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Abstract—For vehicular metaverses, one of the ultimate user-
centric goals is to optimize the immersive experience and Quality
of Service (QoS) for users on board. Semantic Communication
(SemCom) has been introduced as a revolutionary paradigm that
significantly eases communication resource pressure for vehicular
metaverse applications to achieve this goal. SemCom enables
high-quality and ultra-efficient vehicular communication, even
with explosively increasing data traffic among vehicles. In this
article, we propose a hierarchical SemCom-enabled vehicular
metaverses framework consisting of the global metaverse, local
metaverses, SemCom module, and resource pool. The global and
local metaverse are brand-new concepts from the metaverse’s
distribution standpoint. Considering the QoS of users, this article
explores the potential security vulnerabilities of the proposed
framework. To that purpose, this study highlights a specific
security risk to the framework’s SemCom module and offers
a viable defense solution, so encouraging community researchers
to focus more on vehicular metaverse security. Finally, we
provide an overview of the open issues of secure SemCom in
the vehicular metaverses, notably pointing out potential future
research directions.

Index Terms—Vehicular metaverse, semantic communication,
adversarial attacks, security defense.

I. INTRODUCTION

With the advances of the Internet of Things and Artifi-
cial Intelligence, metaverse technology, regarded as the next-
generation Internet, is rapidly emerging to build a virtual-
physical integrated world with fully immersive and person-
alized experiences for users in many scenarios and appli-
cations. In particular, vehicular networks are revolutioniz-
ing towards vehicular metaverses that have vast potential
to provide diverse, immersive, and personalized in-vehicle
entertainment/services for both drivers and passengers [1]. In
vehicular metaverses, vehicle data are mainly divided into two
categories: i) static data including background information on
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roadside infrastructures and road networks, and ii) dynamic
data involving information about pedestrians, moving vehicles,
traffic flow, and so on. To support time-sensitive vehicular
metaverse services (e.g., AR navigation), a large number of
dynamic data is required for real-time updates of the vehicular
physical-virtual world to avoid service quality degradation,
while conventional communication based on Shannon Infor-
mation Theory cannot support efficient communications and
massive connectivity for vehicular metaverses due to limited
wireless communication resources.

Recently, Semantic Communication (SemCom) has been
introduced as a revolutionary paradigm that breaks through
the bandwidth bottleneck of classical communications, sig-
nificantly improving communication efficiency by leveraging
deep learning models to only transmit critical information
sufficient for the receivers, thus dramatically reducing the
number of bits transmitted. A deep learning-enabled end-to-
end SemCom system with Deep Neural Networks (DNNs) as
semantic codecs has been proposed in [2]. It is a promising
solution to integrate SemCom into vehicular metaverses for
enabling real-time transmission of vast data used to sustain
the metaverse services. In vehicular metaverses, vehicles only
send data requests and then download lots of static and
dynamic data from edge servers in the way of SemCom
with unprecedented communication efficiency in comparison
to traditional communication manners.

Although semantic communication plays an indispens-
able role in vehicular metaverses, SemCom-enabled vehicular
metaverses are still in their infancy. There are many chal-
lenges to be resolved for realizing its potential, especially
privacy and security issues. On the one hand, an eavesdropper
can infer vehicle location and driving habits by analyzing
communication data. Even though privately trained codecs
provide SemCom with a natural barrier to being eavesdropped,
this barrier does not work well in vehicular metaverses. This
is because there exist similar and stationary communication
tasks in neighbor vehicles and then the eavesdropper may
obtain similar or even identical decoders to recover data
from the wireless channels. The researches on [3]–[5] are
committed to private communications. On the other hand,
DNNs are vulnerable to attacks (e.g., poisoning attacks and
adversarial attacks). Such weaknesses naturally exist in deep
learning-based SemCom systems. Attackers can easily apply
typical deep learning attacks to the SemCom systems and
directly reduce the task/model accuracy [6]. Non-malicious
perturbations may cause performance degradation of semantic
communication systems as well [7].

In particular, the existing work ignores adversarial attacks
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of SemCom in vehicular metaverses. For adversarial attacks,
the authors in [8] find that non-random perturbation on the
test sample can arbitrarily manipulate the output of neural
networks. In general, the attacker first obtains the structure and
parameters of the target model. The adversarial samples are
then initialized with the original data. After several training
iterations, the elaborate adversarial samples similar to the
original data are generated by maximizing the loss of the se-
mantic encoder. Finally, the accuracy degradation of the target
model is achieved in the face of adversarial samples. Hu et
al. in [6] demonstrate that adversarial attacks are still feasible
in the deep learning-enabled SemCom system. For vehicular
metaverses, the adversarial attacks increase the probability of
receiving wrong information, even causing traffic accidents if
receivers are misled to take dangerous actions according to
wrong information [6], [9].

To fully understand the risks of adversarial attacks for
SemCom-enabled vehicular metaverses, in this article, we
study the adversarial attacks and the corresponding defenses
against these attacks. More specifically, we first design a
hierarchical vehicular metaverse framework with a global
metaverse and multiple local metaverses [10]. A new adver-
sarial attack model and its defense scheme for this framework
are then proposed, respectively. We discuss several security
challenges of SemCom-enabled vehicular metaverses. The
main contributions are summarized as follows:

• According to vehicle data characteristics and service
requirements, we design a new and hierarchical SemCom-
enabled vehicular metaverse framework mainly consisting
of a global metaverse, multiple local metaverses, and
resource pools. This framework not only significantly re-
duces data transmission delay, but also efficiently utilizes
the computing and storage resources of edge servers.

• We propose a novel adversarial attack called Semantic
Noise Attack (SNA) to generate adversarial samples by
adding semantic noise and design a new defense scheme
using the Semantic Distance Minimization (SDM) mech-
anism to weaken the adversarial samples, but almost
without sacrificing transmission accuracy.

• For use cases, we present two SemCom systems with
different semantic encoders on traffic sign classification
and license plate recognition, respectively. We examine
the effects of SNA on the SemCom systems and evaluate
the robustness of the defense scheme based on SDM in
vehicular metaverses. The numerical results indicate that
the proposed defense scheme significantly reduces the
success rate of the attacks.

II. SEMANTIC COMMUNICATION FOR VEHICULAR
METAVERSES

For vehicular metaverses, sensing data is divided into static
and dynamic data based on the properties in the real world.
Static data is the background information from the physical
space, such as road sensors, roadside infrastructures, and
the topology network of roads. Dynamic data is the “add-
in” information from dynamic entities in the physical space
including vehicles, pedestrians, traffic signs, etc. Actually,

the dynamic data is used to update the digital twins of
dynamic entities in the virtual space. Compared with other
metaverse services, vehicular metaverses have stricter latency
requirements to ensure user immersion and improve the QoS.

A. Semantic Communication and Vehicular Metaverses

As shown in Fig. 1, a hierarchical vehicular metaverse
consists of a global metaverse, n local metaverses, and m
resource pools. More specifically,

• Global Metaverse: a giant metaverse deployed over the
cloud by Metaverse Service Providers (MSPs) for man-
agement globally. The global metaverse is a replica of
the physical world in the virtual space, which contains
both static data and dynamic data within an entire city
or even wider area, e.g., a global city map with abundant
traffic-related information in the navigation applications.
Instead of massively communicating directly with users,
it was updated periodically by the data from all the local
metaverses.

• Local Metaverses: as a component of the global meta-
verses, a local metaverse could be the metaverse mapping
to a small-scale area, like a street block or a road
intersection. The local metaverses are established on edge
servers and are closely connected to nearby users, and
thus the vehicles can communicate directly with their
local metaverses to obtain real-time metaverse services
without large latency [10].

• Resource Pools: the virtual resource pool consisting of
physical entities with sufficient resources in the local
metaverse, e.g., roadside units acting as edge servers.
The edge servers in different regions establish a resource
pool for their common local metaverse, which includes
computing, storage, and bandwidth resources to support
the metaverse services for users.

The hierarchical framework has several new designs and
thus obtains multiple advantages. First, proximity to the users
allows the framework to avoid long-distance communication,
and thus reduce communication time. Users only need com-
munication with the closest node in the resource pool to access
the services. Second, the framework trims the budget for
deploying dense sensor nodes in physical space. The strategy
for updating and collecting data does not require massive
sensors [10]. Third, the framework efficiently utilizes the
storage and network resources of servers and vehicles. Both
the global and local metaverses only hold indispensable data
to maintain normal service. The vehicles only download the
data of the local metaverses corresponding to their location.
Finally, the SemCom in the framework reduces the number of
bits that need to be transmitted. Hence, the effects of channel
instability caused by vehicle movement are almost mitigated.

In vehicular metaverses, for AR navigation, the MSP col-
lects massive static data in a low-cost way (e.g., from satellites)
and deploys them on the global metaverse. As shown in 1,
the static data at each intersection is regularly updated to
corresponding resource pools to build local metaverses. The
resource pools collect dynamic data from data providers in
the physical world to keep updating digital twins. Meanwhile,
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Fig. 1: The hierarchical vehicular metaverse architecture. Parts a and b show the normal service and attack flow respectively;
The orange subfigure on the right-hand side depicts the steps involved in generating attack examples, while the blue
subfigure illustrates the communication between the global metaverse and the local metaverses.

when a physical entity (e.g., a vehicle) moves from one local
metaverse to another one, its digital twin may migrate to the
new local metaverse according to its location. Note that all
the changes in the static collected data will be updated to the
global metaverse. Rather than encapsulating an entire city’s
dynamic and static data in one metaverse, the local metaverses
split the data, thus relieving the communication and computing
pressure of the cloud and resource pools and shortening the
distance between users and data. Vehicles can interact with
edge servers in the resource pools to access metaverse services.

Before entering the coverage of a local metaverse, each user,
i.e., vehicle, initiates a service request to the edge server. Once
a user request is received, the edge server sends static infor-
mation from the local metaverse to the vehicle. Meanwhile,
the required dynamic data are constantly invoked and sent
to the vehicle, allowing the driver to glimpse navigation and
driving prompts. Congested wireless resources cannot support
the transmission of such large amounts of data with low
latency. To reduce latency, the edge servers only transmit key
features of data to the vehicles by SemCom.

In vehicular metaverses, vehicles do not need to recover the
source data, but only need to complete pragmatic tasks (e.g.,
traffic sign recognition and pedestrian detection). Given that
the tasks in vehicular metaverses are relatively fixed, we design
task-oriented SemCom systems [11] to improve efficiency.
The task-oriented SemCom aims to extract more condensed
semantic information related to the task of the receiving end.
The receiver no longer needs a complex semantic decoder
to recover the source data but completes the task directly
based on the semantic information with a simple model.
Coincidentally, this is consistent with the computational power

distribution between resource pools and vehicles.
We consider that each edge server has a dedicated semantic

encoder for every task. Due to the heterogeneity of hardware
performance, driving habits, and knowledge base, each vehicle
has a customized task model. Hence, users need to train
their models in conjunction with edge servers before enjoying
the services. The edge servers open interfaces at night or
during idle hours for user training. The interface mechanically
extracts the semantic information of the original data given by
the user and sends it back. Therefore, the user can train their
task model by semantic information and the labels of original
data.

After completing the training, the user can access the meta-
verse to enjoy application services. Three kinds of participants
are involved in a service process as follows:

• User: In vehicular metaverses, the vehicle usually acts as
a user. The proposed framework and all the mechanics
are designed to make the user obtain a safe, reliable,
comfortable, and immersive experience.

• Edge Server: The intermediary between the user and the
data provider. The edge servers collect data from the data
provider, store it temporarily and send it to the user when
receiving a request.

• Data Provider: Any sensing node that wants to make
money by selling data (e.g., some users, roadside cam-
eras). A data provider located near an intersection con-
tingently provides data to the edge servers in the corre-
sponding resource pool.

Signal lights, traffic signs, pedestrians, and other informa-
tion are captured by the data providers’ sensors and sent to
the edge server. Based on SemCom, the edge server sends the
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TABLE I: Existing Works Comparison.

Method Background Attack Defense Dataset Modal Model
ESCS [3] Eavesdrop Encryption Europarl Text Transformer

VQ-VAE [6] Adversarial attack Mask + Codebook
CIFAR-10
Cars196

ImageNet
Image ViT

R-DeepSC [7] - Semantic noise Calibrating
Augment training set Europarl Text Transformer

DeepJSCEC [4] Eavesdrop Encryption CIFAR-10 Image DNNs

SNA&SDM SNA SDM GTSRB
CCPD Image ResNet

LPRNet

The represent white box attack, while the means black box setting. In the white-box setting, the attacker
possesses knowledge of the structure or parameters of the semantic codec model. In contrast, the attacker in the
black-box setting is ignorant and typically attacks by probing the model’s input and output.

data to the user with a graceful delay after the user initiates
the request. By the task models, the driver can timely see
the arrow guides and virtual traffic sign entities in front of
the windshield, which can enhance the user’s perception of
road conditions. This driving paradigm can greatly improve
the safety and comfort of driving, especially when the view is
blocked by trucks or buildings. Passengers can also use this
system to play metaverse games or work online.

B. Security Challenges of Semantic Communication

SemCom, as a promising communication paradigm for the
6G future era, shows good performance in various tasks.
However, it is vulnerable to some well-designed attacks.
Therefore, it is necessary to consider the possible threats and
defend against these attacks. We summarize typical security
challenges as follows:

• Eavesdropping Attack: Eavesdropping is the behavior of
decoding information in a physical channel in order to
steal private information. In SemCom, the user-unique
semantic codec acts as a barrier to eavesdroppers. Even
though an eavesdropper obtains the transmitted semantic
information, it cannot decode it. However, this barrier
is not foolproof. When the SemCom system is widely
used, users from the same communication link may have
the same semantic decoder structure. Lu et al. [12] reveal
the privacy issues of the SemCom system in the industrial
Internet of Things. At the application layer, Luo et al. [3]
propose an adversarial training method with key pairs to
prevent such eavesdropping. Tung et al. [4] propose a
joint source-channel and encryption coding scheme for
wireless image transmission. At the physical level, Chorti
et al. [13] consider physical layer security as the essential
issue in next-generation communication. Du et al. [5]
consider this problem from a physical perspective and
protect wireless communications against eavesdropping
by exploring and utilizing the inherent features of the
physical medium.

• Adversarial Attack: By adding imperceptible semantic
noise to the transmitted data, adversarial attacks make the
SemCom system produce errors in the encoding stage or
decoding stage. The authors in [6] consider two types of

attacks, one is on the sending end and the other one is on
the receiving end. The former simulated the case where
the attacker is the sender, while the latter simulated the
case where the attacker initiates the attack through the
channel. With all or part of the detailed information of
the SemCom system, the attacker generates adversarial
samples against the model. Xiang et al. [7] use the cali-
brated network and expand the training set to counteract
the semantic noise in the text transmission tasks.

• Poisoning Attack: Poisoning attacks aim at manipulating
the training process to degrade model performance or to
insert backdoors. SemCom systems are trained based on
shared semantic knowledge bases. The communication
parties are likely to expand the training set from the
third party to obtain a better SemCom codec. Some low-
quality data and malicious data are inevitable, which may
carry the wrong semantic information. Using data that
contains false semantic information for training may lead
to a degradation of performance in the SemCom system.
This type of attack is called semantic data poisoning
attack [14]. Researches on poisoning attacks and their
defenses in the SemCom system are still in the vacant
stage.

We summarize the existing work in Table I. Unlike prior
works, we propose a black-box model, that is more realistic,
and use datasets, that are consistent with vehicular metaverse
scenarios. Moreover, we tailor semantic encoder models for
different tasks.

III. ADVERSARIAL ATTACKS FOR SEMANTIC
COMMUNICATION IN VEHICULAR METAVERSE

A. Adversarial Attacks

Deep learning models are often targeted by adversarial at-
tacks, where attackers generate adversarial samples that appear
natural to human eyes but cause the model to produce incorrect
outputs. Adversarial samples are typically created by adding
specific noise that appears to be normal noise to clean sam-
ples. In addition to channel noise and attenuation, SemCom
furthermore faces a special noise called semantic noise [6].
While channel noise is simulated to improve performance in
real environments, semantic noise, which can subtly alter the
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meaning of data, is not typically considered. Semantic noise
usually results from poor-quality data due to aging sensors
and channel interference. By artificially adding semantic noise,
attackers can efficiently produce adversarial samples, which
cause a devastating blow to the SemCom system. We propose
an attack based on semantic noise for vehicular metaverses.

According to Section II, it is stated that edge servers are
nodes that are semi-trusted and do not actively attempt to
attack the system, but can still be deceived. These servers
forward both accurate and inaccurate data to users. Typi-
cally, edge servers assess the reliability of data based on
the reputation of their provider. However, this method fails
when a provider is compromised or intentionally behaves in a
trustworthy manner to gain credibility.

The diagram in Fig. 1 illustrates how an attacker can
impersonate a data provider and deceive well-behaved edge
servers. Initially, the attacker collects natural data as if they
were a legitimate provider. Based on the captured data, the
attacker generates several adversarial samples through the
SNA. At an opportune moment, the attacker submits these
generated adversarial samples to the edge server. When a
user requests information from the server, it extracts incor-
rect semantic details and sends them back to the user. This
misinformation may lead users to make risky decisions. The
process of generating adversarial samples through SNA is
further explained in Fig. 1 and described below:

• Step 1: The attacker gains access to the training inter-
face offered by the edge server and initiates a training
procedure.

• Step 2: The attacker creates a group of adversarial sam-
ples using the benign data and then transmits both sets
to the interface.

• Step 3: The interface extracts semantic information using
the semantic encoder and transmits it back to the attacker.

• Step 4: In the received semantic information, the attacker
calculates the maximum semantic distance to the benign
data for every adversarial sample as the loss.

• Step 5: Update adversarial samples based on the loss and
jump to Step 2 until reaching the maximum iterations.

Using SNA, an attacker can calculate its loss by utilizing
the interface provided by the edge server as environmental
feedback, without knowing the structure and parameters of
the semantic encoder. Edge servers aim to attract numerous
data providers due to their requirement for dynamic data. As
a result, detecting an infiltrating attacker is challenging, par-
ticularly when it attempts to enhance its reputation. It should
be noted that the loss not only includes the steps necessary for
executing an effective attack but also controls low-frequency
perturbations [9] to minimize detection by human observers.

Once the SNA is implemented, it brings incalculable losses
to the MSP and users. For MSPs, the presence of an attacker
means that pre-trained semantic encoders can no longer be
used, resulting in financial loss. For users, incorrect semantic
information can cause drivers and passengers to watch lower-
quality virtual entities and thus reduce immersion. In some
applications, incorrect semantic information can even further
manipulate user behaviors. For example, in AR navigation, a
stop sign contains the semantic information of going straight.

1. Generate Adversarial Data

Knowledge
Base

Magnify 
Semantic
Distance

2. Semantic Extract
Semantic Encoder

Benign Data AttackData

Natural 
loss

KL-
divergence

3. Calculate Loss

λ

Semantic
representation4. Minimize

Semantic
Distance

Loss=

Fig. 2: Semantic Distance Minimization Defense Process,
where lines with the same color represent the same data
stream, the dashed line indicates that the semantic encoder is
updated according to the loss function.

The user continues to drive straight based on semantic infor-
mation, thus causing an accident.

B. Defense for Adversarial Attacks

As aforementioned, the SNA aims to modify semantic
information by introducing semantic noise. In nature, semantic
noise is the addition of disturbance in the efficient direc-
tion, which can change the position of data in the semantic
space with the minimum disturbance. Generally speaking,
one straightforward solution is to make the semantic encoder
robust to semantic noise. Adversarial training is an attractive
alternative but comes at the cost of natural accuracy. This
article introduces the trade-off between natural and robust ac-
curacy [15] into SemCom for vehicular metaverses to achieve
SDM.

Adversarial training involves generating online adversarial
samples that result in maximum semantic loss and allows the
model to learn their distribution. In SDM, as illustrated in
Fig. 2, online adversarial samples are generated for each data
point through several iterations to maximize the distance from
benign data. The KL divergence between the outputs of the
semantic encoder is used to measure semantic distance. Both
adversarial data and benign data are fed into the semantic
encoder to calculate their semantic information. [15] The com-
plete loss function includes two parts, natural loss, and robust
loss. The robustness loss is determined by calculating the
distance of extracted semantic information with a coefficient λ.
Natural loss refers to the original mission’s (e.g., classification)
objective of improving model accuracy, while robust loss aims
at ensuring that both adversarial samples and benign data have
similar semantic information.
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Fig. 3: Accuracy versus the SNR on the adversarial test set with l2 ≈ 3.6, where a vs b curve represents the b target model
attacked in a attack mode. The random attack is to add stochastic noise to the source images.

IV. CASE STUDY: SEMANTIC COMMUNICATION IN
VEHICULAR METAVERSE

As a case study, we simulate a scenario to evaluate proposed
attack methods and defense performance. In this scenario,
an attacker deduces the user’s location, produces adversarial
samples, and provides them to RoadSide Units (RSUs) before
the user accesses a local metaverse. To achieve this goal,
we build SemCom systems in the above framework that
simulate two tasks of AR navigation service in vehicular
metaverses. The performance of the system performing traffic
sign recognition and license plate recognition is measured.
We conducted an SNA attack against these missions to assess
the effectiveness of the attacks. Defensive SemCom systems
are trained according to SDM, and their performance is
re-evaluated. The same attack works on the new SemCom
systems to test them.

A. Simulation settings and Security Attacks

We consider an attacker capable to deduce the user location
and provide adversarial samples to RSUs before the user enters
the local metaverse. In this context, we develop SemCom
systems to simulate two tasks related to AR navigation services
in vehicular metaverses. Specifically, we design semantic
codecs for each task, while the channel encoder and decoder
are both with dense layers with different units. During training,
Additive White Gaussian Noise (AWGN) is added to the
channel with a Signal Noise Ratio (SNR) between 5 and
10 [2], allowing the SemCom system to adapt for various real
communication environments.

1) SemCom for traffic sign recognition: The GT-
SRB 1dataset consists of more than 50,000 images between
15 ∗ 15 to 250*250 pixels, divided into 43 classes. The
pragmatic task of traffic sign recognition is completed in the
communication process without the need to train the pragmatic
function separately. In this simulation, the semantic encoder
is a ResNet, while the receiver uses a fully connected layer to
get the classification.

1https://benchmark.ini.rub.de/

2) SemCom for license plate recognition: The CCPD 2

dataset consists of more than 250,000 vehicle images from
China for license plate detection and recognition. In this
simulation, the pragmatic task is license plate recognition, so
we pre-process the dataset according to the annotation, cutting
the license plate part of its image. The semantic encoder is an
LPRNet 3, while the receiver uses a greedy decoder to get the
license plate information.

As for the attack, to simulate the SNA in vehicular meta-
verses, we generate adversarial samples of all the test im-
ages and perform the corresponding pragmatic tasks through
the SemCom system. The same attack is performed on the
defensive model. We conducted an SNA attack against these
missions to assess the effectiveness of the attacks. We set the
same L2 norm for all attacks to ensure that performance is
compared at the same attack strength [6], [9].

B. Metrics and Defense in Semantic Communication

The robust SemCom models are trained with the aforemen-
tioned defense method for the two pragmatic tasks. During
the generating online adversarial images phase, 10 iterations
are performed to maximize the semantic loss. In the training
phase, we set λ as 1 in the traffic sign recognition task, which
is 0.1 in the license plate recognition task to achieve better
defensive performance. The same attack works on the new
SemCom systems to test them.

The natural accuracy of the SemCom system on the test
set is used to characterize its performance. For license plate
recognition, only when all the symbols on the license plate are
correctly recognized can be counted. We replace all images in
the test set with the adversarial samples from the SNA and
recalculate the accuracy, called robust accuracy. To evaluate
the effect of an attack, we use natural accuracy as an upper
bound. The degree of decline in robust accuracy compared
to the upper bound indicates the effectiveness of an attack.
More reduction in accuracy means more successful attacks.
We also calculate the accuracy for SDM SemCom systems to

2https://github.com/detectRecog/CCPD
3https://arxiv.org/abs/1806.10447
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demonstrate defensive effects. On the contrary, lower accuracy
cuts mean more successful defenses. In addition, the difference
in natural accuracy between the original SemCom system and
the SDM system demonstrates the defense overhead. These
assessments are repeated in different SNR environments.

C. Numerical Results

Figure 3 displays the SNR to accuracy curves of different
models when tested on adversarial samples. In the task of rec-
ognizing traffic signs, the SemCom model’s accuracy is signifi-
cantly reduced by 40% due to the SNA method. This reduction
in precision cannot ensure the normal operation of services and
may even mislead drivers into making dangerous decisions
based on incorrect road signs. As random channel noise is
considered during model training, adding random disturbance
through attack methods only causes a slight decrease in
precision. The SDM SemCom system exhibits higher accuracy
than the original system against SNA attacks. Additionally,
random defense adds random disturbance to benign images
instead of maximizing semantic loss to simulate an attack
sample, resulting in weaker defensive effects compared to our
proposed approach shown in Figure 3. This phenomenon still
exists with global deviation only in license plate recognition
tasks.

Figure 4 shows the natural accuracy of different models
when tested with benign data. Specifically, in the task of
recognizing traffic signs, the SDM system exhibits a natural
accuracy loss of approximately 5%, whereas the random de-
fense approach results in a loss of 13%. Therefore, compared
to random defense, SDM provides greater security while
minimizing the reduction in natural accuracy.

V. FUTURE DIRECTION

A. Privacy Protection Schemes for Vehicular Metaverses

In vehicular metaverses, the communication link between
vehicles and RSUs forms a dynamic topological network struc-
ture due to vehicle mobility. During wireless communication,
there is a risk of data eavesdropping. A malicious party could

use eavesdropped data to learn private information such as
user location and driving habits. Although there exists research
on eavesdropping, the applicability of the defense schemes
in dynamic environments has not been tested. Therefore, it
is necessary to design a privacy protection scheme for the
dynamic vehicular metaverse with changing network topology.

B. Customized Attack Methods for Vehicular Metaverses

Security is a major concern for both communication systems
and vehicle applications. In vehicular metaverses, however,
this issue has not received enough attention. A lot of work
associated with adversarial attacks, poisoning attacks, and
backdoor attacks focuses on deep learning. Moreover, a tar-
geted attack in that an attacker can control the information
received by the vehicle rather than just obfuscation is more
harmful. If these attacks are carried out, they are bound to raise
security concerns in vehicular metaverses. Therefore, diverse
and stronger attack methods for SemCom systems need to be
invented to support robustness research.

C. Efficient and Controllable Defenses for Attacks

This article presents a basic defense solution, which trains
a semantic encoder with the capability of extracting correct
semantic information from adversarial samples. However, the
precision loss caused by the defensive approach should be
avoided in some cases. For relatively simple pragmatic tasks,
we can obtain security performance at a small cost, but for
complex tasks, the cost will increase. Further research is
needed to develop solutions that offer greater resistance with
less cost and more controllability. The research on attacks and
defenses can complement each other to further improve the
security of semantic communication in vehicular metaverses.

VI. CONCLUSIONS

Considering the data characteristic and service require-
ments, we have developed a hierarchical framework for ve-
hicular metaverses that addresses the challenges of large data
volumes and strict latency requirements in vehicular meta-
verses. To minimize data transfer, we incorporated SemCom
into the framework, while also raising security concerns with
an adversarial attack method specific to vehicular metaverses.
To protect against such attacks, we proposed a training method
for the SemCom system that can withstand semantic noise.
Our evaluation showed that our defense is effective in resisting
adversarial attacks, which is crucial for ensuring a secure
and immersive vehicular metaverse. We believe that applying
security technologies to semantic communication in both deep
learning and traditional security will provide valuable insights
for creating a safe and comfortable vehicular metaverse.
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