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Abstract— Recently, SSVEP detection from EEG signals has
attracted the interest of the research community, leading to a
number of well-tailored methods, such as Canonical Correlation
Analysis (CCA) and a number of variants. Despite their
effectiveness, due to their strong dependence on the correct
calculation of correlations, these methods may prove to be
inadequate in front of potential deficiency in the number of
channels used, the number of available trials or the duration
of the acquired signals. In this paper, we propose the use
of Subclass Marginal Fisher Analysis (SMFA) in order to
overcome such problems. SMFA has the power to effectively
learn discriminative features of poor signals, and this advantage
is expected to offer the appropriate robustness needed in
order to handle such deficiencies. In this context, we pinpoint
the qualitative advantages of SMFA, and through a series of
experiments we prove its superiority over the state-of-the-art
in detecting SSVEPs from EEG signals acquired with limited
resources.

I. INTRODUCTION

Steady State Visual Evoked Potentials (SSVEPs) have
become an integral part of contemporary Brain Computer
Interfaces (BCIs), offering new ways of communication to
special groups of users with certain physical disabilities
[1]. For example, they may allow people with mobility
impairments to interact with computers using merely their
eyes. SSVEPs are based on the concept that the human
brain is perfectly tuned to an oscillating visual stimulus and
thus the EEG activity of the brain parts, responsible for
vision, exhibit similar frequency properties to the stimulus.
Based on this assumption, there is a strong potential to
detect the frequency generating the stimulus by looking
for SSVEPs in EEG signals acquired from subjects during
their exposition to the stimulus. However, in practice, noise
artefacts and interference (e.g., severe contamination of EEG
by eye movement, current noise, etc) hinder the correct
SSVEP detection and in order to circumvent this barrier,
reliable methods have to be invented.

Usually, a whole pipeline consisting of preprocessing
(e.g., band-pass filtering), artefact removal/correction, feature
extraction and feature classification is used for SSVEP
detection [2]. In this paper, we mainly focus on the feature
extraction step, although we also use some preprocessing and
of course a classification step in our methodology. Along
these lines, the recent intense activity of the research com-
munity around SSVEPs has led to the development of various
feature extraction methods, which coupled with state-of-the-
art classifiers, have allowed for the effective SSVEP detection
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from EEG signals. For instance, a number of typical methods
operating in the frequency domain, like Power Spectral Den-
sity Analysis (PSDA) [3], have been proposed. However such
methods prove to be highly sensitive to background noise and
require long time windows to estimate the signal spectrum
with sufficient frequency resolution [4]. For overcoming this
drawback, recently, a variety of time-domain methods has
been proposed. Among these methods, Canonical Correlation
Analysis (CCA) has become the baseline, because of its
proven effectiveness and its ease of implementation. Based
on its capability of revealing correlations between two sets
of multi-dimensional variables, CCA identifies the target
frequency based on the canonical correlation values between
multi-channel EEG time-domain signals and predefined si-
nusoidal reference signals at stimulation frequencies [5].

A clear strong point of CCA is that it does not require
calibration. However its functionality is affected by the
interference of spontaneous EEG activities. For alleviating
this shortcoming, some extensions of the standard CCA have
been investigated in the literature. In [6], a number of CCA
variants have been collectively presented and compared in
SSVEP detection. Among these extensions, an Individual
Template based CCA method (IT-CCA), which averages
across multiple EEG trials from each subject has been
proposed for optimising the reference signals per frequency
stimulus [7]. In addition, a spatial filtering method, also
known as Combined CCA (Comb-CCA), which combines
correlation coefficients between a) projections of a test set,
b) individual templates and c) sine-cosine reference signals,
has been proposed in [8].

The above methods have been successfully used in labo-
ratory settings (e.g., for biomedical purposes), where up to
256 channels are often used to acquire as many EEG trials
as needed for the analysis. Moreover, these trials may have
sufficient time-length ensuring the correct functioning of the
detection methods. Nowadays though, there is an emerging
demand to achieve top classification performance in real-
time scenarios where all the above acquisition resources
are limited. Indeed, an increasing number of EEG wearable
devices (e.g., EMOTIV Epoc) is being used for everyday
purposes in out-of-lab environments by arbitrary end-users
with high expectations and little patience. Consequently,
finding those methods that optimally combine computational
efficiency, robustness to limited resource availability and
SSVEP detection effectiveness may have a strong impact
from both a technological and a commercial perspective.

In this paper, motivated by the above demand, we propose
the use of Subclass Marginal Fisher Analysis (SMFA) [9]



in SSVEP detection from EEG signals. SMFA belongs to a
general category of techniques, known as Subspace Learning
(SL) [10], which in the process of feature extraction reduce
the dimensionality of the raw data, while retaining as much
discriminant information as possible. In general, SL methods
have been applied to many different classification domains
with noticeable success [11]. Amongst them, Linear Dis-
criminant Analysis (LDA) [12] and Multi-Linear Regression
(MLR) [4] have become baseline approaches, and a multitude
of other methods build on them.

In contrast to typical SL methods, SMFA qualifies as the
most appropriate method for SSVEP detection, as it collects
a number of important advantages, which are explained in
detail in the following sections. The most prominent charac-
teristic of SMFA is that it exploits potential subclass structure
within the classes of the data, which offers a clear advantage
in the context of SSVEP detection. Indeed, according to
some recent studies, EEG signals tend to form clusters based
on their phase content [13] and this clustering information
could be exploited by SMFA in achieving better classification
accuracy. Along these lines, in this paper, through a series of
experiments on a benchmark database, we show that SMFA
outperforms the state-of-the-art in SSVEP detection using
only very few (even 5 trials per frequency), short (down to
0.5sec) EEG signals, which have been acquired using only
3 channels. Therefore, it is highly recommended as an off-
the-shelf solution to the SSVEP detection problem, outside
the laboratory environment.

II. METHODOLOGY

In this section, we present the SMFA methodology pro-
posed for SSVEP detection from EEG signals. The main
concept of this methodology is to i) project the initial signals
onto a lower dimensional space, while maintaining the class-
discriminant information and ii) employ a baseline classifier
on the obtained low-dimensional signals. As SMFA and
generally SL methods stem from Linear Algebra, from now
on, data trials will be referred to as vectors.

A. Subclass Marginal Fisher Analysis

Subclass Marginal Fisher Analysis has its inception in
Subclass Graph Embedding (SGE), which is a general frame-
work for developing algorithms that reduce the dimensional-
ity of high-dimensional data samples [11]. In SGE, we seek
for a projection matrix V ∈ Rn×m so that every vector
x ∈ Rn lying in the initial space can be projected to a low-
dimensional vector y ∈ Rm, with m < n via: y = VTx. The
projection matrix V is learned by the use of a set of training
vectors X = {x1,x2, · · · ,xN}, which are represented by
two graphs, namely, the intrinsic graph Gint = {X ,Wint}
and the penalty graph Gpen = {X ,Wpen}, where Wint

and Wpen are the corresponding graph matrices. The in-
trinsic and penalty graph matrices model the similarity and
dissimilarity connections, respectively, between every pair
of training vectors that have to be reinforced after the
projection. For both graph matrices, the larger their values

are, the stronger their effect on the respective pairs of training
vectors will be.

SMFA, in contrast to typical unimodal methods like LDA,
is aimed at exploiting potential subclass information within
the classes. In reaching its goal, SMFA builds the intrinsic
and penalty graph matrix in such a way that characterises the
within subclass compactness and the between class sepa-
rability, respectively [14]. Moreover, apart from supervised
labelling, SMFA also uses the topology of the classes and
subclasses, which is encoded as neighbouring information
among the vectors. More specifically, the intrinsic graph
matrix of SMFA is defined as:

Wint(q, p) =

{
1 , if p ∈ Nkint(q) or q ∈ Nkint(p)
0 , otherwise ,

(1)
where Nkint

(q) denotes the index set of the kint nearest
neighbors of the q-th vector in the same subclass. On the
other hand, the penalty graph matrix of SMFA is defined as:

Wpen(p, q) =

{
1 , if p ∈Mkpen(q) or q ∈Mkpen(p)
0 , otherwise ,

(2)
where Mkpen

(q) denotes the set of vectors that belong to
the kpen nearest neighbours of q outside the class of q. It
is worth noting that in contrast to the intrinsic graph matrix,
the values of the penalty graph matrix depend merely on the
class information regardless of the subclass labels. In this
way, constraints between subclasses belonging to the same
class are avoided, offering better generalisation chances [9].

Having constructed the two above intrinsic and penalty
matrices, SMFA sets and solves the following optimisation
problem:

XLintX
Tv = λXLpenX

Tv , (3)

where Lint = Dint − Wint is the intrinsic Laplacian
matrix and Dint is the intrinsic Degree matrix defined as
the diagonal matrix, which has at position (q, q) the value
Dint(q, q) =

∑
p Wint(q, p). Similarly are defined Lpen and

Dpen. Eq. (3) reduces to solving the following generalised
eigenvalue problem

Lintv = λLpenv , (4)

keeping the eigenvectors vi ∈ Rn, i ∈ {1, 2, . . . ,m} that
correspond to the m smallest eigenvalues. The projection
matrix V then contains the above eigenvectors as columns
and the subspace learning process is completed.

1) A qualitative comparison of SMFA with CCA-based
methods: In contrast to the majority of CCA-based meth-
ods, which calculating canonical correlations learn improved
reference signals, SMFA digs deep into the data per se,
looking for discriminant information. This is very important,
as CCA-based methods strongly depend on the implicit
assumption that test signals have common characteristics
with the reference signals and there is no strong evidence that
this assumption always holds. Moreover, lacking the ability
to use the inherent discriminant information lying within the
data may not permit the subtraction of potential noise and
variation that accompany EEG signals.



2) A qualitative comparison of SMFA with typical SL
methods: SMFA collects a number of advantages that ren-
der it a perfect candidate for SSVEP detection, against
other SL methods. First of all, when using SMFA, there
is no assumption on the data distribution, since the intra-
subclass compactness is encoded by the nearest neighbours
of the data belonging to the same subclass and the inter-
class separability is modelled using the margins among the
classes. Furthermore, the functionality of SMFA is based
on two parameters, i.e., kint and kpen, which appropriately
adjusted may lead to avoiding potential overfitting, therefore
offering generalisation power to the method. Last but not
least, the available projection dimensionality using SMFA
is determined by kpen, which almost always is much larger
than that of methods like LDA.

B. Subclass extraction

From the presentation of SMFA, it is clear that an integral
part of its operation is the use of subclasses. Therefore a
question that naturally emerges is how many subclasses are
there in each different class and what is the best way to
extract these subclasses. Although these are general ques-
tions, in the context of SSVEP an answer could be provided
by the use of signal phase information. Indeed, based on
some previous studies [13], it has been shown that in front
of a visual stimulus, signals tend to take two fundamental
forms according to the brain hemisphere that is mainly
working. By specifying the number of subclasses per class, a
baseline clustering approach (e.g., K-means) usually suffices
to effectively extract the clusters within each class that form
the corresponding subclasses.

C. Classification

Having completed the dimensionality reduction process
using SMFA, the resulting low dimensional vectors are used
for training a classifier. Theoretically, under ideal conditions,
SMFA achieves optimal discrimination of the several classes
in Bayesian terms. For this reason, in general, a Nearest
Cluster Centroid (NCC) approach can be used to classify
correctly any test vector into the appropriate frequency
stimulus [15].

III. EXPERIMENTS

A. Dataset description

For the experiments we used the publicly available SCCN
dataset [6]. SCCN is a 12 class SSVEP dataset acquired
from 10 subjects in a simulated BCI experiment. Each class
represents a stimulus frequency in the range from 9.25Hz
to 14.75Hz with increment 0.5Hz. More specifically, during
the acquisition, each subject was sitting in a 60cm distance
from a computer monitor with 60Hz refreshing rate and was
asked to gaze for 4sec at one of multiple squares flickering
at a specific frequency. 8-channel EEG signals were then
recorded with 2048Hz sampling rate and downsampled to
256Hz. With the previous process, for each subject, 180 trials
(15 trials per stimulus frequency), each of 1024 samples,
were acquired.

B. Performance Evaluation
All the experiments in this paper were conducted using the

eeg-processing-toolbox [16]. For evaluating the performance
of the several methods we followed the same approach as
in [6]. The classification accuracy was calculated in a “per
subject” basis, using leave-one-block out cross validation,
where each block consists of 12 trials, i.e., one trial per
frequency. More specifically, in each of 15 cross validation
rounds, 168 trials (i.e., 14 trials per each frequency) were
used for training and the remaining 12 trials (i.e., 1 trial per
frequency) were used for testing. In addition to classifica-
tion accuracy, method performance was also evaluated by
calculating the Information Transfer Rate (ITR) [6], which
is perfectly suited for evaluating real-time performance, as
it indicates the capability of a method to transfer SSVEP
detection information from the user trials to the system. ITR
is defined as:

ITR =
60

T
·
(
log2 Nf +A log2 A+ (1−A) log2

(
1−A

Nf − 1

))
,

(5)
where T is the EEG trial length (in seconds), Nf is the
number of different stimulus frequencies, and A is the
classification accuracy. Following the instructions of [6], as
regards the time-length T , in each experiment, we considered
an extra 1sec duration which is due to gaze shifting.

C. Data preprocessing and parameter selection

In all experiments, following the pipeline approach pre-
sented in Section I, the data were first preprocessed using In-
finite Impulse Response (IIR) digital band-pass Butterworth
filtering of the 3rd degree, in 6-80Hz band. Finally, trial
normalisation was ensured by mean signal referencing.

The parameters involved in SMFA (i.e., kint and kpen)
were selected among a number of indicative values, as
those that returned the best results in a set of preliminary
experiments. For extracting the subclasses needed by SMFA,
we employed K-means and for the sake of completeness we
experimented with diverse numbers of subclasses. Interest-
ingly, in accordance with the findings mentioned in Section
II-B, two subclasses per class returned the best classification
results in almost all cases.

Based on Section II-C, in our study we used NCC clas-
sifier. We also tried Support Vector Machines (SVMs) in
both linear and RBF mode with diverse values of the several
parameters. However, SVM performed consistently worse
than NCC and for this reason the corresponding accuracy
results have been omitted.

D. Standard experiment

In this experiment we evaluated the performance of the
methods using all available resources. The average accuracy
and ITR across all subjects, with different EEG time-lengths
from 0.5sec to 4sec, are illustrated in Fig. 1 (a) and (b),
respectively. From Fig. 1 (a), it is straightforwardly implied
that Comb-CCA outperforms the rest methods in almost all
cases, in terms of classification accuracy. However, interest-
ingly, in 0.5sec SMFA shows the top performance, which
is a strong indication of its robustness when using short
EEG signals. Along the same lines, the most interesting
remark from Fig. 1 (b) is that the best ITR, which is around
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Fig. 1. Performance comparison of SSVEP detection methods using all 8 channels. (a) Averaged classification accuracy, (b) ITR.

80 bits per minute, is shared by SMFA and Comb-CCA.
This finding proves the strong potential of SMFA in real-
time SSVEP detection systems. Regarding the other methods,
it is worth observing the superiority of SL methods over
CCA-based, when using less than 2sec signals, in terms of
both accuracy and ITR. Finally, standard CCA completely
fails to compete with the other methods, with around 20%
accuracy at 0.5sec, which can be attributed to the inadequacy
of 0.5sec trials to correlate with the reference sinusoidal
signals, accentuating at the same time the disadvantage of
CCA to lack a calibration phase.

E. Comparing classification performance using three chan-
nels

In verifying the superiority of SMFA when using a small
number of channels, we carried out an experiment using
channels 6, 7 and 8. The selection of these channels is
justified as follows. According to the 10/20 international
reference system, channel 7 corresponds to Oz, whereas
channels 6 and 8 are approximately equivalent to O1 and
O2, which are connected to those areas of the occipital
lobe that are most sensitive to visual stimuli. In addition,
these channels are often used by common devices and thus
conclusions about them can be extended to data acquired
using such devices. The average accuracy results along with
the corresponding ITRs are illustrated in Fig. 2.

From Fig. 2 (a), it is interesting to observe that SMFA in
almost all cases outperforms the other methods. In particular,
at 0.5sec, SMFA shows the top performance with accuracy
64.00%, which is around 4% over the 60.06% of the second
in rank MLR. Interestingly, in general, Comb-CCA seems to
fall short compared to SL methods and furthermore it shows
worse performance than IT-CCA for longer than 1.5sec sig-
nals. Standard CCA shows again extremely low performance,
which can be explained using the same arguments as in the
standard experiment. Finally, from Fig. 2 (b), in terms of
ITR, SMFA clearly returns the best result with 63.33 bits
per minute using 1sec time-length signals, while Comb-CCA
along with MLR and LDA hold the second rank with around
59 bits per minute.

Comparing Fig. 1 (a) with Fig. 2 (a), it is interesting
to observe the robustness of SMFA and in general of SL

methods when reducing the number of channels, in contrast
to CCA-based methods, whose functionality seems to be
strongly dependent on the number of available channels.
For instance, Comb-CCA’s best accuracy drops from 98% to
94% (at 4sec), while SMFA accuracy remains stable around
95% (at 4sec), between the two experiments. This finding,
highlights the added value of using SL methods and in
particular SMFA in settings where only a limited number
of channels are available.

F. Comparing classification performance using different
number of training trials

In this experiment, for each subject, we used all 8 channels
in 0.5sec, varying the number of the training trials per
frequency from 14 to 4. The mean accuracy results across
all subjects are illustrated in Fig. 3. The first remark from
Fig. 3 is that SMFA is consistently superior over the rest
methods with mean accuracy 76.2% and 63.3%, for 14 and
4 training trials, respectively. On the other hand, the second
position is held by Comb-CCA and MLR, for 4-10 and
11-14 training trials, respectively. More specifically, Comb-
CCA has accuracy performance 60.8% for 4 training trials,
whereas MLR has accuracy 72.1% for 14 training trials. In
general, it is worth stressing that SL methods consistently
outperform CCA-based ones – except for Combined CCA
– proving the ability of SL methods to detect SSVEPs in
settings where only a few EEG trials are available. Finally,
it is interesting to notice the stable performance of standard
CCA across different numbers of training trials, which is
expected given that CCA is devoid of training and thus its
performance is independent of the number of used training
trials.

IV. CONCLUSIONS

In this paper, we proposed the use of Subspace Learning
methods and in particular SMFA for SSVEP detection from
EEG signals, in cases where there is deficiency in acquisition
resources, such as small number of channels, limited EEG
trials and short time-length signals. Through an experimental
study, we demonstrated that in such cases, SMFA outper-
forms a number of state-of-the-art CCA-based methods well-
tailored to the SSVEP detection problem. The superiority
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Fig. 2. Performance comparison of SSVEP detection methods using channels 6, 7 and 8. (a) Averaged classification accuracy, (b) ITR.
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of SMFA is attributed to several qualitative advantages,
which were discussed in this paper. In addition, from the
experiments it was shown that SL methods, in general,
outperform CCA-based ones. Another important remark is
that all methods requiring training are impressively robust
when using short trials, and along the same lines, it was
explicitly proven that the time-length of the trials is very
crucial for the correct functioning of the standard CCA.

In summary, the general conclusion of this paper is that
SMFA constitutes an off-the-shelf solution to the SSVEP
detection problem, that can be adopted in real-time BCI en-
vironments with limited resources for capturing EEG signals.
Moreover, although in this paper the great potential of SMFA
has been explicitly proven, these are only early results and
there might be much more space for further improving its
performance. More specifically, a great advantage of SMFA
is that it contains a number of parameters, which appro-
priately adjusted can optimize its effectiveness. In the near
future we intend to further experiment with these parameters
as well as employ more sophisticated methods for extracting
the subclasses.
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