
On Overlay Schemes to Support Point-in-Range Queries for Scalable
Grid Resource Discovery

Liping Chen K. Selçuk Candan Junichi Tatemura Divyakant Agrawal
Dirceu Cavendish

NEC Laboratories America, Inc.
10080 North Wolfe Road, Suite SW3-350, Cupertino, CA 95014, USA

E-mail: {liping,candan,tatemura,agrawal,dirceu}@sv.nec-labs.com
Abstract

A resource directory is a critical component of a
Grid architecture. P2P computing paradigm could ad-
dress some of the scalability issues that make dis-
tributed resource discovery services challenging. Un-
fortunately, most existing Distributed Hash Table
(DHT) based P2P overlays have difficulty in treat-
ing attribute range queries that are common in resource
discovery lookups. This paper proposes a general frame-
work for range-based resource discovery. In particu-
lar, the proposed framework maps tree-structured logi-
cal data (i.e., range indexing) onto a DHT-based physical
node space (i.e., resource brokers). In this paper, we con-
sider three mapping schemes from the logical space onto
the physical space. Each mapping scheme uses a differ-
ent replication mechanism to reduce range search time
and to achieve load balance. We analytically and ex-
perimentally compare the performance characteris-
tics (query/update costs and workload distributions) of
these schemes and discuss their applicability under dif-
ferent resource discovery service scenarios.

1. Introduction

A critical component of a Grid infrastructure is
the information service (or directory service) compo-
nent, used by the Grid clients to locate the resources
over the network. The three currently implemented in-
formation service components are the Globus Toolkit
Monitoring and Discovery Service (MDS2,3,4), the Eu-
ropean Data Grid Relational Grid Monitoring Archi-
tecture (R-GMA), and Hawkeye, part of the Condor
project. All of these three discovery services are based
on a centralized architectural design. Each of them
works reasonably well for current Grid platforms for
highly specialized interests groups (e.g., multiple work-
station clusters being shared by a small group of ma-
terial scientists). Zhang et al. [19] recently conducted

a performance study of the above three systems and
have experimentally verified that all three monitoring
and discovery systems fail to scale beyond 300 concur-
rent users; i.e., the throughput begins to decline be-
low acceptable levels. With respect to response time,
MDS2 performs the worst, R-GMA is in the middle,
and Hawkeye is the best among the three. The study
indicates that unless the scalability problem of moni-
toring and discovery services is resolved, commercial-
izing Grid computing will be successful only in lim-
ited application domains. In this paper, we note that,
P2P computing paradigm could address some of the
scalability issues that make distributed resource dis-
covery services challenging. In this process, we investi-
gate and compare different strategies for point-in-range
search queries in P2P systems.

1.1. Problem Statement

In the context of grid computing architectures, there
are three main components: resources and resource
providers, users, and brokering (or match-making) ser-
vice which acts as an intermediary between the users
and the resources. In this paper, we focus on the bro-
kering service. In the case of Globus [8], the broker-
ing service is implemented as a centralized architec-
ture (MDS2). A brokering service based on the P2P
paradigm would instead create a distributed hash ta-
ble (DHT) based overlay of broker nodes, which col-
lectively maintain the index information to facilitate
resource discovery in computational grids. The major
challenge in designing such an overlay is that in con-
trast to other P2P data sharing environments, access to
resources in the grid domain is based on attribute val-
ues of the resources and not on names. Thus, P2P sys-
tems, such as Gnutella or Napster, cannot be used di-
rectly since these systems support name-based lookup.
In this paper, we adopt a simple, but general approach:



each resource is represented by a (K, L) pair. Each key
K is a vector of attribute values to specify a resource
and L is the address of the resource. For example, a
key to describe a Linux server resource could be repre-
sented by a vector: (version, CPU, memory, permanent
storage, amount). Note that the amount of a resource
available at a provider may change over time and may
therefore be categorized as a dynamic attribute.

Central to any directory service is an index-
ing scheme which maps keys to resources. One source
of complexity that arises in Grid resource discov-
ery is that the lookups are not point lookups (or ex-
act lookups) but range lookups. For example, a
user request for a 500MHz CPU can also be sat-
isfied with a CPU of 800MHz. None of the pure
DHT-based schemes are capable of providing such
range-based lookup functionality. An obvious prob-
lem with the use of a DHT overlay in range search is
the inherent randomness of the hashing function: ef-
ficiency in range searches requires pruning of the
search space and this can be done only if the en-
tries are stored in a way that makes their logi-
cal relationships explicit; randomness inherent in
DHT schemes, on the other hand, prevents enforce-
ment of any such explicit order.

Recently, there have been various attempts to solve
the range search problem over DHT networks [1, 10,
15, 18]. Many of these schemes are designed with the
goal of supporting database type applications, where
usually the user needs to receive all data points in a
given query range. However, we note that in the con-
text of resource brokering, we are only interested in
any one point (a single physical resource) which lies
within the query range (resource attribute constraints).
Therefore, unlike traditional range queries, for grid re-
source discovery, it is enough for the system to identify
any one point (i.e., resource) within the given range.
We refer to this type of queries as point-in-range (or
p-range) queries. Existence of p-range queries has im-
pact on how the distributed directory is structured and
how queries are processed.

1.2. Contributions

In this paper, we consider three schemes for mapping
a resource directory, represented as a tree-structured
logical data space to answer p-range queries, onto a
DHT-based physical node space:

• The tree replication scheme (TRS), discussed in
Section 4, replicates the entire tree data structure.

• The path caching scheme (PCS), introduced in
Section 5, replicates paths from root to leaves

• The node replication scheme (NRS). presented in
Section 6, replicates individual logical nodes.

Once an appropriate mapping scheme is chosen, any
DHT scheme can be used to route requests. There-
fore, instead of proposing a new tree structure or a
new DHT overlay, in this paper we focus on investi-
gating the properties of these three general mapping
schemes, usable with different tree structures and DHT
overlays. We note that the workings of the underlying
replication scheme impacts the overall effectiveness of
the resource brokering service. Therefore, we analyti-
cally and experimentally compare and contrast these
three schemes under different scenarios and describe
their performance characteristics, in terms of lookup
cost, update cost, and redirection workload per peer.

2. Related Work

Foster and Iamnitchi [7] have articulated the even-
tuality of the convergence of Grid computing and P2P
computing paradigms. Naturally, an early proposal to
use the P2P paradigm to support resource discovery is
due to them [13]. The connection between Grid Infor-
mation Services and range query processing over DHT-
based P2P systems has been made by Adrzezak and
Xu [2]. They propose a solution based on CAN [16] and
use space-filling curves to perform range query process-
ing in P2P environments.

The notion of range query processing over data dis-
tributed over P2P systems has since then been iden-
tified as an important problem by several research
groups [11, 3, 12, 14, 9, 6, 5, 1, 10, 15]. Gupta et al. [11]
have developed a locality-sensitive hashing based mech-
anism for approximate range query processing over
P2P networks. However, the environment they consider
is one in which peers cache the results of prior answers
to range queries; the data itself is not distributed or
partitioned over the peers. Aspnes and Shah [3] have
developed a generalization of skip lists referred to as
skip graphs over distributed systems to support range
query functionality over data distributed over P2P sys-
tems. Skipnet [12] has also been developed indepen-
dently to skip graphs, which is essentially identical to
the latter. Skipnet can also be extended to process
range queries over P2P systems. Sahin et al. [14] have
developed an exact range query processing architec-
ture by utilizing an underlying CAN [16] based overlay
over P2P systems. Here too the authors assume that
the data is not range partitioned, but rather the peers
cache the results of prior queries which can be used to
answer future queries instead of processing the query
directly at the data source. More recently, database re-
searchers have begun investigating range query support



over P2P systems. In particular, Ganesan et al. [9] pro-
pose a load balancing approach to partition the data
ranges over P2P systems so that there is an absolute
bound on the load skew among peers with respect to
the storage. The underlying range query lookup mech-
anism is implicitly assumed to be either skip graph or
skipnet. Crainiceanu et al. [6, 5] have recently proposed
a generalization of B-tree like balanced search struc-
ture for processing range queries over P2P systems.
P-grid [1] is a fully decentralized randomized protocol
which ensures that the number of hops along the log-
ical path is bounded by log of the number of nodes.
[10] proposes a scheme where all peers know the en-
tire logical structure, therefore avoiding traversals dur-
ing lookups. We note that, all these schemes are de-
signed and analyzed for range queries, which return all
points in a given range. Instead, in this paper, we fo-
cus on the point-in range (p-range) queries.

3. Distributed p-Range Indexing for
Grid Resource Discovery

Central to the efficiency of the directory for p-range
lookups1 is a scheme to map the logical data structure
on the physical space covered by the DHT overlays.

3.1. Logical Space

There are many tree structures (e.g., B-tree for 1-
D data and k-d tree, R-tree, etc. for multidimensional
data) that support efficient range searches. These dif-
fer in the ways they split the space for efficient ac-
cess and the ways they manage the corresponding data
structure (e.g., balanced vs. un-balanced). Most bal-
anced index structures provide O(logN) point- and
O(N) range-search time (where N is the number of
nodes in the tree); but, updating these index struc-
tures is costly since balancing may require restructur-
ing the entire tree. Unbalanced index structures do not
have restructuring costs (updates can be performed lo-
cally), yet in the worst case, they can lead to O(N)
search time, even for point queries.

In this paper, without any loss of generality, we use
a simple binary space partitioning to maintain the 1-D
data2. A suitable partition naming scheme is bit in-
terleaving: starting from the root, we assign 0 to the
left branch and 1 to the right branch [1, 15]. Further-
more, the range associated with each branch is deter-
mined by the value chosen for the split. Thus, for ex-
ample the split at value x1 specifies that all queries

1 P -range queries were introduced in Section 1.1.
2 However, themapping techniqueswould equally apply to other

1-D and n-D tree structures as well.

with x < x1 should be directed to the left branch and
others with x > x1 to the right branch. Splitting per-
formed until the desired occupancy level is reached for
every partition. Therefore, each leaf node (partition)
has a unique name, which can be mapped to peers.

3.2. Physical Space

Physical nodes in the network correspond to the re-
sources and brokers in the system. In general, assum-
ing that brokers are responsible by similar number of
resources, the number of nodes in the logical and phys-
ical spaces are linearly correlated. The physical space
is a Distributed Hash Table (DHT) based structured
overlay. The basic idea of DHT is to map keys to phys-
ical nodes using a consistent hashing function, usually
SHA-1. In this paper, we use Chord [17] as the physi-
cal network; however, any DHT implementation would
work. Note that recent results [4] show that, despite
what is commonly believed, exploiting heterogeneity
and supporting complex queries are not fundamental
problems of structured overlays. In fact [4] presents effi-
cient flooding and random walks on structured overlays
and shows that structural constraints achieve low main-
tenance overhead. Therefore, in this paper, we limit our
discussion to structured DHT overlays (however, we
highlight where flooding might be more effective then
structured maintenance).

Chord orders the identifiers in a ring modulo 2m,
where 2m is the size of the identifier space. Both the
key space and the node address space (i.e., IP ad-
dresses) are mapped to this same identifier space. A
given key, k, is assigned to the first node whose identi-
fier is equal to or immediately follows k in this circu-
lar space. Chord ensures that for a network overlay of
N nodes the lookup cost is O(logN) [17].

3.3. Mapping the Logical Space onto the
Physical Space

Several factors play important roles in choosing a
P2P paradigm for implementing resource discovery:
scalability, load balancing, and self-reorganization. In-
herent to any scalable mapping of the tree-based logi-
cal space to the physical space is the need for replica-
tion to ensure that higher level tree nodes in the tree
are stored redundantly in the DHT overlay so that we
can achieve both scalability (in terms of preventing full
root-to-leaf traversals) and load-balancing.

Furthermore, the mapping should be sufficiently
flexible so that we can still preserve the property of self-
organization, in that the system allows dynamic inclu-
sion (peer join) and exclusion (peer departure/failures)



of the physical nodes. Whenever a leaf node is over-
loaded due to the skewed distribution of data points,
a split operation is incurred to split the leaf node. The
split operation introduces a transient phase into the
network. This happens when a partition L has been
re-partitioned into two new partitions, L1 and L2, but
this re-partitioning has not been reported to all rele-
vant peers. During this period, L has to redirect any
queries that wrongly targets at L to either one of the
two new partitions L1 and L2. Overall, the split cost
comes from two different aspects of the network: (a) re-
quired maintenance of the data structure due to the re-
partitioning of the node into smaller ranged nodes and
(b) propagation cost to reflect the updates to all repli-
cas within the entire network.

In this paper, we present three protocols for map-
ping tree-structured logical data onto a physical space,
where, given the logical id of a logical data node as the
key, a DHT-based structured overlay is used to locate
a physical node which contains the logical node being
searched. These three schemes (tree replication (TRS),
path caching (PCS), and node replication(NCS)) dif-
fer in the granularity with which they use replication to
help search efficiency and achieve load balance. In Sec-
tion 7, we evaluate costs and benefits of the proposed
replication schemes.

Note that, in the context of search structures, there
are two types of information that needs to be main-
tained: (1) the search hierarchy (pointers etc.) used for
navigation through the search space and (2) the ac-
tual data which corresponds to the detailed informa-
tion about the attributes as well as provider’s address
of a specific resource. Different mapping schemes treat
these differently. For example, [1] stores the actual data
only at the leaves and implements a search hierarchy
using available peers. Range Search Tree (RST) [10], on
the other hand, stores data in its internal tree nodes,
yet assumes that the logical structure corresponding to
the search tree is known.

4. Tree Replication Schemes

The tree replication scheme (TRS) replicates the
search hierarchy in its entirety; i.e., certain nodes in
the physical space contain replicas of the entire index
structure. In this respect, this is similar to the scheme
use in RST [10]. The difference is that RST aims to
return all results in a range, while resource discovery
queries (i.e., ∃ range queries) require any match within
the range. Any search operation has to first reach one of
these nodes to access the index and find which physical
nodes contain the leaves corresponding to the requested
range. Replication of the index structure is used for im-

proving scalability: a centralized scheme with only one
index node would hardly be scalable [19].
Replication. Unfortunately, a simple analysis shows
that to achieve load scalability, the number of direc-
tory replicas should be O(N), where N is the total
number of nodes in the network. Assume that on aver-
age each node receives c request/sec from users, where
c is a constant. The total directory look-up load per
second is therefore L = cN . If there are K replicas,
the load distribution would be O(N/K) = O(N) on
each copy. This simply means that each physical node
should be aware of the entire tree to have a constant di-
rectory lookup load. This is consistent with [10].
Lookups. If each node knows the entire tree struc-
ture, the query look-up would be cheap for this scheme:
DHT lookups are needed simply to locate matched la-
bels. Since each DHT lookup costs O(logN) access, the
total look-up cost of the tree replication scheme is sim-
ply O(logN). In general, if there are K replicas, the
search would require O(logN) time to locate one of
the K index nodes and O(logN) time to locate one of
the matches. Thus the search requires O(logN) time.
Updates. In general, if there are K replicas of the
directory, each update of the directory structure re-
quires O(KlogN) messages to update these replicas.
Since in a resource brokerage network available re-
sources may change frequently, updates to the index
structure are not rare; thus, the TRS may be overly ex-
pensive. Note that since the search hierarchy is never
traversed, height balancing is not needed.
Workload. In this scheme, the directory lookup load
is shared equally among the K replias, while the DHT
redirection load is shared equally among the N peers.
Summary. Although it has a good lookup behavior
and load balancing characteristcs, this approach suffers
from high update cost and large directory sizes. Note
that, in many tree index structures, lower nodes split
more frequently. Reducing the amount of lower node
replication is thus expected to reduce the update cost.
The number of replicas of each node should be propor-
tional to the number of its leaf descendants. The next
two schemes are based on this observation.

5. Path Caching Schemes

Most prefix-based range search structures (such as
P-grid [1] or [15]) are based on path caching schemes,
which construct a single logical tree and perform repli-
cation at the physical level. Each physical node has
only a carefully selected partial view (the path from
the root) of the logical tree. We use a simple exam-
ple to illustrate how path caching works. Suppose we
construct a simple logical tree as shown in Figure 1:



0

00 01

000 001 010 011

l

k

Figure 1. Path caching scheme

• Each tree node is named by the naming scheme
we introduced in Section 3.1.

• The leaf nodes are mapped to physical nodes.
• Internal nodes are also mapped to physical nodes.

Furthermore, the content of the internal nodes are
replicated by all its leaf descendants.

Hence the root is replicated everywhere in the physical
space; whereas the content of tree node 00 is replicated
only at physical nodes which store logical nodes 000 or
001. Another way to look at it is that each physical
node stores the information about the entire path from
the root to the leaf node that is mapped to it (hence
the name path caching scheme). Suppose a query origi-
nates from tree node 000 (the lower left tree node) and
the target leaf node is 011 (the right most node). Since
node 000 also stores (or caches) the contents of the
tree node 00 and 0, it knows immediately that the re-
quest should be routed through a node containing 01.
Lookups. Note that, in the above example, the node
where 01 is explicitly mapped is our subtarget for rout-
ing, but it does not need to be reached every time: a replica
of 01 might be found on the way. Thus, its replicas will
take part of the load of 01 away and reduce the num-
ber of hops a request need to travel. Of course, the
load balancing efficiency of the scheme depends on the
probability with which replicas are hit before reaching
the target. Suppose a tree is balanced with height h =
logN , and the level of the target node is k (i.e., the tar-
get node has 2h−k replicas). The probability that one
of the replicas will be hit before the target is hit (dur-
ing logN = h steps of DHT routing) is 1− (1 − 2−k)h.
Therefore, it is not very likely that a search will need to
go through all levels bottom-up and then top-down. In
fact, [1] shows that their randomization scheme can en-
sure that the expected number of hops along the logical
path needed is bounded by log(N). Thus the search
cost is O(logN × logN) = O(log2N). In general, in
a non-height-balanced tree, the worst case search cost
could be upto O(h × logN) where 1 ≤ h ≤ N is the
height of the tree. In the worst case, the cost becomes
O(N), by simple broadcasting.
Updates. If the height does not need to be bal-
anced, each split only affects the current leaf node and

search tree

replication
degree of

new leaves

expanded replication

(a) (b)

Figure 2. Node replication scheme

two nodes that are newly created; i.e. only two DHT
lookups are needed. Hence, in this case, the total up-
date cost is O(logN). If the height needs to be bal-
anced, the update cost depends on the degree of re-
structuring needed to maintain the index structure.
Even in its simplest case, where updates simply prop-
agate from leaf to root, an update that affects each
one of the logN index nodes along the path to the
root would need to be communicated to all their cor-
responding replicas/caches in the leaf nodes. Since the
leaf node being updated has the cache information of
the entire path to the root which will be effected, the
node can create one single message containing all the
updates at all levels and forward this message using a
broadcast approach, instead of DHT based communi-
cation, to all other physical nodes in O(N) messages.
Thus, in TRS schemes, there is a trade-off between the
efficiencies of the search and of the update.
Workload. In this case, since the peers are symmetric
to each other both in terms of directory-lookup as well
as re-direction behavior, both workloads are balanced.

6. The Node Replication Scheme

The node replication scheme (NRS) replicates each
internal node explicitly, thus ensuring that the load is
balanced across the nodes in the network. Thus, un-
like the PCS, replication is done at the logical level it-
self. Figure 2(a) illustrates a conceptual representation
of the NRS replication scheme. The filled triangle rep-
resents the index tree whereas the dashed triangle rep-
resents the corresponding replication graph: for each
node the number of replicas is proportional to the num-
ber of its leaf descendants; hence the root should have
L replicas (where L equals to the number of the leave)
while each leaf node has only one copy.
Update. As the tree expands (Figure 2(b)), the repli-
cation graph evolves as well. Since the number of times
an internal node is replicated depends on the num-
ber of the corresponding leaf nodes, the creation of
a new leaf node requires replication of all its ances-
tors. This process, which starts at the leaf and pro-
gressively moves towards the root, is depicted in Fig-



ure 3. Here, the solid filled circles represent the tree
nodes while the dashed circles represent the replicas of
the tree nodes explicitly generated. We start with a sin-
gle root. Each time a node splits, we create one more
replica for each one of the nodes along the path from
the node to the root. These nodes are randomly as-
signed to the physical nodes in the system.

If the height does not need to be balanced, each
split involves creating one more replica for each node
along the path from a leaf to the root, hence the up-
date cost is O(log2N). If the height needs to be bal-
anced, this may also require updates to all nodes along
the path from the leaf to the root; thus, in addition
to the O(log2N) replication cost, we also need mes-
sages to propagate the updates to the nodes along the
path to all their replicas. This can be performed by
following parent pointers, using DHT at each level, to
communicate the updates to all parents. Since O(N)
replicas are involved, and since each DHT communica-
tion cost O(logN) messages, the overall update cost is
O(NlogN). Alternatively, at O(logN × logN) time, we
can follow one single path from a leaf to the root and
prepare one single message containing all updates at all
levels of the tree. We can broadcast this combined mes-
sage to all nodes in O(N) messages. Thus the overall
cost of this alternative is O(log2N + N).
Lookup. In a height-balanced tree, each search tra-
verses the tree once upward and then downward and
each hop along the logical path is equivalent to a DHT
lookup cost. Thus the search cost is O(logN × logN) =
O(log2N). In a non-height-balanced tree, the worst
case search cost is O(h× logN), where h is the height.
These are similar to the lookup costs of PCS solutions.
Note that, as in PCS, in general, not all steps of the
search has to be performed explicitely. If during the tra-
versal , one reaches a peer which can act as a shortcut
towards the subdestination or the final target, this can
shorten the lookup process. Since, the number repli-
cas increases with the level of the tree, this means that
most searches will be much shorter.
Workload. NRS is designed for explicit balancing of
the load in the system. Each node maintains informa-
tion about only four other nodes: two of its parent’s
replicas, left child and right child. Whenever a query
traverses along the tree path, each node randomly picks
one of its two parents for routing in the upward direc-
tion. Since, at each replication step, we randomize the
selection of the pointers to replicas while ensuring that
each parent replica is accessible from the same number
of child replicas (and vice versa), the request load flow-
ing over an index node is uniformly distributed among
all its logical replicas. Also, given that each internal
node is replicated as many times as the corresponding

 

Figure 3. Progressive algorithm to construct the
replication graph; each new node contributes to
explicit replication at the logical level

leaves, overall, a uniform load distribution is achieved
across all replicas. Since all replicas in the system are
randomly mapped to the physical space, this leads to
the uniform usage of the physical nodes.

7. Evaluation of the Three Schemes

In this section, we evaluate and compare the three
mapping approaches under different resource brokerage
scenarios. For this purpose, we built a simulation envi-
ronment using a discrete event-driven simulator called
PARSEC developed at UCLA. We used a k-d tree,
which does not force height-balancing, as the logical
space and Chord [17] as the physical space.

7.1. Setup and Evaluation Metrics

There are three entities: the brokers, the users, and
the resource providers. Each broker handles a fixed
number of users and providers, in our case, 20 each.
Hence there is a 1-to-many mapping between the bro-
ker and the users or resource providers. This mapping
is pre-defined for simulation purposes. In the experi-
ments, we varied the number of brokers from 50 to 800.
Whenever we vary the number of brokers, the num-
bers of users and providers are also varied implicitly.
Thus, the numbers of users and resource providers vary
from 1000 to 16,000 accordingly. All the brokers form
a Chord ring and the routing between them follows the
Chord routing scheme. In the TRS, we placed a replica
at each broker, that is, the number of replicas is O(N).
We distributed the resources in the system uniformly
and focused on how the three approaches perform un-
der different query patterns. Each user query is sent
by a user to its dedicated broker. The query is resolved
within the broker layer according to the three schemes
and the success or failure result is returned to the user.

The first metric for evaluation we used is the length
of the search path. A search path is defined as the num-
ber of hops (in the Chord network) that it takes for a
query to be sent to a broker and returned from the bro-
ker, be it a “success” or a “failure”. Note that the num-
ber of messages exchanged along the path is equiva-
lent to the number of hops that are visited. Other met-
rics for evaluation includes the update propagation cost
and the average workload of the physical nodes.



0.1 0.2 0.3 0.4 0.5 0.55
0

10

20

30

40

50

Selectivity

L
e
n
g
th

 o
f 
A

v
g
 S

e
a
rc

h
 P

a
th

a) Queries with uniform distribution

0.1 0.2 0.3 0.4 0.5 0.55
0

10

20

30

40

50

b) Queries with Pareto distribution
Selectivity

L
e
n
g
th

 o
f 
A

v
g
 S

e
a
rc

h
 P

a
th

TRS
PCS
NRS

TRS
PCS
NRS

Figure 4. Length of avg. search path for queries
with different selectivities and distributions

7.2. Effects of the Query Distribution

The query patterns are determined by two factors:
the point distribution and the selectivity. We consid-
ered two point distributions: the uniform distribution
and a skewed, Pareto, distribution. A skewed query dis-
tribution is used to account for query scenarios such as
preferences for high end computer systems. The range
selectivities, i.e. the query window size, varied from 0.1
to 0.5 with 0.1 increments.

Figure 4 shows the length of average search path us-
ing the three schemes when we have queries of different
selectivity or distribution. Figure 4(a) shows the length
of average search path when queries follow a uniform
distribution. Figure 4(b) shows the result when queries
follow a Pareto distribution. As shown in these figures,
the distribution of the queries does not affect the length
of the search path significantly. In a usual range search,
selectivity affects the number of data points returned
and hence the search path. In our case, however, we
are not interested in all but one instance which falls
into the range. As long as we can find one available re-
source that satisfies the user request, the search stops.
Hence the selectivity has no significant effect on the
length of the average search path.

Since query pattern has little effect on the search
path, in the rest of the section, we fix one query pat-
tern (uniform distribution with 0.1 selectivity) to in-
vestigate the scalability of the three schemes.

7.3. Scalability

In this section, we investigate three aspects of scal-
ability: look-ups, updates, and workload.
Lookups: Figure 5 shows the length of average search
path for the three schemes as the number of brokers
increases. TRS is clearly the best. PCS performs bet-
ter than NRS as internal index nodes are not explicitly

0 100 200 300 400 500 600 700 800
5

10

15

20

25

30

35

40

45

50

Number of Brokers

A
ve

ra
ge

 L
en

gt
h 

of
 S

ea
rc

h 
P

at
h

TRS
PCS
NRS

Figure 5. Length of search path for the three
schemes as the number of brokers increase

replicated, but cached at the leaves. However, all three
schemes show good lookup scalability. As the number
of brokers increases, the length of the search path shows
a logarithmic growth as expected.
Updates: The update cost consists of two components:
(1) the messages exchanged to enable the update and
let the relevant brokers be aware; and (2) the physi-
cal movement of index data from the original leaf node
to the two newly allocated leaf nodes. For all schemes
the second component is the same; thus we exclude
it from the discussion. Figure 6 shows the average up-
date cost in terms of messages exchanged as the number
of brokers increases. TRS shows a linear update cost:
since any change to the tree structure has to be propa-
gated to all nodes in the network, it clearly is not scal-
able. PCS provides the best update performance since
change effects are only local. The update cost of NRS
is slightly higher as the update requires replication of
the nodes along the path to the root. Note that, as
updates to the resource availabilities are more or less
uniformly distributed in the network, the worst-case
behavior of a non-height balanced k-d tree is not ob-
served, except for the TRS scheme. While, the linear
update cost of TRS makes it unsuitable for large net-
works where updates are common, both PCS and NRS
show good scalability in terms of update costs. This is
especially good considering that, in the resource bro-
kerage framework updates are as likely as queries and
the maintenance cost of a height-balanced tree would
be prohibitive.
Workload: The third aspect we consider in scalabil-
ity is workload. As the network size increases, the num-
ber of users (and hence the total number of queries gen-
erated in the system) increases along with the number
of brokers. A good workload scalability would require
that as the network (brokers and user queries) grows,
the workload on each of the brokers stays stable. Fig-
ure 7 shows the average workload on each broker (the
number of messages) as the network grows. All three
schemes show good scalability. The TRS approach pro-



0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

900

Number of Brokers

A
vg

 U
pd

at
e 

C
os

t (
N

um
be

r 
of

 M
es

sa
ge

s)

TRS
PCS
NRS

Figure 6. Average update cost: number of mes-
sages exchanged as number of brokers increases

10 (50) 20 (100) 40 (200) 80(400)
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Query/s (N of brokers)

A
ve

ra
ge

 L
oa

d 
on

 E
ac

h 
B

ro
ke

r

TRS
PCS
NRS

Figure 7. Averageworkload on each broker as the
number of brokers increases

vides best scalability; however, since the update cost of
O(N) replicas in this scheme is significantly high, this
scheme is not practical. Among the two request- and
update-scalable solutions (PCS and NRS), PCS pro-
vides a lower average workload on the nodes.

8. Conclusion

We have proposed a general framework that maps
tree-structured logical search space for range indexing
onto a DHT-based physical node space, with aim of
answering point-in-range queries (i.e., resource brokers
in a Grid architecture). We have provided three map-
ping schemes: the tree replication scheme (TRS), the
path caching scheme (PCS), and the node replication
scheme (NRS). As shown by analysis as well as experi-
ments, these three schemes have different performance
characteristics in query cost, update cost, and workload
distribution. In general, the TRS scheme may not be
applicable to update-heavy environments, like Grid re-
source brokerage services. PCS and NRS are both scal-
able and present comparable performance under differ-
ent resource brokerage scenarios.

References

[1] K.Aberer et al. Advancedpeer-to-peer networking:The
P-Grid System and its Applications. PIK Journal, Spe-

cial Issue on P2P Systems, 2003.

[2] Artur Andrzejak and Zhichen Xu. Scalable, efficient
range queries for grid information services. In Proceed-
ings of the 2nd IEEE P2P, pages 33–40, 2002.

[3] James Aspnes and Gauri Shah. Skip graphs. In ACM-
SIAM Symposium on Discrete Algorithms, pages 384–
393, 2003.

[4] M.Castro,M.Costo, andA.Rowstron. Debunking some
myths about structured and unstructured overlays. In
NSDI, 2005.

[5] AdinaCrainiceanu et al. P-Ring:An Index Structure for
Peer-to-Peer Systems. Cornell Univ., Comp. and Info.,
Scieence TR2004-1946, 2004.

[6] Adina Crainiceanu et al. Querying Peer-to-Peer Net-
works Using P-Trees. In WebDB’2004, 2004.

[7] I. Foster and A. Iamnitchi. Ondeath, taxes, and the con-
vergence of grid and p2p computing. In Proceedings of
the International Workshop on P2P Systems, 2003.

[8] I. Foster and C. Kesselman. Globus: A Metacomput-
ing Infrastructure Toolkit. The Int. Journal of Super-
computer App. and High Perf. Computing, 1997.

[9] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online
Balancing ofRange-PartitionedDatawithApplications
to Peer-to-Peer Systems. In VLDB), 2004.

[10] J. Gao and P. Steenkiste. An adaptive protocol for ef-
ficient support of range queries in DHT-based systems.
In ICNP’04, 2004.

[11] A. Gupta, D. Agrawal, and A.El Abbadi. Approximate
Range Selection Queries in Peer-to-Peer Systems. In
CIDR03, pages 141–151, 2003.

[12] N. Harvey et al. Skipnet: A scalable overlay network
with practical locality properties. In USITS03, 2003.

[13] Adriana Iamnitchi and Ian Foster. On fully decentral-
ized resources discovery in grid environments. In Work-
shop on Grid Computing, 2001.

[14] O.Sahin, A.Gupta, D.Agrawal, and A.El Abbadi. A
Peer-to-peer Framework for Caching Range Queries. In
ICDE’2004, pages 165–176, 2004.

[15] S. Ratnasamy, J. Hellerstein, and S. Shenker. Range
queries over DHTs. In Technical Report IRB-TR-03-
009, Intel Corp., 2003.

[16] SylviaRatnasamy,PaulFrancis,MarkHandley,Richard
Karp, and Scott Shenker. A scalable content-
addressable network. In Proceedings of the 2001 con-
ference on applications, technologies, architectures, and
protocols for computer communications, pages 161–172.
ACM Press, 2001.

[17] Ion Stoica et al. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM, pages
149–160, 2001.

[18] E. Tanin, A. Harwood, and H. Samet. A distributed
quadtree index for peer-to-peer settings. In ICDE, 2005.

[19] X. Zhang, J.L. Freschl, and J.M. Schopf. A performance
studyof monitoring and information services for distrib-
uted systems. In HPDC03, pages 270–282, 2003.


