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Abstract

Recently proposed circuit-level models of carbon nan-
otube transistor (CNT) for SPICE-like simulators suffer
from numerical complexities as they rely on numerical eval-
uation of integrals or internal Newton-Raphson iterations
to find solutions of non-linear dependencies or both. Re-
cently an approach has been proposed which eliminates the
need for numerical integration when calculating the charge
densities in CNTFET through the use of piece-wise linear
approximation. This paper builds on the effective employ-
ment of linear approximation to accelerate the CNT model
speed when evaluating the source-drain current of the CNT,
but rather than using symbolic solutions as reported, we
propose to employ a numerical linearization of charge den-
sity dependence on the self-consistent voltage to obtain a
dramatic reduction in the CPU time. Our results show a
speed up of up to almost four orders of magnitude com-
pared with the theoretical CNT model implemented in FET-
Toy, used as a reference for verifying newer models. Com-
parisons of drain-source current characteristics of the new
model against that in FETToy are presented, confirming the
accuracy of the proposed approach.

1. Introduction

While it is gradually becoming more clear how the Car-
bon Nanotube Transistor (CNT) operates [1, 2], several
SPICE-compatible models have recently been proposed (eg.
[3, 4, 5, 6, 7, 8]) in anticipation that analog and digital sys-
tems built with CNT devices will soon need to be simulated
at the circuit level. Most proposed models rely on an es-
timation of the mobile charge densities from which the to-
tal drain current is derived [1]. Accurate calculation of the
mobile charge involves integrating the densities of states
over the number of allowed energy levels using the Fermi
probability distribution. As the total drain-source current is
driven by the self-consistent voltage, which comprises i.a.

the drain-source bias voltage as well as potential induced by
the non-equilibrium mobile charge injected from the source
and drain, a solution of non-linear algebraic equations is
necessary to calculate the drain current. Numerical evalua-
tions of integrals and iterative solutions of non-linear alge-
braic equations (usually by the Newton-Raphson approach)
are time consuming and may be impractical in simulations
involving large numbers of CNT devices of varying param-
eters. The well known MATLAB script named FETToy [9]
requires more than 12 seconds of the CPU time on a Pen-
tium IV based PC to calculate a family of CNT current drain
characteristics. A recent interesting approach [8] proposes a
piece-wise linear approximation of the charge density pro-
files to simplify calculations. In this contribution we fur-
ther simplify and generalize the charge density linearization
and obtain a speed-up of approximately 8000 times, which
represents almost four orders of magnitude, compared with
FETToy. As our results demonstrate, the loss of accuracy
due to charge density linearization is insignificant.

2. Fast circuit-level CNT model

When a voltageVDS > 0 is applied to the drain and
source of a top-gate or a bottom-gate CNT [10, 11] the fol-
lowing non-equilibrium mobile charge density is induced
[1]

∆Q = q(NS + ND − N0) (1)

whereNS is the density of positive velocity states filled
by the source,ND is the density of negative velocity states
filled by the drain andN0 is the equilibrium electron den-
sity. These densities are given by

NS =
1

2

∫ +∞

−∞

D(E)f(E − USF )dE (2)

ND =
1

2

∫ +∞

−∞

D(E)f(E − UDF )dE (3)



N0 =

∫ +∞

−∞

D(E)f(E − EF )dE (4)

whereUSF andUDF are defined as

USF = EF − qVSC (5)

UDF = EF − qVSC − qVDS (6)

VSC is the self-consistent voltage,D(E) is the density
of states,Ef is the Fermi level,f is the Fermi probability
distribution,q is the electronic charge andE represents the
energy levels per CNT unit length.

The self-consistent voltageVSC is derived from the total
device charge density and hence must be calculated using
an implicit relationship. This relationship is given by the
following equation [8]

VSC = −
Qt + qNS(VSC) + qNd(VSC) + qN0

CΣ

(7)

whereQt represents the charge stored in terminal capac-
itances and is defined as

Qt = VGCG + VDCD + VSCS (8)

whereCG, CD, CS are the gate, drain, and source capac-
itances correspondingly and the total terminal capacitance
CΣ is

CΣ = CG + CD + CS (9)

For the purpose of circuit modeling, we propose to ap-
portion equal parts of the equilibrium mobile charge density
N0 to the drain and source, and introduce the correspond-
ing non-equilibrium mobile charge densitiesQS andQD as
follows

QS(VSC) = q(NS −
1

2
N0) (10)

and

QD(VSC) = q(ND −
1

2
N0) (11)

The non-equilibrium mobile charges can now be repre-
sented as circuit capacitances as shown in the equivalent
circuit of the model in figure 1 connected between the drain
and source correspondingly and the inner nodeΣ that rep-
resents a hypothetical point which combines all the CNT
charges that affect the self-consistent voltage and hence
the drain-source currentIDS . As in our model the self-
consistent voltageVSC is a piece-wise linear function of the
terminal voltagesVG, VS andVD, the capacitances which
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Figure 1. Equivalent circuit for the proposed
CNT model.

store the source and drain mobile chargesQS andQD are
also piece-wise linear and controlled by the terminal volt-
ages.

As it has already been highlighted in Introduction above,
evaluation of the self-consistent voltage directly from equa-
tion (7) involves a time consuming Newton-Raphson it-
erative process. Each Newton-Raphson iteration in turn
requires evaluations of integrals to obtain state densities
Ns(VSC) and Nd(VSC). Below we show how these
calculations can be vastly simplified without a signifi-
cant loss of accuracy. The typical dependence of non-
equilibrium mobile charge density at the source, calculated
from equations(3) and (10) , is illustrated in figure 2. Cor-
responding graphs for the drain charge density have similar
shapes. Figure 2 also shows sample piece-wise linear ap-
proximations of the charge density curves. As explained
below, this numerical linearization, where piece-wise linear
regions are expressed by equations (15) and (16), leads to
vast CPU time savings as it completely eliminates the need
for Newton-Raphson iterations and numerical evaluation of
state density integrals.

Unlike what has been proposed in a recent publication
[8], that a three-piece linear approximation of the state den-
sities should rely on symbolic calculations of slopes and in-
tersection points from CNT parameters, the approach we
suggest here is to not to link the slopes and intersection
points to CNT parameters directly but rather to use an ar-
bitrary number of them and adjust their slopes and inter-
section points to maximize the overall drain current charac-
teristic accuracy. In the next section we show test results
with this approach applied to a 3-range and 5-range piece-
wise linear approximation of the charge densities. This,
purely numerical rather than symbolic, approach not only
gives the model developer more control over the accuracy
but also leads to a dramatic saving in the processing time.
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Figure 2. Charge density dependence on self-
consistent voltage for Ef=0, -0.32 and -0.5 eV.
Dashed lines represent a sample linearized
approximation.

The CPU time is reduced by up to almost four orders of
magnitude compared with the theoretical model [1] imple-
mented in FETToy [9], as demonstrated in section 3.

The drain current can be approximated from the ballistic
CNT transport theory [1, 9] as follows

IDS = I0

[

F0(
USF

kT
) −F0(

UDF

kT
)

]

(12)

whereF0 represents the Fermi-Dirac integral of order0
and the currentI0 is expressed as

I0 =
2qkT

πh̄
(13)

wherek is Boltzmann’s constant,T is the temperature
andh̄ is reduced Planck’s constant.

A closed-form approximation of the Fermi-Dirac inte-
gral can be used to avoid numerical integration, e.g. [12]

F0(η) = log (1 + eη) (14)

The proposed model relies on a linear approximation of
the mobile charge dependence on the self-consistent voltage
VSC (figure 2) where each linear range in the charge density
curve can be expressed as

Qs(VSC) ≈ −As(qVSC − EF ) + Qscs0 (15)

and

Qd(VSC) ≈ −Ad(qVSC − EF ) + Qscd0 (16)

for the source and drain mobile charges correspondingly.
As, Ad, Qscs0 andQscd0 represent constant model parame-
ters which may be optimally adjusted for each linear range
such that theIDS is predicted as accurately as possible.

The self-consistent voltageVSC can now be approxi-
mated explicitly from the following closed-form linear for-
mula

VSC ≈
Qt + Qscs0 + Qscd0

CT

(17)

whereCT = CΣ + q(As + Ad).

3. Model performance

The model was evaluated by comparing itsIDS predic-
tion accuracy and execution speed with those exhibited by
FETToy [9]. As the FETToy MATLAB script is freely
available on line, we have used it and replaced FETToy’s
IDS code with our own algorithm for the fast model as
outlined above. In this way we maintained equal condi-
tions for the purpose of the performance evaluation in both
models, including the same CNT parameter values as in
the original FETToy script [9], as well as identical set up
and output code. Comparative results showing families of
drain current characteristics calculated for three and five
piece-wise regions for the mobile charge density approxi-
mation assuming a 1nm CN diameter. Comparative results
at Ef = −0.32eV andT = 300K are shown in figures 3
and (4 correspondingly. Figures 5 and 6 illustrate compara-
tive IDS characteristics for a 5-range linear approximation
and different Fermi levelsEf = 0eV andEf = −0.5eV

atT = 300K correspondingly.
CPU times were measured by running the FETToy script

in two versions, the original one, which implements an ac-
curate theoretical model [1] and the modified version where
IDS was calculated from the equations derived in the previ-
ous section. Results indicate an almost four-order of mag-
nitude speed-up as shown in table 1. For accurate measure-
ment, an extra outermost loop was added to run both algo-
rithms 100 times. The code to generate output plots was
switched off for the purpose of the CPU comparison. It has
not been possible to compare our CPU times with the sym-
bolic piece-wise linear approach mentioned above [8] as the
authors have not reported how much CPU time their model
uses apart from indicating that their execution time is fast.

Table 2 illustrates the relative difference inIDS values
in terms of the average root-mean square (RMS) error be-
tween the FETToy results and those calculated for the pro-
posed fast model. RMS errors were measured for 3 and
5 linear range approximations of the charge densities for
Ef = 0,−0.32,−0.5 eV andT = 300K. Similarly, table
3 shows average RMS errors forIDS characteristics cal-
culated atEf = −0.32eV and two different temperatures
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Figure 3. Drain current characteristics for
Ef=-0.32eV at T=300K. Solid lines - FETToy,
dashed lines - proposed model using 5 linear
ranges of the charge densities.

Table 1. Average CPU times per 100 CNT char-
acteristic families.

FETToy Proposed CNT model
3 linear ranges 5 linear ranges

1287.45 sec 0.16 sec 0.71 sec

T = 150K andT = 450K. The tests confirm that the lin-
ear approximation in the fast model causes a slight loss of
accuracy, normally within a few percent but exceeding 10%
in extreme cases. Results in table 2 show that the 5-range
approximation is for someVG andVDS values about twice
as accurate as the 3-range one, at some CPU time expense
as shown in table 1.

4. SPICE-compatible companion model of
IDS(VG, VD, VS)

The model presented in the previous section has a form
suitable for a direct implementation in a SPICE-like simu-
lator. SPICE and most other analog and mixed-signal cir-
cuit simulators formulate their analog system equation set
from companion models which contain derivatives of model
equations with regards to the unknown variables. Partial
derivatives ofIDS with regard to the terminal voltagesVG,
VS andVD can be obtained in analytical form as follows

∂IDS

∂VG

=
∂IDS

∂USF

∂USF

∂VG

+
∂IDS

∂UDF

∂UDF

∂VG

(18)

Table 2. Average RMS errors in IDS charac-
teristic comparisons for 3 and 5 linear ranges
in charge density approximation for T=300K
and Ef=0,-0.32,-0.5eV.

VG[V ] Ef = 0eV Ef = -0.32eV Ef = -0.5ev
Linear ranges

3 5 3 5 3 5

0 4.4% 4.4% 0.0% 0.0% 0.0% 0.0%
0.05 3.6% 3.6% 0.0% 0.0% 0.0% 0.0%
0.1 2.7% 2.7% 0.0% 0.0% 0.1% 0.1%
0.15 2.9% 2.9% 0.0% 0.0% 0.1% 0.1%
0.2 2.2% 2.2% 0.3% 0.3% 0.1% 0.1%
0.25 2.0% 2.0% 1.7% 1.7% 0.1% 0.1%
0.3 1.9% 1.0% 5.0% 2.6% 0.1% 0.1%
0.35 1.4% 0.5% 0.9% 0.5% 0.1% 0.1%
0.4 0.9% 0.2% 1.4% 0.5% 0.2% 0.2%
0.45 0.5% 0.3% 1.2% 0.8% 1.5% 1.4%
0.5 1.2% 1.6% 0.6% 0.3% 5.1% 3.1%
0.55 1.9% 1.8% 0.3% 0.2% 0.9% 0.6%
0.6 2.6% 2.0% 0.6% 0.2% 1.4% 0.4%

Table 3. Average RMS errors in IDS character-
istic comparisons for 3 and 5 linear ranges in
charge density approximation for Ef=-0.32eV
and T=150,450K.

VG [V] T = 150K T = 450K
Linear ranges

3 5 3 5

0.0 10.0% 10.0% 12.5% 12.5%
0.05 9.4% 9.4% 12.4% 12.4%
0.1 8.0% 8.0% 12.2% 12.2%
0.15 6.2% 6.2% 11.8% 11.8%
0.2 4.5% 4.5% 10.9% 10.9%
0.25 4.0% 4.0% 8.9% 8.9%
0.3 3.4% 3.5% 4.8% 5.9%
0.35 3.1% 2.2% 4.9% 4.8%
0.4 2.6% 2.3% 4.3% 3.0%
0.45 2.4% 1.0% 3.4% 2.0%
0.5 2.2% 0.8% 2.3% 1.8%
0.55 2.0% 1.9% 1.4% 1.6%
0.6 1.8% 2.2% 0.9% 1.4%
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Figure 4. Drain current characteristics for
Ef=-0.32eV at T=300K. Solid lines - FETToy,
dashed lines - proposed model using 3 linear
ranges of the charge densities.

∂IDS

∂VS

=
∂IDS

∂USF

∂USF

∂VS

+
∂IDS

∂UDF

∂UDF

∂VS

(19)

∂IDS

∂VD

=
∂IDS

∂USF

∂USF

∂VD

+
∂IDS

∂UDF

∂UDF

∂VD

(20)

Equations (5) and (6) yield

∂USF

∂VG

=
∂UDF

∂VG

= −q
∂VSC

∂VG

(21)

∂USF

∂VS

= −q
∂VSC

∂VS

(22)

∂USF

∂VS

= −q
∂VSC

∂VS

(23)

∂UDF

∂VS

= −q

(

1 + q
∂VSC

∂VS

)

(24)

∂UDF

∂VD

= −q

(

1 + q
∂VSC

∂VD

)

(25)

From equation (7) and the linearised approximation de-
fined by equations (15) and (16),VSC derivatives are con-
stant in each piece-wise region and can be estimated as:

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−5

V
DS

I D
S

 

 
[A]

[V]

V
G

=0.6V

V
G

=0.5V

V
G

=0.4V

V
G

=0.3V

V
G

=0.2V

V
G

=0.1V

V
G

=0V

Figure 5. Drain current characteristics for Ef=
0 eV at T=300K. Solid lines - FETToy, dashed
lines - proposed model using 5 linear ranges
of the charge densities.

∂VSC

∂VG

=
CG

CΣ + q(As + Ad)
(26)

∂VSC

∂VS

=
CS

CΣ + q(As + Ad)
(27)

∂VSC

∂VD

=
CS

CΣ + q(As + Ad)
(28)

Hence, from the above equations, equation (12) and
equation (14), the drain current derivatives required to cre-
ate a companion model for an analog circuit solver can be
estimated as

∂IDS

∂VG

=
qI0

kT

CG

CT

(

1

1 + e
UDF

kT

−
1

1 + e
UDF

kT

)

(29)

∂IDS

∂VS

=
qI0

kT

CS

CT

(

1

1 + e
UDF

kT

−
1

1 + e
UDF

kT

)

(30)

+
qI0

kT

1

1 + e
UDF

kT

(31)

and

∂IDS

∂VD

=
qI0

kT

CD

CT

(

1

1 + e
UDF

kT

−
1

1 + e
UDF

kT

)

(32)

+
qI0

kT

1

1 + e
UDF

kT

(33)
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Ef= -0.5 eV at T=300K. Solid lines - FETToy,
dashed lines - proposed model using 5 linear
ranges of the charge densities.

5. Conclusion

We have proposed a new, fast numerical CNT model
suitable for a direct implementation in SPICE-like simu-
lators. Results provide further evidence to support the re-
cent suggestion [8] to avoid the use of numerical integra-
tion when calculating charge densities in the CNT model,
leading to significant speed up in the model simulation. We
have proposed to apply an arbitrary number of linear ap-
proximation regions to the non-equilibrium mobile charge
densities rather than the symbolic three-piece form [8].
The mobile charge densities are represented in a form suit-
able for a direct implementation in a circuit model. When
compared with FETToy [9], a reference theoretical CNT
model, we have demonstrated that the proposed approxima-
tion approach leads to a dramatic computational cost sav-
ing without sacrificing the modeling accuracy. Findings of
this research contribute towards the current efforts in nano-
electronic circuit design that include development of fast
and accurate CN FET models with the aim to enable cir-
cuits with large numbers of such devices to be simulated
efficiently and accurately. Future work will involve devel-
opment of automated optimization techniques for the mo-
bile charge density piece-wise linear approximations such
that theIDS prediction accuracy can be further increased
while maintaining the fast execution speed.
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