
WebCloud: Recruiting social network users

to assist in content distribution

Fangfei Zhou† Liang Zhang† Eric Franco† Alan Mislove† Richard Revis‡ Ravi Sundaram†

†Northeastern University ‡Jandrell, Pearson & Revis Ltd.

Abstract—Today, the data exchanged over online social
networks (OSNs) represents a significant fraction of Internet
traffic. However, OSN content is different from more traditional
web content, as it is more likely to be generated at the edge of
the network, to be exchanged within a local geographic region,
and to possess a more even popularity distribution with fewer
popular objects. Unfortunately, most OSNs still use largely
centralized approaches to distribute content (e.g., CDNs and
web caches), resulting in lower performance due to the different
workload.

In this paper, we take a first step towards addressing this
situation by proposing WebCloud, a content distribution system
for OSNs that works by repurposing client web browsers to
help serve content to others. When a user browses content,
WebCloud tries to serve the request from one of that user’s
friends’ browsers, instead of from the OSN directly. Unlike
other systems, WebCloud works with existing browsers and
does not require any plug-ins, and therefore can be directly
applied to today’s OSNs. We demonstrate the practicality of
WebCloud with microbenchmarks, simulations of a Facebook
deployment, a real-world deployment, and evaluations of a
proof-of-concept iOS app.

I. INTRODUCTION

With online social network (OSN) traffic making up a
significant fraction of Internet traffic [1], [2], OSNs have
changed the way we use the Internet. Today, massive
amounts of content are being created and shared at the edge
of the network via OSNs. However, existing web content
distribution architectures—built to serve more traditional
workloads—are ill-suited for these new patterns of content
creation and exchange. Web caches and content distribution
networks (CDNs) have been shown to exhibit poorer perfor-
mance on OSN content [3], [4], causing many OSNs to move
from CDNs to highly-engineered in-house solutions [5]–[7].

Given the workloads present on OSNs, allowing end
users to assist in content distribution to others would be
a natural fit. In fact, a number of peer-to-peer (p2p) systems
for implementing OSNs or distributing content have been
proposed, including FireCoral [8], Akamai’s NetSession [9],
PeerSoN [10] and Diaspora* [11]. However, these systems
either (a) are built as separate (non-web) systems or (b)
require plug-ins, both of which drastically limit applicability

and userbase.1 Other approaches include decentralizing the
OSN’s data center architecture [15] into many regional data
centers, but require significant changes and expense for the
OSN. Thus, in order to serve as a practical alternative for
content distribution for today’s OSNs, any new approach
would need to work via the web and not require any changes
(e.g., plug-ins) by end users.

In this paper, we take a step towards addressing this
situation by introducing WebCloud, a content distribution
system designed to work with existing OSNs. WebCloud
operates via the web, does not require any plug-ins, and
works by recruiting users’ web browsers to help serve
content to other users. We demonstrate that by deploying
WebCloud, OSNs would enjoy most of the benefits of large
centralized CDNs with dramatically lower costs.

Our contributions in this paper are as follows:

• We examine real-world OSN data and demonstrate why
existing content delivery systems do not work well
when applied to OSN content.

• We present the design of WebCloud, which is based
on JavaScript added to the OSN pages, coupled with
middleboxes called redirector proxies.

• We evaluate WebCloud using microbenchmarks, a
small-scale deployment, large-scale Facebook simula-
tions, and proof-of-concept iOS app.

The rest of this paper is organized as follows. Section II
explores the changing workloads and discusses the impli-
cations of these findings, motivating the design of Web-
Cloud. Section III details the design and implementation of
WebCloud, and Section IV presents a detailed evaluation of
WebCloud. Section V discusses related work and Section VI
concludes.

II. PATTERNS OF CONTENT EXCHANGE

We now take a closer look at the trends that serve as our
motivation, using real-world OSN content-sharing data.

A. Data set

Our data set was collected on December 29, 2008 by
crawling New Orleans Facebook regional network [17]. We

1Even the most popular [12] of all FireFox plug-ins (Adblock Plus)
is installed by only 4.2% of users (AdBlock Plus reports approximately
15 million active users [13], out of approximately 350 million Firefox
users [14]).

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06

N
u

m
b

e
r

o
f

R
e
fe

re
n

c
e
s

Document Ranking

Facebook
α = 0.44

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e
 F

ra
c
ti

o
n

o
f

R
e
fe

re
n

c
e
s

Document Ranking

Facebook
Traditional

Perfectly even

(b)

Figure 1. Graphs showing (a) the distribution of photo popularity, matching a Zipf distribution with α = 0.44, and (b) the cumulative distribution of
photo views compared to five different traditional web workloads [16] and a perfectly even distribution. A significantly lower scaling exponent is observed,
leading to a popularity distribution with fewer “hits” and a fatter tail.

conducted a breadth-first-search of all New Orleans network
users, in the same manner as in previous work [18]. By
default at the time of the crawl, Facebook allowed all users
in the same regional network to view each others’ profiles,
and we were thus able to crawl a large portion of the
New Orleans network. In total, we collected information
on 63,731 visible users connected together by 1,545,686
undirected links.

As we are interested in content exchange, we also col-
lected information about the photos that users exchange.
Because data on photo views is not available, we use
photo comments as a proxy for views2 (i.e., if a user has
commented on a photo, they must have viewed it). Crawling
the news feed in a manner similar to previous work [20], we
discovered information on a total of 1,068,787 comments
placed on 816,508 photos.

B. Properties

We now explore a few of the properties of this content
exchange workload.

Content is created at the edge We first explore where

the emerging content being exchanged over the web is
being created. Today, the rapid adoption of smartphones,
digital cameras, digital camcorders, and professional-quality
music and video production software, combined with the
low cost of broadband Internet service, has greatly eased
content creation by individual users. Significantly more news
articles are written by bloggers than news organizations [21],
more photos are shared on online social networks [22] than
on professional photography websites [23], and much of
the content shared on YouTube, the most popular video-
sharing site, is created by end users [24] empowered by the
ubiquity of smartphones and webcams. The net result is that
a significant fraction of Internet traffic contains content that
is created at the edge of the network [1], [2].

2Recent work [19] has shown that while visible interactions do not
perfectly capture latent interactions, the two share a number of statistical
properties and, in particular, are much more similar to each other than to
the properties of the social network alone.

Content is of more uniform popularity We now explore
the popularity distribution of the content in emerging work-
loads, relative to previous workloads. To do so, we examine
the popularity of photos on Facebook, and then compare
the popularity distribution to that observed in studies of
traditional web workloads [16]. The results are presented in
Figure 1. We first note that, like traditional workloads, the
Facebook request pattern follows a Zipf distribution, with an
exponent of α = 0.44.3 However, there is one primary dis-
tinction with respect to traditional workloads: The Facebook
workload contains a significantly lower exponent of the Zipf
distribution (for reference, the exponents of the traditional
web workloads range from 0.64 to 0.83 [16]). Thus, the
newly emerging workloads have less emphasis on popular
items, resulting in a more uniform popularity distribution
and a significantly longer, fatter tail [25].

Exchange is governed by the social network We turn
to explore how users are locating content. We calculate
the fraction of comments on photos that come from the
local social network of the uploader. The result of this
analysis is that over 28.3% of the comments are placed by
friends of the uploader, and at least4 89.1% are placed by
friends or friends-of-friends (compared to expected values
of 0.04% and 0.30%, respectively, were the placement
random). This indicates that users are significantly more
interested in the content that is uploaded by their friends
and friends-of-friends. We have also found similar trends
in browsing behavior in other online social networks: 80%
of the photos viewed in Flickr were found by browsing the
social network [18].

Exchange has significant geographic locality Finally, we
explore the connection between content exchange and geo-

graphic locality. Using our Facebook data set, we find that

3The exponent of the Zipf distribution was calculated using a maximum-
likelihood estimator. We observed a log-likelihood of −2602, strongly
supporting a Zipf distribution.

4Our estimate of the fraction of comments placed by friends-of-friends
is actually a lower bound: It is possible that two New Orleans users who
are not friends or friends-of-friends within the New Orleans network are
friends-of-friends when considering non-New Orleans users.

32.9% of the friends of New Orleans users are also in the
New Orleans network5; similar findings have been observed
in other regional networks [20]. However, if we examine
the fraction of content exchange that occurs between New
Orleans network users, we observe that 51.3% of comments
are placed by other users within the New Orleans regional
network. This indicates that the significant geographic local-
ity already present in social networks is present to an even
greater degree in the content exchange that occurs over these
networks. A similar conclusion was found in [15], where the
authors found that traffic local to a region is produced and
consumed mostly in the same region.

C. Discussion

The content that is increasingly being shared on the web
today is created at the edge of the network, but is exchanged
using centralized infrastructure. The usefulness of existing
techniques on this workload is declining [3], [4], [15]: For
example, caching the most popular 10% of the items in
traditional workloads would satisfy between 55% [16] and
95% [26] of the requests; in our social network workload
from the previous section, such a cache would only satisfy
27% of the requests. This also affects the ability to use
CDNs, which similarly work best for popular content. As
the amount and size of end-user-generated content increases,
this centralized approach is likely to become a bottleneck,
limiting the ability for users to exchange new and larger
content.

The most natural approach to address the changing
workload is to work towards more decentralized content
exchange. While some have suggested decentralizing the
OSN’s data center architecture [15] into many regional data
centers, this requires significant changes and expense for the
OSN. Instead, we focus on retaining the centralized OSN ar-
chitecture of today, while attempting to decentralize content
exchange when possible. In fact, a number of peer-to-peer
content exchange applications exist (including decentralized
social networks like PeerSoN [10] and Diaspora* [11]), but
their techniques are not applicable to web-based content
exchange. In order to serve as a drop-in replacement for
current distribution architectures, any new approach would
need to work using web technologies.

III. WEBCLOUD DESIGN

In this section, we describe the design of WebCloud, a
system that takes the first steps towards decentralized content
exchange on existing social networks.

A. Overview

We begin by describing the deployment scenario that we
expect for WebCloud. First, WebCloud is designed to be

5The actual fraction of users who live in New Orleans is likely even
higher, as we only consider users who explicitly joined the New Orleans
network.

deployed by a web site, such as the provider of an online
social network. We shall refer to the operator of this site
as the OSN for the remainder of this section. Second, Web-
Cloud is designed to be compatible with the web browsers
of today. Third, WebCloud is designed to serve as a cache
for content shared between users, much in the same manner
as CDNs today serve as a cache for popular content. Thus,
should WebCloud not be able to serve a particular request,
we assume that the OSN has a copy of the content located
on their servers, and can serve the request.

B. Keeping content exchange local

The web operates in a client–server manner: without plug-
ins, it is not possible to have one web browser fetch content
directly from another. Thus, we first examine how closely
we need to approximate direct communication between web
browsers to improve content distribution.

As observed in section II-B, content exchange in online
social networks has significant geographic locality; if we
can keep the content exchange between two users within
the same ISP and geographic region, we can address many
of the concerns in Section II-C. In more detail, suppose that
the two users who are exchanging content are served by the
same ISP. In this case, we argue that keeping the content
exchange within the ISP, even if not directly between the
users’ browsers, is sufficient to reduce both the OSN’s and
the ISP’s costs. For the OSN, keeping content exchange
within the ISP obviates the need for the OSN to serve
the content, reducing the cost of bandwidth and serving
infrastructure. For the ISP, keeping the content within its
network removes the bandwidth cost of transit via another
ISP. These observations are similar to those in the recent
work on keeping peer-to-peer traffic local [27], as well as
those used to place CDN servers [28].

C. Design

At a high level, WebCloud emulates direct browser-to-
browser communication by introducing middleboxes called
redirector proxies. These proxies—located within each geo-
graphic region of ISPs similar to CDN servers—serve as a
relay between web browsers. The proxy determines if any
other online local user has the requested content, and if so,
fetches the content from that user’s browser and transmits it
to the requestor. Should no local user have the content, the
browser fetches the content from the OSN.

Figure 2 gives an overview of the design of WebCloud;
below we describe the details.

1) WebCloud content: WebCloud is designed to be a
drop-in component that can be deployed by existing web
sites. WebCloud is agnostic to the type of content that is
exchanged; however, WebCloud requires that content be
named using content hashes (i.e., the name of a piece of
content is its hash). This is necessary in order to ensure that
content cannot be forged, and is discussed in more detail in
Section III-D.

Internet

ISP

1

2

Alice

Bob

Internet

ISP

1

2

Alice

Bob

Redirector
proxy

content
upload

content
delivery

notification of
stored content

content
delivery

Figure 2. Diagram comparing approaches to content sharing. (a) Content sharing on existing online social networks, where Alice first uploads content to
the provider and then Bob requests it. (b) Content sharing in WebCloud, where Alice first informs the proxy of locally stored content. When Bob requests
content from the proxy, the proxy fetches it from Alice and delivers it to Bob, thereby keeping the content exchange local.

2) WebCloud client: To deploy WebCloud, the OSN
includes the WebCloud JavaScript library in their web pages.
This JavaScript serves two functions: communicating with
the proxy, and storing and serving local content.

To communicate with the proxy, the WebCloud JavaScript
opens and maintains an active connection to the local redi-
rector proxy.6 This connection is based on XMLHTTPRe-
quests (XHRs) using long polling, or WebSockets.7 Using
XHRs, the client always maintains an outstanding, unan-
swered XHR to the proxy (should this request time out,
another is simply created). This allows the proxy to send
messages to the client (by finally responding to this request
with the content of the message), and the client to send
messages to the proxy (by creating a new XHR with the
message). Using WebSockets, the client uses a single bi-
directional communication channel to the proxy.

To store and serve local content, the WebCloud JavaScript
uses the LocalStorage API [29] that is supported in most
modern web browsers. In brief, LocalStorage allows a web
site to store persistent data on the user’s disk. LocalStorage
is similar to cookie storage, but it is larger in size and can be
programmatically accessed via JavaScript more easily. When
a user views content in WebCloud, the JavaScript stores this
content in the user’s LocalStorage, treating it as a least-
recently-used cache.

Finally, in order to take advantage of WebCloud, the OSN
must load content using WebCloud. To do so, the WebCloud
JavaScript code exports an API that the OSN can use:

• connect() Called when the web page is first loaded.
Causes the WebCloud library to connect to the nearest
redirector proxy and establish an open session.

• load(content_hash, id) Called when the client
code wishes to load an object. Causes WebCloud to
request the object with the corresponding content-
hash from the proxy. If no peer has the content, the
JavaScript code loads the content from the original

6The local redirector proxy can be located using DNS techniques similar
to those used by CDNs to locate the nearest CDN server.

7WebSockets is a newly developed standard that is seeing acceptance in
major browsers. As of this writing, it is available in the newest versions of
Safari, Firefox, and Chrome.

web site. The id refers to the DOM id of the object;
WebCloud will display the object once it has been
loaded.

3) Redirector proxy: Redirector proxies allow clients
to fetch content from each other. Each redirector proxy
maintains connections to all of the OSN’s online clients that
are located within the same geographic region and ISP. This
list is kept up-to-date as clients join and leave.

The proxy keeps a list of the content that each client
stores in LocalStorage. For example, as shown in Figure 3,
Alice requested content AB4536A, the proxy would fetch
the content from Charlie and then deliver it to Alice. Should
a proxy be unable to serve a request using the local clients
or its local cache (or if fetching the content from Charlie
fails), the proxy returns a null response to the client,
who then fetches the content from the OSN’s servers in the
same manner as today. Thus, the performance of WebCloud
(measured by the fraction of requests served by a connected
client) is heavily dependent on the browsing patterns of
users and their online/offline behavior. We demonstrate in
Section IV that these patterns on today’s sites are amenable
to WebCloud, garnering a significant hit-rate.

An optional local cache can be included in the redirec-
tor proxy to help content exchange. Such a cache would
be present if, for example, an existing CDN deployed
WebCloud in conjunction with the already-deployed edge
servers.

Alice

Charlie

Redirector proxy
Bob

Content hashes

1. 4F3DE54

2. 7DE2233

Content hashes

1. 4F3DE54

Content hashes

1. 65D22AA

2. 9564A55

3. AB4536A

Cache (optional)

Figure 3. Diagram showing the state the redirector proxy keeps for each
client, consisting of a list of the content ids each client is storing locally.

4) Communication protocol: The protocol between the
WebCloud JavaScript running at the client and the redirector
proxy consists of three message types, all encoded on the
wire using JSON, described below:

• update({content_hash, ...}) The client
sends an update message to the proxy to inform the
proxy of the set of locally stored content. The message
contains the list of content hashes that the client has
in its LocalStorage, and the proxy records this list.

• fetch(content_hash) A fetch message can be
sent either from the client to the proxy or vice versa,
and contains the content hash of the content requested.
When the client sends the fetch message to the proxy,
the proxy checks to see if any other client has reported
having that content in its LocalStorage. If so, the proxy
forwards the fetch message to that client. If not, the
proxy returns a null response to the requestor.

• response(content_hash, content) This
message is a reply to the fetch message, and
contains the content hash and the content itself.

A typical session would consist of a client connecting to the
proxy and sending an update message to inform the proxy
of the content that is locally stored. The client and proxy then
exchange fetch, response, and update messages, as
both the local user and other remote users browse content,
and the client finally leaves by closing the connection.

D. Security

We now examine how WebCloud handles malicious users.
There are three primary concerns: malicious users might
attempt to serve bogus content to other users; malicious
users may try to view content they are not allowed to;
and malicious users might attempt to perform a denial-of-
service attack by overloading the proxy or violating the
WebCloud protocol. First, in order to detect bogus content,
as discussed above, all content in WebCloud is identified
by its content hash, so the proxy and all users are able
to immediately detect and purge forged content. Second,
using content hashes for naming also enables WebCloud
to authenticate content requests, as users can only request
content if they know its hash.8 Third, in order to address
users who attempt denial-of-service attacks by violating the
protocol, WebCloud uses similar techniques that are in-use
by such sites today: OSNs such as Facebook often block
accounts, IP address, or subnets where malicious behavior
is observed [30]. Since the redirector proxy is under the
control of the OSN, existing defenses against these attacks
can be deployed at the proxy as well.

8This is precisely the semantics that is followed by Facebook and other
sites today; the URLs of images are obfuscated, but anyone who possesses
the URL can download it.

E. Privacy

Next, we examine whether WebCloud changes the privacy
implications of sharing content. First, WebCloud only allows
users to fetch content that they could access anyway (see
Section III-D), so users cannot abuse WebCloud to view
content they otherwise could not. As a result, WebCloud
does not allow users to disclose content to unauthorized third
parties who they could not already.

Second, in WebCloud, users do receive some information
about views of content by other users. However, due to
the indirect nature of the communication, users are unable
to determine who is viewing the content. Thus, WebCloud
effectively provides k-anonymity [31] to browsing users,
where k is the number of online users connected to the same
proxy who are able to view the photo. Many OSNs already
provide some form of view information to users (e.g., view
counts, or names left beside comments on content), so
WebCloud often does not leak information that was not
already available.

Regardless, there may be corner cases where k-anonymity
is insufficient (e.g., if a user only makes a piece of content
visible to a single other user, effectively removing viewer
anonymity). In such cases, the OSN can disable loading
such content via WebCloud (or can allow the browsing
user to do so). Alternatively, the OSN can configure the
proxies to add background requests to random pieces of
content, sometimes referred to as cover traffic [32], in order
to obfuscate requests.

F. Mobile users

The description of WebCloud so far has focused on users
who are connected from traditional web browsers. However,
users are increasingly accessing services like OSNs from
mobile devices. Below, we address the technical issues
associated with deploying WebCloud on mobile devices and
discuss the unique challenges that they present.

As the mobile web browsers on both iOS and Android
support both LocalStorage and XHRs, WebCloud works
without modification on these devices when the user visits
the OSN’s web site. However, a potential drawback is that
the session times are likely to be much shorter, as smart-
phones typically only allow users to have one “active” web
page at a time (thus, whenever the user browses away from
the site, closes the browser, or puts the phone to sleep, the
connection to the redirector proxy will be broken). Luckily,
the popularity of site-specific apps (e.g., Facebook for iOS)
enables an alternative: WebCloud can be integrated into the
app, and use the background service support provided by
both platforms to maintain a connection to the redirector
proxy.

Smartphones present two additional unique constraints:
Limited battery life and data access charges. The background
service support present on many mobile operating systems
holds the potential to help with the former, as the app itself is

Table I
AVERAGE TIME TO LOAD FACEBOOK PHOTOS.

Accessed
from

Served from

Facebook WC-LAN WC-Cable

LAN 668 ms 63 ms 398 ms

Cable 690 ms 153 ms 532 ms

not required to be running constantly. Regardless, the impact
of WebCloud on battery life is still unclear. In order to gauge
this impact, we implemented a prototype WebCloud app on
iOS. Fully described in Section IV-D, we demonstrate that
the impact on battery life and data usage is acceptable.

IV. EVALUATION

We now present an evaluation of WebCloud. We are guided
by four questions:

• First, what is the complexity of WebCloud, and how
does it perform in practice? In other words, is there
any discernible difference for the end users?

• Second, how would WebCloud perform if a large-scale
provider were to deploy it? What fraction of content
exchange could be served via WebCloud?

• Third, how does WebCloud perform when deployed on
mobile devices? Is battery life significantly impacted?

• Fourth, how does WebCloud perform when deployed
on a real social networking site and used by real-world
users?

A. WebCloud implementation

We implemented WebCloud to work in conjunction with
Facebook’s photo-sharing service. Photos are one of the
most popular content-exchange mechanisms on Facebook,
allowing us to easily obtain a userbase and a workload. The
prototype redirector proxy is implemented using Python,
most of which is the low-level communication support
code for WebSockets and XHRs. The client-side support is
implemented using JavaScript.

In order to deploy our WebCloud prototype, we set up
a web proxy that was configured to inject the WebCloud
JavaScript when serving Facebook’s JavaScript files. Thus,
users installed WebCloud by configuring their browser to
fetch content via this web proxy. Additionally, the proxy
modified Facebook’s photo loading code so that all content
requests for photos were served by WebCloud, thereby
allowing WebCloud to work with optimizations like photo
pre-fetching. From an end user’s perspective, it appeared as
if Facebook had deployed WebCloud.

B. Microbenchmarks

We begin our evaluation with a few microbenchmarks.

1) Content loading latency: We first examine the latency
incurred in downloading photos. Since loading photos using
WebCloud requires the request to be routed via a redirector
proxy and served by the browser of a remote client, we
explore whether any additional latency is incurred. To do
so, we uploaded a set of 10 new Facebook photos (average
size 62 KB) and then downloaded them in one of three
ways: from Facebook as normal, from a WebCloud client
connected to the same LAN as the redirector proxy, and
from a WebCloud client connected via a cable modem. We
ran each of the above three tests in two ways: downloading
the photo to a machine on the same LAN as the redirector
proxy, and downloading the photo to a machine using a
cable modem. The proxy and all of the clients are located
in the city of Boston. Note that we uploaded new photos
for each experiment, in order to avoid any effects from
in-network caching. For each configuration, we report the
average download time across 10 experiments.

The results of this experiment are presented in Table I.
First, in all cases, loading the content using WebCloud was
actually faster than loading it directly from Facebook. This
results from running our experiment all on machines in
Boston; loading data from Facebook requires downloading
it from California. As we expect a redirector proxy to
be placed in each ISP region, this result is representative
of what would be expected in practice. Second, accessing
content that is stored on a client connected via a typical
home cable modem added approximately 350 ms of addi-
tional latency in both tests, due to the slower connection.
However, in all cases, the latency of WebCloud is acceptable,
especially when used in conjunction with Facebook’s photo
pre-fetching.

2) Storage size: Second, we examine the number of
photos that can be stored in each user’s LocalStorage. We
collected a sample of 954 Facebook photos from New
Orleans users, and found that the sizes ranged from 12 KB
to 226 KB, with a median of 67 KB. By default, Chrome,
Safari, and Firefox all set a maximum size of 5 MB for
the LocalStorage per (domain name, port) pair. Taking into
account the 33% overhead induced by storing photos in
base64 format, WebCloud is able to store 56 photos, on
average, in each user’s LocalStorage.

As the 5 MB storage limit is per domain and port,
WebCloud extends the storage limit arbitrarily by load-
ing stub JavaScript from multiple domain names (e.g.,
foo1.facebook.com, foo2.facebook.com, ...) and
ports, all pointing to the same redirector proxy. By send-
ing messages via postMessage in JavaScript, WebCloud
ensures that these stub scripts can communicate, allowing
the multiple LocalStorage instances to all be accessible.
Regardless, as we demonstrate below, even using only 5 MB
allows most of the savings of WebCloud to be realized.

3) Redirector proxy scalability: We are interested in
understanding the rate of fetch requests that a single

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

R
e
s
p

o
n

s
e
 T

im
e
 (

s
)

Requests per Second

Figure 4. Average response time versus request rate for the WebCloud
redirector proxy. The proxy can support over 500 requests per second before
incurring significant additional latency.

proxy can handle, as this serves as the dominating factor
controlling the number of online users that the proxy can
support. For this experiment, we ran our redirector proxy im-
plementation on an 4-core 2.83 GHz machine with 16 GB of
memory. We then connected an increasing number of clients
to the proxy, all located on the same LAN, where each client
was configured to continually issue content fetch requests
for a 85 KB photo every five seconds. Finally, we examined
the tradeoff between the rate of incoming requests and the
response time (measured as the time elapsed from the start
of the request until the last byte of the content arrives) at
the clients.

The results are presented in Figure 4 and show that our
prototype redirector proxy implementation is able to support
over 500 content fetch requests per second before more
than 10 ms of latency is incurred. If we assume that on
average user issues one content request per minute, this
represents a single redirector proxy supporting over 30,000
online users. It is also worth noting that a highly-optimized
implementation of our proxy is likely to support a much
greater number of users.

C. Simulation

Next, we evaluate the potential of WebCloud at scale by
simulating Facebook deploying WebCloud in one region.

1) Generating traces: For the simulation, we need a
number of pieces of input data: a social network, a trace of
when users are online and offline, and trace of when users
browse each other’s photos. Unfortunately, a detailed trace
of Facebook user online/offline and photo viewing behavior
is not widely available. Instead, we use our Facebook data
discussed in Section II-A to generate synthetic traces. The
trace is generated so as to preserve the bias that is present
in user online/offline behavior, photo uploads per user, and
photo views per user. Below we detail our methodology
for generating one-week synthetic traces in the WebCloud
evaluation, and compare the traces to studies of real-world
systems.

Photo uploads To generate a photo upload event, we need
to select two things: the uploading user and the time of the
upload. To select the uploading user, we choose randomly

from the list of uploaders observed in the photo comments
data. Users who were observed to upload more photos are
more likely to be chosen. This method preserves the non-
uniform distribution of photo uploads across users. Then, we
randomly select an upload time during the simulated week.

Photo views To generate a photo view event, we need to
select three things: the viewing user, the time of the view,
and the photo that is being viewed. First, we use a similar
mechanism as above, selecting the viewing user randomly
from the list of users who placed comments (again, this
preserves the fact that certain users view photos more than
others). Second, to select the time of the view, we pick a day
of the week and time of the day randomly from the list of
timestamps of the viewing user’s comments. We add a small
amount of random time (between −30 and 30 minutes) to
this timestamp to ensure that many views do not happen at
once. Selecting the time in this way preserves the daily and
weekly trends in browsing behavior.

Third, to select the photo that the user views, we first
select an uploading user, one of whose photos the viewing
user will view. The uploading user is selected randomly from
the list of users whose photos the viewing user commented
on. This method preserves the fact that users are more likely
to view certain other users’ photos. We then select which
of the uploading user’s photos is viewed using a weighted
distribution (since more recent photos are more likely to
be viewed). The weights are derived from a study [33] of
the views received by Flickr photos. In brief, photos were
observed to receive 37.2% of their views on the first day,
21.3% on the second day, and so forth. Thus, all photos
uploaded by the uploading user in the previous day have an
even likelihood of being chosen, which is higher than all
photos uploaded two days ago, etc.

Online/offline trace Finally, we generate an online/offline
trace for the users based on the photo view trace just
described. For each user, we look at the timestamps of their
photo views. For each timestamp T , we simulate the user
coming online at time T − v− and simulate the user going
offline at time T + v+, with v− and v+ selected randomly
between 1 and 30 minutes. The result is that, for each view,
the user is online for between 2 and 60 minutes (with an
average of 31 minutes that approximates recent session time
studies [34]).

Evaluating traces We now briefly compare the synthetically
generated trace to empirically gathered data regarding use of
Facebook and other social media sites. First, we examine the
average time spent per user online during the week. Across
all traces, the average time online per week ranged from
1.77 to 6.02 hours, which matches favorably with studies
of real-world Facebook usage [35]. Second, we examine the
number of online users during the course of our simulated
week and observe the strong diurnal patterns that would be
expected in realistic workloads. Third, we examine the pop-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

F
ra

c
ti

o
n

 o
f

V
ie

w
s

S
e

rv
e

d
 b

y
 W

e
b

C
lo

u
d

Number of Photos Uploaded per User

5 views/photo
20 views/photo

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

F
ra

c
ti

o
n

 o
f

V
ie

w
s

S
e

rv
e

d
 b

y
 W

e
b

C
lo

u
d

Number of Views per Uploaded Photo

5 uploads/user
20 uploads/user

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

F
ra

c
ti

o
n

 o
f

V
ie

w
s

S
e

rv
e

d
 b

y
 W

e
b

C
lo

u
d

Views before photo inserted in CDN (k)

Views served by WebCloud
Views served by CDN

(c)

Figure 5. Fraction of views served by WebCloud in various simulations. (a) WebCloud hit-rate as the average number of photos uploaded per user is
varied. (b) WebCloud hit-rate as the average number of views per photo is varied. (c) WebCloud hit-rate when run in conjunction with a CDN, varying
the minimum number of hits (k) before a photo is placed in the CDN.

ularity of individual photos themselves. The overall photo
popularity distribution closely matches previously observed
distributions of photo popularity in social networks [36].

2) Simulation results: There are two primary questions
that we are interested in: First, what is the hit-rate of Web-
Cloud? In other words, what fraction of the photo views can
be served from another online user via WebCloud, instead
of directly from the OSN? Second, how does WebCloud
compare to a CDN? In other words, if a CDN is used in
conjunction with WebCloud, what additional hit rate does
WebCloud provide?

For these experiments, we only consider views that are not
served from the user’s local cache. We simulate all clients
as being able to store 50 photos in their LocalStorage. To
explore the various environments that WebCloud may be
deployed in, we vary two parameters: the number of photo
uploads and the number photo views.

For clarity, we express the average number of photos
uploaded per user, and the average number of views per

photo. For all experiments in this section, we repeat the
experiment 10 times with different random seeds and report
the average.

Varying the number of uploaded photos We begin by
examining how the number of uploaded photos affects
the hit rate of WebCloud. We run simulations with two
different settings of the average number of views per photo
(5 and 20). As the average number of photos uploaded
per user increases, we expect that the WebCloud hit-rate
will initially increase as the collective LocalStorage fills.
However, the hit-rate will then begin to drop off, once each
user’s LocalStorage fills up.

The result of this experiment is presented in Figure 5(a).
We see that for each setting, the hit-rate has a maximal peak,
matching our intuition from above. However, we note two
trends: First, the fall-off in hit-rate is rather slow, falling only
by about 20% as the number of photos uploaded increases
from 5 per user to 20 per user. Second, the overall hit-rate
is surprisingly high, ranging between 23% and 57%. The
upshot is that even in this wide variety of configurations,
WebCloud serves a significant fraction of the views.

Varying the number of views per photo Next, we turn
to evaluate how the average number of views per photo
affects WebCloud’s performance. As the the number of
views increases, we expect that the hit-rate of WebCloud to
increase, due to the bias towards viewing recently uploaded
photos. Similar to the previous experiment, we present
results from two different configurations of the average
number of uploads per user (5 and 20). The result of this
experiment is presented in Figure 5(b). We observe that our
expectation holds: as the average number of views per photo
increases, the hit rate of WebCloud rises.

Comparison to a CDN To answer our final question, we
simulate WebCloud running in conjunction with a CDN. In
these simulations, clients first query the CDN; only if the
CDN does not have the content, the request is forwarded
to WebCloud. However, it is unrealistic to assume that
every photo would be inserted into the CDN, as sites today
only use such services to serve popular content. Thus, we
configured the CDN to only store content that been requested
k times. Increasing k implies that only more popular content
is served via the CDN. We assume that the CDN has
unlimited storage, and all photos have zero views at the
beginning of the experiment.

The results of this experiment are shown in Figure 5(c).
For example, if k = 0, the CDN serves all content, forward-
ing no requests to WebCloud. However, if k is increased to
5, WebCloud serves over 25% of the requests, and at k = 10,
WebCloud serves over 40%. This result shows that even if
the OSN uses a CDN, WebCloud still provides a significant
hit rate.

D. Mobile devices

We now turn to examine WebCloud on mobile devices.
Recall from our discussion in Section III-F that we are
concerned with two questions: First, can WebCloud be
feasibly implemented as a background service? Second, if
so, what is the impact on battery life and data usage?
To evaluate this, we implemented a prototype WebCloud
app on iOS. Our app registers itself as a background VoIP
service, allowing it to maintain a persistent connection with

the redirector proxy even if the app is not in the “active”
application.

To evaluate the impact on battery life, we deployed our
WebCloud app to an iPhone 4 running iOS 4.2 configured
to connect to a test redirector proxy. The proxy issued
fetch requests for the app to serve a 60 KB photo every
five seconds, allowing us to measure the number of photo
requests that could be served from the phone before running
out of battery. We found that the WebCloud app could serve
5,031 requests over 8.26 hours when connected via 3G,
and 24,700 requests over 34.9 hours when connected via
WiFi. Given the fact that, even in the most demanding of
the simulations in Section IV-C2, the user with the heaviest

workload served 160 photos per day (and the average user
served 4.36 photos per day), the WebCloud app is likely to
only consume a small amount of the battery life.

The data from our simulations also addresses the concerns
over data usage. Even under the heaviest workload, the most-
loaded user served a total of 72 MB during the simulated
week, while the average user served 2 MB. Both are within
the data allocation provided by most 3G providers.

E. Deployment

As a final point of evaluation, we deployed our WebCloud
prototype on a small scale within our department at North-
eastern University to examine how it would work with real-
world users.9 We recruited users by emailing our graduate
students.

Over the course of our 10-day deployment, we observed
17 users install WebCloud on different browsers and oper-
ating systems. These users connected a total of 585 times to
the proxy, and browsed 2,069 photos with an average session
time of 18 minutes. 539 (or 26%) of these photos were
served from another WebCloud client. While this fraction
of WebCloud is lower than in our simulations, it is likely
due to our deployment environment: For the simulation,
we considered what would happen if Facebook deployed
WebCloud to an entire region; in our real-world deployment,
we had to manually recruit people, so our social network
coverage is substantially lower. However, the deployment
demonstrates that WebCloud is feasible with today’s OSN
sites and web browsers.

V. RELATED WORK

A. Content distribution networks

CDNs like Akamai, Limelight, Adero and Clearway offload
work from the original website by delivering some or all
of the content to end users, often using a large number of
geographically distributed servers located in different ISPs.
While most CDNs are operated in a centralized manner,
systems such as Coral [37], [38] have been built which

9Our real-world deployment was covered under Northeastern Institutional
Review Board application #10-07-23.

use decentralized architectures to accomplish the same task.
These solutions are well-used, but they generally rely on
resources donated by governments and universities, and are
therefore not self-sustaining in the long run.

Other approaches have been explored allowing end users
to participate in CDNs, including Akamai’s NetSession [9],
a client-side application that assists in content distribution to
other Akamai clients, and FireCoral [8], a browser plug-in
that participates in the Coral network. While the goals of
both of these systems are similar to WebCloud, both require
the user to download and install a separate application or
plug-in, limiting their applicability and userbase.

Other work [15] has proposed to reduce long latency and
high loss on paths between users and the Facebook servers
by serving content locally. Unlike our work, they do not
utilize end users’ capability but instead deploy local TCP
proxies and cached content on those proxies.

Additionally, recent work [39] has demonstrated that
information flow patterns over social networks (called so-

cial cascades) can be leveraged to improve CDN caching
policies. This work is complementary to ours, and further
demonstrates the importance of leveraging properties of
the social network in future CDN designs. Finally, other
recent work [40] has examined the benefits of allowing
ISPs to assist CDNs in making content delivery decisions.
This approach is similar in spirit to ours, but focuses on
optimizing the server selection strategies employed by ISPs
today.

B. Peer-to-peer systems

WebCloud can be viewed as approximating peer-to-peer
(p2p) content exchange though web browsers. Much pre-
vious work has focused on building standalone p2p systems
for content storage and exchange [41]–[43] or avoiding the
impact of flash crowds [44]. In those systems, clients are
generally have little choice of the peers where their data
is stored, raising security, privacy, and reliability issues. To
address these concerns, researchers have examined mech-
anisms for storing content between friends. For example,
CrashPlan and Friendstore [45] provide cooperative backup
systems that allow users to store their data on trusted peer
nodes. However, unlike WebCloud, almost all p2p systems
assume a full networking stack, preventing a browser-based
deployment.

VI. CONCLUSION

In this paper, we took a step towards decentralized web-
based content exchange by introducing WebCloud. Web-
Cloud makes novel use of established web technologies to
allow clients to help serve content to other clients, keeping
the content exchange local and providing savings for both
the site OSN and the ISP. The result is that WebCloud is
able to serve as a drop-in component on sites like Facebook,
Flickr, and MySpace. Microbenchmarks, simulations, and

a small-scale deployment on Facebook demonstrated that
WebCloud works well in practice, and that WebCloud holds
the potential to serve over 40% of the content requests, even
when used in conjunction with a CDN.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers, Bimal Viswanath,
Max Marcon, and Ansley Post for their helpful comments.
We also thank the users of our WebCloud prototype for
their assistance in evaluating WebCloud. This research was
supported by NSF grant CNS-1054233 and an Amazon Web
Services in Education Grant.

REFERENCES

[1] “Facebook and YouTube dominate work-
place traffic and bandwidth,” http://www.
scmagazineuk.com/facebook-and-youtube-dominate-
workplace-traffic-and-bandwidth/article/168082/.

[2] “Alexa Top 500 Global Sites,” http://www.alexa.com/topsites.
[3] G. Cormode and B. Krishnamurthy, “Key Differences be-

tween Web 1.0 and Web 2.0,” First Monday, vol. 13, no. 6,
2008.

[4] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch Global,
Cache Local: YouTube Network Traffic at a Campus Network
- Measurements and Implications,” in MMCN, 2008.

[5] N. Kennedy, “Facebook’s photo storage rewrite,” http://www.
niallkennedy.com/blog/2009/04/facebook-haystack.html.

[6] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube Traffic
Characterization: A View from the Edge,” in IMC, 2007.

[7] P. Vajgel, “Needle in a haystack: efficient storage of bil-
lions of photos,” http://www.facebook.com/note.php?note
id=76191543919.

[8] J. Terrace, H. Laidlaw, H. E. Liu, S. Stern, and M. J.
Freedman, “Bringing P2P to the Web: Security and Privacy
in the Firecoral Network,” in IPTPS, 2009.

[9] “Akamai NetSession,” http://www.akamai.com/client.
[10] S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta, “Peer-

SoN: P2P Social Networking – Early Experiences and In-
sights,” in SNS, 2009.

[11] “Diaspora∗,” http://www.joindiaspora.com/.
[12] “Most Popular Extensions :: Add-ons for Firefox,” https://

addons.mozilla.org/en-US/firefox/extensions/?sort=users.
[13] “Adblock Plus : Statistics for Adblock Plus,”

https://addons.mozilla.org/en-US/firefox/addon/adblock-plus/
statistics/usage/?last=30.

[14] “Mozilla Metrics Report, Q1 2010,” https://wiki.mozilla.org/
images/e/ed/Analyst report Q1 2010.pdf.

[15] M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and
B. Y. Zhao, “Exploiting Locality of Interest in Online Social
Networks,” in CoNEXT, 2010.

[16] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,
“Web Caching and Zipf-like Distributions: Evidence and
Implications,” in INFOCOM, 1999.

[17] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel,
“You are who you know: Inferring user profiles in Online
Social Networks,” in WSDM, 2010.

[18] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Measurement and Analysis of Online
Social Networks,” in IMC, 2007.

[19] J. Jiang, C. Wilson, X. Wang, P. Huang, W. Sha, Y. Dai,
and B. Y. Zhao, “Understanding Latent Interactions in Online
Social Networks,” in IMC, 2010.

[20] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao,
“User interactions in social networks and their implications,”
in EuroSys, 2009.

[21] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking
and the dynamics of the news cyle,” in KDD, 2009.

[22] “Facebook Statistics,” http://www.facebook.com/press/info.
php?statistics.

[23] “4,000,000,000 ! Flickr Blog,” http://blog.flickr.net/en/2009/
10/12/4000000000/.

[24] X. Cheng, C. Dale, and J. Liu, “Statistics and Social Network
of YouTube Videos,” in IWQoS, 2008.

[25] A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law
distributions in empirical data,” SIAM Review, vol. 51, no. 4,
2009.

[26] M. Arlitt and T. Jin, “Workload Characterization of the 1998
World Cup Web Site,” IEEE Network, vol. 14, no. 3, 2000.

[27] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, and A. Sil-
berschatz, “P4P: Provider Portal for Applications,” in SIG-
COMM, 2008.

[28] “Akamai,” http://www.akamai.com/.
[29] “W3C WebStorage,” http://www.w3.org/TR/webstorage/.
[30] T. Stein, E. Chen, and K. Mangla, “Facebook Immune Sys-

tem,” in EuroSys, 2011.
[31] P. Samarati and L. Sweeney, “Protecting privacy when

disclosing information: k-anonymity and its enforcement
through generalization and suppression,” in IEEE S&P, 1998.

[32] M. J. Freedman and R. Morris, “Tarzan: A Peer-to-Peer
Anonymizing Network Layer,” in CCS, 2002.

[33] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Growth of the Flickr Social Network,” in
WOSN, 2008.

[34] “Hitwise Intelligence - Robin Goad - UK,” http://weblogs.
hitwise.com/robin-goad/2010/08/facebook accounts for 1
in 6 uk page views has it reached saturation point.html.

[35] A. N. Joinson, “Looking at, looking up or keeping up with
people?: Motives and use of Facebook,” in CHI, 2008.

[36] M. Cha, A. Mislove, B. Adams, and K. P. Gummadi, “Char-
acterizing Social Cascades in Flickr,” in WOSN, 2008.

[37] M. J. Freedman, E. Freudenthal, and D. Mazieres, “Democ-
ratizing content publication with Coral,” in NSDI, 2004.

[38] M. J. Freedman, “Experiences with CoralCDN: A Five-Year
Operational View,” in NSDI, 2010.

[39] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft,
“Track Globally, Deliver Locally: Improving Content Deliv-
ery Networks by Tracking Geographic Social Cascades,” in
WWW, 2011.

[40] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and A. Feld-
mann, “Improving Content Delivery Using Provider-aided
Distance Information,” in IMC, 2010.

[41] L. P. Cox and B. D. Noble, “Samsara: honor among thieves
in peer-to-peer storage,” in SOSP, 2003.

[42] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard, “A cooperative internet backup scheme,” in USENIX
ATC, 2003.

[43] A. Rowstron and P. Druschel, “Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage
utility,” in SOSP, 2001.

[44] A. Stavrou, D. Rubenstein, and S. Sahu, “A Lightweight,
Robust P2P System to Handle Flash Crowds,” in ICNP, 2002.

[45] D. N. Tran, F. Chiang, and J. Li, “Friendstore: Cooperative
online backup using trusted nodes,” in SNS, 2008.

