXP’s ability to exploit the available 
thread-level parallelism of HMMer. 

Above 12 MEs, we begin to see diminishing 
throughput (due to SRAM contention as discussed below). 
The increase in throughput from 12 to 13 MEs is quite 
small (~1.3%, versus 12.2% were the increase linear). 
These observations imply that for the IXP 2850, we could 
use 4 MEs to provide additional functionality without 
sacrificing performance.  

The bottleneck for the IXP 2850 implementation is at 
the SRAM control queues. We observe that, while the 
SRAM channels are 50% utilized, increased utilization 
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 Figure 4: Runtime as a function of input sequence. 



can be obtained only by using the maximum reference 
count of 16 32-bit words on every SRAM operation, 
rather than the 13 being used. This change would be 
awkward and difficult, with little if any advantage. Our 
observations suggest that we are saturating the SRAM 
controllers and are experiencing contention for its input 
queues. As a result of this contention, the MEs are idle 
almost 50% of the time. (Note that using multiple threads 
at each ME would not help due to full memory 
utilization.) A preliminary proposal for overcoming this 
barrier is discussed in the next section.  

5.5 Scalability Limits of JackHMMer 
Since JackHMMer is currently bottlenecked at the 

IXP’s SRAM memory controllers, we are unlikely to see 
great performance gains by simply increasing the clock 
speed of the MEs. One promising alternative is to put all 
the model data into the MEs’ local memory, eliminating 
the need to access SRAM. Although this approach cannot 
accommodate all models of useful size today, due to the 
limited local memory available on the IXP 2850, it may 
be attractive on a future IXP implementation with more 
local memory.  

We have implemented a version of JackHMMer that 
keeps all its data in local memory, and have tested it using 
the subset of small models in Pfam_ls that will fit in local 
memory on the IXP 2850. This version achieves a 3.5x 
speedup over the P4. Figure 6 presents a comparison 
between this JackHMMer version and our original, 
SRAM-based implementation. The local memory 
implementation not only performs better, by a factor of 
2.26x, but also scales better with the number of MEs. The 
regular JackHMMer implementation begins to see 
diminishing returns when using 12 or more MEs, whereas 
the local memory JackHMMer continues its linear 
increase in performance.  

To assess whether local-memory JackHMMer’s 
performance is likely to scale with increasing clock speed, 

we investigated its performance on an IXP 2400, which 
has a clock speed of 600 MHz and 8 MEs (no significant 
changes were needed to the JackHMMer code). We 
observed a throughput of 51.87 cells/sec, compared to 
229.94 cells/sec on the 2850. The 2850 therefore achieved 
a 4.43x speedup over the 2400, compared to an expected 
4.66x increase given the former’s faster clock and larger 
number of MEs. These results suggest that local-memory 
JackHMMer is likely to scale well both with increasing 
clock speed and with increasing numbers of MEs. 

5.6 Discussion 
In this section, we have seen that JackHMMer on the 

IXP 2850 outperforms HMMer on the Pentium 4. This 
indicates that the IXP is a more efficient architecture for 
throughput-oriented Viterbi calculations. The IXP’s 
efficiency is due to a number of factors. 

Significant coarse-grained parallelism. Running 16 
computations in parallel proved more effective than 
harvesting ILP.  The local memory JackHMMer also 
indicates that, given some improvements discussed in 
section 6.2, the 16-way simple CMP organization can be 
more effective at keeping ALUs active than the 
sophisticated superscalar pipeline in the Pentium 4. 

Explicit, application-controlled mechanisms. 
JackHMMer is a good match for the kind of fine-grained 
control that programmers and code generators have when 
programming the IXP MEs: the data can be arranged in 
blocks for efficient memory usage; multiple memory 
channels can be used to increase bandwidth and reduce 
latency; and the working set size is known in advance. 
The application is able to increase ME utilization by 
requesting multiple blocks of data per request, by 
explicitly prefetching loop data in advance, and by 
building the loop body via software pipelining. Each of 
these improvements is enabled by the explicit nature of 
the ISA and the micro-architecture: the memory 
operations allow variable-sized requests and optional 
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blocking targeting specific memory controllers, and the 
ME pipeline is simple enough to schedule efficiently via 
software pipelining. Similar optimizations are not 
possible in the Pentium 4 due to (a) lack of guaranteed 
prefetching and (b) inability to effectively software 
pipeline due to a small number of architectural registers 
and the reordering carried out by the superscalar core. 

Along with the superior performance and efficiency 
shown on this workload, an IXP system consumes less 
power and requires less space. The IXP 2850 is 
implemented in a 0.18 micron process and consumes 27.5 
W typically and 32 W maximum. The P4 is implemented 
in with 0.13 micron process technology and typically 
consumes around 63 W.  

While developing JackHMMer, it became clear that a 
small number of ISA modifications could have a 
significant impact on code efficiency. The addition of a 
conditional move instruction would remove branches from 
our inner loop, resulting in reduced instruction count and 
20% fewer unfilled branch delay slots. Also, while the 
ME ISA has good support for bit and sub-word register 
manipulations, non-networking code like the Viterbi 
computation could achieve greater code density if 
arithmetic sign extension modes were added to these 
classes of instructions. The arithmetic shift right 
instruction already supports this mode, so it would likely 
be a small change that would improve our code density. 

Of course, making use of the explicit, application-
controlled mechanisms in the IXP typically requires 
programmer involvement. This increases the time and 
attention given to code generation. However, for 
performance critical code, the benefits often outweigh the 
costs. Implicit mechanisms can often hinder high-
performance software development by keeping the 
performance-relevant details out of the view of the code 
generator. In this situation, the developer can neither 
maximize performance nor know with confidence that 
greater optimization is possible. We note that the cycle-
accurate IXP simulator was critical in allowing us to 
identify system bottlenecks and work-arounds.  

6. Estimates for Future Processors 

In this paper, we have evaluated the performance of 
HMMer/Viterbi on two contemporary processor 
technologies. In this section, we explore whether the IXP 
is likely to remain an attractive competitor to the Pentium 
in this application domain. To this end, we next consider 
the features of next-generation processors and their likely 
effect on HMMer/Viterbi. 

6.1 Intel x86 Family 
In the past year, Intel has indicated that the major 

architectural advance in future IA-32 processors will 

come in the form of integrating multiple cores onto a 
single die. In the next several years, we therefore expect 
IA-32 products to integrate small numbers (2-4) of 
superscalar cores onto individual chips.  

Based on the performance results we have seen on the 
P4, we expect the transition to dual- and quad-core 
processors to improve HMMer/Viterbi performance by a 
factor of 2-4x relative to the current Pentium 4 
performance, assuming that the cache hit rate remains 
high.   

Other potential improvements include x86-64 and 
additional hyper-threading.  Running HMMer on an 
Opteron processor, in both 32- and 64-bit mode, indicates 
that the move to x86-64 will yield a further 10% speedup.  
If additional threads bring the IPC to 3 (the maximum 
possible), this would yield another 38%.   

These improvements, plus an increase in clock speed 
from 2.6 to 4 GHz, yield an expected speedup of 4.7-9.4x. 

6.2 Intel IXP Family 
In the next generation of IXP processors, we expect 

three forms of relevant resource scaling: increased ME 
count and clock frequency, more local memory at each 
ME, and increased ME issue width. 

6.2.1 ME Count and Clock Frequency 

As demonstrated by our local memory 
implementation, performance can potentially scale 
linearly with both ME count and clock frequency, 
assuming we could fit all model parameters into local 
memory.  

6.2.2 Increased Local Memory 

Based on comments made recently by the Intel IXP 
Architecture Team (at the 2004 Intel University Summit), 
the next generation of IXP may feature a writeable control 
store that enables unused locations (i.e., those not holding 
instructions) to be used as local data memory.  

This resource is particularly significant for 
JackHMMer. If we assume an 8K control store, as 
currently found on the IXP 2850, and note that our 
current JackHMMer implementation uses only 566 
control store entries, then this development would 
increase our effective local memory size from 640 words 
to over 8K words. Notably, this increases the effective 
local memory size without increasing the ME footprint or 
gate count. 

JackHMMer’s current data working-set size, for all 
models fewer than 1300 states in length, is around 7000 
words. This implies that with 8K words of writable 
control store, the local memory version of JackHMMer 
will be usable for most models.   



6.2.3 Increased ME Issue Width 

The next-generation Intel IXP processor could double 
instruction throughput by organizing each ME as a 
statically scheduled dual-issue processor. Compared to the 
previous two advances, this development is the most 
speculative, since (to our knowledge) Intel has never 
hinted at plans to increase the issue width of the ME. 
However, there is precedent for such an increase among 
NPs, most notably Cisco’s Toaster II network processor, 
which featured an array of 4-wide VLIW cores [9]. 

Increasing issue width via static scheduling would 
double peak compute performance while incurring 
moderate increases in ME footprint and complexity. For 
local memory JackHMMer, a dual-issue processor would 
effectively double performance, since the inner loop has 
been scheduled via software pipelining and is unrolled 
twice. In essence, the inner loop would finish in half the 
time. 

6.2.4 Performance Relative to the IXP 2850 

Based on our current JackHMMer performance on the 
IXP 2850, the modifications above would improve 
performance as follows. 

Increased local memory: 2.26x. As indicated in 
section 6.2.2, we expect the next generation of IXPs to 
contain enough local memory to make our local memory 
JackHMMer usable on most models.  Our experiments 
indicate that moving from our current JackHMMer 
implementation to the local memory version will yield a 
2.26x speedup.   

Increase ME count from 16 to 32: 2x. With the 
external memory bottleneck eliminated, performance 
should scale linearly with ME count. 

Increase ME clock frequency from 1.4 GHz to 3 
GHz: 2.14x. Performance would also scale linearly with 
ME clock frequency. 

Increase ME issue width from 1 to 2: 2x. Our twice-
unrolled, software-pipelined loop body would condense to 
about half its original size. 

In all, we would expect the next generation IXP to see 
an aggregate speedup of 19.34x. If we drop the 
speculative suggestion of a dual-issue ME, leaving only 
the highly probable developments, we are left with a 
potential speedup of  9.6x relative to current IXP 2850 
performance. While our characterization of future features 
is by no means certain, it seems likely that the IXP 
architecture will remain a competitive option in the 
future. 

7. Related Work 

JackHMMer builds on previous work in accelerating 
HMMer and in implementing bioinformatics applications 
on network processors. Commercial implementations of 

HMMer have been developed that place the core Viterbi 
computation in reconfigurable FPGA hardware; one such 
system is TimeLogic’s DeCypher engine [25]. TimeLogic 
uses several FPGA PCI cards in conjunction with a 
multiprocessor Sun Sparc host system to accelerate 
HMMer. They claim to achieve performance equivalent of 
2600 1 GHz Pentium III processors for this application. If 
we assume that performance varies directly with clock 
speed between the P3 and P4, this means it would take 
roughly 540 IXP 2850s to equal the Timelogic system.  

FPGA-based versions of HMMer, like JackHMMer, 
typically implement scoring of sequences against a model 
but require the host system to reconstruct the optimal 
alignment path. Unlike JackHMMer, they typically use a 
reduced version of the full motif HMM, in particular one 
that does not include the serializing feedback loop 
through the J state. With this change, FPGA 
implementations are able to invert the order of the two 
loops in the Viterbi algorithm and proceed in sequence-
major, rather than state-major, order; however, they lose 
the capability to score multiple motifs in a single protein. 
In contrast, JackHMMer’s Viterbi implementation 
preserves the exact semantics of the original 
implementation. 

HMMer is not the first bioinformatics application to 
be ported to a network processor. Bos and Huang [26] 
implemented part of the BLAST algorithm for sequence-
to-sequence alignment using an IXP 1200, an earlier 
version of the IXP architecture (6 MEs running at 232 
MHz). They focused only on implementing BLAST for 
DNA sequences and on the initial filtering stage of the 
algorithm, which can be implemented efficiently as a 
lookup in a dictionary of strings. Their implementation 
achieved parity with a 1.8 GHz Pentium 4 processor, 
suggesting the promise of the IXP for accelerating 
fundamental bioinformatics computations. JackHMMer 
presents further evidence that this application domain is a 
good match for network processors. 

8. Conclusion 

When designing CMPs, architects can choose to 
replicate either a small number of complex, superscalar 
cores, or many simpler ones.  We believe that the latter 
design, currently used by network processors, can be 
effective in domains beyond networking.   

We have explored the relative merits of implementing 
HMMer, a scientific workload from the domain of 
bioinformatics, on both a network processor and a 
traditional superscalar, represented by the the IXP 2850 
and the Pentium 4 respectively. The IXP, despite its 1.85x 
slower clock, achieves a 1.82x speedup on HMMer 
compared to the Pentium, thanks to: the application’s 
high degree of coarse-grained parallelism, relatively 



modest memory usage, and predictable access patterns, all 
of which enabled aggressive software pipelining of 
multiple processors. Other uses of the Viterbi algorithm, 
as well as other scientific computations with similar 
characteristics, are potentially attractive targets for 
acceleration on a network processor architecture. 

While we worked relatively hard to hide the latency of 
memory accesses in JackHMMer, future developments in 
the IXP family of network processors seem likely to 
remove the anticipated bottlenecks that limit the 
scalability of ME clusters by greatly reducing the need for 
all MEs to access a shared memory. If these developments 
come to pass, we anticipate that future JackHMMer 
implementations could run 10 to 20x faster than the 
current version. We have shown a proof of concept model 
for this in our local memory implementation. In contrast, 
likely developments in general-purpose superscalar-based 
CMP CPUs seem likely to yield at most a 10x speedup. 
The clear path to potential performance improvement in 
network processors, along with their attractive compute 
density and high degree of user control over 
optimizations, suggest that a relatively modest investment 
in these architectures could make them a major force in 
accelerating scientific computing applications. 
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