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Humans have a remarkable 
ability to learn continuously 
from the external environment 
and inner experience. One of 

the grand goals of robots is to build an 
artificial “lifelong learning” agent that 
can shape a cultivated understanding of 
the world from the current scene and 
previous knowledge via an autonomous 
lifelong development. It is challenging 
for the robot learning process to re­
tain earlier knowledge when robots 
encounter new tasks or information. 
Recent advances in computer vision 
and deep-learning methods have been 
impressive due to large-scale data sets, 
such as ImageNet [1] and COCO [2]. 
However, robotic vision poses unique 
new challenges for applying visual 
algorithms developed from these 
computer vision data sets because they 
implicitly assume a fixed set of 
categories and time-invariant task 
distributions [3]. 

Semantic concepts change dynami­
cally over time [4]–[6]. For bridging 
the gap between robotic vision and 
stationary computer vision fields, we 
utilize a real robot mounted with mul­
tiple high-resolution sensors [e.g., 
monocular/red- green-blue-depth 
(RGB-D) from RealSense D435i, dual 
fisheye images from RealSense T265, 
and lidar; see Figure 1] to actively col­
lect the data from the real-world 
objects in several kinds of typical sce­
narios, such as  homes,  of f ices , 
campuses, and malls.

Lifelong learning approaches can be 
divided into 
1)	�regularization methods, e.g., Learn­

ing without Forgetting (LwF) [7], 
elastic weight consolidation (EWC) 
[8], and synaptic intelligence (SI) [9]

2)	�network expansion methods, e.g., 
context-dependent gating [10] and 
Dynamic Expandable Network [11]

3)	�rehearsal approaches with a sampling 
replay or generative mechanism to fit 
distribution from prior tasks [12]–
[14], e.g., incremental classifier and 
representation learning [15], Deep 
Generative Replay (DGR) [16], and 
DGR with dual memory [17] and 
feedback [18].
This report summarizes the IEEE/

RSJ International Conference on Intelli­

gent Robots and Systems (IROS) 2019 
Lifelong Robotic Vision Competition 
(Lifelong Object Recognition Chal­
lenge) with the data set, rules, methods, 
and results from the top eight finalists 
(of over 150 teams) (Figure 2). Individ­
ual reports, data set information, rules, 
and released source codes can be found 
at the project home page [19].

Challenge Data Set and Rules
This challenge aimed to explore how to 
leverage the knowledge summarized 
from previous tasks for learning a new 
task efficiently as well as how previously 
learned tasks could be efficiently memo­
rized in lifelong robotic vision. The goal 
of this competition was to test a model’s 
capability to continuously learn objects 
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Figure 1. The OpenLORIS robotic platform (left) mounted with multiple sensors (right). 
In the OpenLORIS-Object data set, the RGB-D data are collected from the depth 
camera. 
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in a service robot scenario. Over 150 
registered participants representing 
eight teams competed in the final testing 
phase. The work paved the way for 
robots to behave like humans in terms of 
knowledge transfer, association, and 
combination capabilities.

Challenge Data Set
The data set Lifelong Robotic Vision 
(OpenLORIS)–Object Recognition 
(OpenLORIS–Object) is designed to 
drive lifelong learning research and 
potential applications in the robotic 
vision domain, with everyday objects that 
exist in home, office, campus, and mall 
scenarios. The data set explicitly quanti­
fies the variants of illumination, object 
occlusion, object size, camera-object dis­
tance/angles, and clutter information. 
The IROS 2019 competition organizers 
provided the first version of the OpenLO­
RIS–Object data set for the participants. 

Note that our data set has been updated 
with twice the size in content available at 
the project home page [20], including 
data set visualization, download instruc­
tions, and more benchmarks on state-of-
the-art lifelong learning methods [21].

The competition data set is a collec­
tion of 69 instances, including 19 catego­
ries of daily necessities objects under 
seven scenes (see Table 1). For each 
instance, a 17-s video (at 30 frames per 
second) was recorded with a depth cam­
era delivering 260 distinguishable chosen 
RGB-D frames. Four environmental fac­
tors, each with three level changes, are 
considered explicitly (Table 1). The data 
were divided into 12 sequential tasks by 
randomly sampling from different factors 
and levels. The organizers also provided a 
more challenging bonus test set that was 
recorded under different context back­
grounds with some deformation and 
extreme view angles.

Challenge Rules
Rules are designed to quantify the 
learning capability of the robotic vision 
system when faced with the objects 
appearing in the dynamic environ­
ments. Different from a standard com­
puter vision challenge, not only was the 
overall accuracy on all tasks evaluated; 
the model efficiency, including model 
size, memory cost, and replay size (the 
number of old task samples used for 
learning new tasks; smaller is better), 
was also considered (Table 2). Mean­
while, instead of directly asking the par­
ticipants to submit the prediction 
results on the test data set as in standard 
deep learning challenges [1], [2], the 
organizers received either source or 
binary codes to evaluate their whole 
lifelong learning process to make a fair 
comparison. The finalists’ methods 
were tested by the organizers on an Intel 
Core i9 CPU and a Nvidia RTX 1080 Ti 
graphics processing unit.

Challenge Methods and Results
The finalists and their results are sum­
marized in Table 3, with the top 
result(s) in each category designated 
in bold. Details such as the report, 
slide, and poster of each solution can 
be found on the project home page 
[19]. With excellent participants and 
the solutions they presented, we an­
ticipate that the resulting solutions can 
help robots perform well under dy­
namic environments.

HIK_LIG Team (Champion)
●● �Title: Dynamic Neural Network for 

Incremental Learning
●● �Members: Liang Ma, Jianwen Wu, 

Qiaoyong Zhong, Di Xie, and Shil­
iang Pu

●● �Affiliation: Hikvision Research Insti­
tute, Hangzhou, China.Figure 2. The Lifelong Robotic Vision Challenge finalists at IROS 2019. 

Table 1. The details for each of the three levels of four real-life robotic vision challenges.
Level Illumination Occlusion (%) Object Pixel Size Clutter Context Classes Instances

1 Strong 0 > 200 × 200 Simple Home/office/ 
campus/mall

19 69

2 Normal 25 30 × 30 − 200 × 200 Normal

3 Weak 50 < 30 × 30 Complex
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Table 2. The metrics and grading criteria.

 Metric Accuracy Model Size Inference Time Replay Size Oral Presentation
Accuracy on the 
Bonus Data Set

Weight 50% 8% 8% 8% 10% 16%

Table 3. The IROS 2019 Lifelong Robotic Vision Challenge final results.

Teams Final Accuracy (%)
Model Size 
(MB)

Inference Time 
(s)

Replay Size 
(Number of Samples)

Bonus-Set Accuracy 
(%)

HIK_ILG 96.86 16.3 25.42 0 21.86

Unibo 97.68 5.9 22.41 1,500 8.5

Guinness 72.9 9.4 346 0 10.96

Neverforget 92.93 342.9 467.1 0 1.52

SDU_BFA_PKU 99.56 171.4 2,444 28,500 19.54

Vidit98 96.16 9.4 112.2 1,300 1.39

HYDRA-DI-ETRI 10.42 13.4 1,323 21,312 7.1

NTU_LL 93.56 467.1 4,213 0 2.1
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●● �Method: The team developed a 
dynamic neural network com­
prising two parts: dynamic net­
work expansion for data across 
dissimilar domains and knowl­
edge distillation for data in simi­
lar domains [Figure  3(a)]. The 
domain similarity was deter­
mined by the accuracy of the pre­
vious model before training on 
the current task.

Unibo Team (First Runners Up)
●● �Title: Efficient Continual Learning 

with Latent Rehearsal
●● �Members: Gabriele Graffieti, Lorenzo 

Pellegrini, Vincenzo Lomonaco, and 
Davide Maltoni

●● �Affiliation: University of Bologna, Italy 
●● �Method: The team proposed a new 

lifelong learning approach based on 
latent rehearsal, namely, the replay of 
latent neural network activation 

instead of raw images at the input 
level [see the architecture and corre­
sponding Android application in 
Figure 3(b)]. The algorithm can be 
deployed on the edge with low latency. 
Details can be found in [22].

Guinness Team
●● �Title: Learning Without Forgetting 

Approaches for Lifelong Robotic 
Vision
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Figure 3. The challenge solutions. (a) HIK_LIG Team: dynamic network expansion for data across dissimilar domains and knowledge 
distillation for data in similar domains. (b) Unibo Team: replay of latent neural network activation instead of raw images at the input 
level (architecture and corresponding Android application). Cls: class; Convs: convolutions; KD: knowledge distillation. [(a) Source: 
HIK_LIG Team; used with permission; (b) source: Unibo Team; used with permission.] 
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●● �Members: Zhengwei Wang, Eoin 
Brophy, and Tomás E. Ward

●● �Affiliations: Wang: V-SENSE, School 
of Computer Science and Statistics, 
Trinity College, Dublin, Ireland; Bro­
phy and Ward: Insight Center for 
Data Analytics, School of Comput­
ing, Dublin City University, Ireland 

●● �Method: The core backend of the method 
was LwF [7]. There was no replay of pre­
vious task images in this structure.

Neverforget Team
●● �Title: A Small Step to Remember: 

Study of Single Model Versus Dy­
namic Model

●● �Members: Liguang Zhou, Tin Lun 
Lam, and Yangsheng Xu

●● �Affiliation: The Chinese University of 
Hong Kong, Shenzhen, China, and 
Shenzhen Institute of Artificial Intel­
ligence and Robotics for Society, 
China 

●● �Method: This approach was based on 
EWC [8] without a replay mechanism. 
The team also found the fact that the 
estimation of the Fisher information 
matrix might be biasedly estimated.

SDU_BFA_PKU Team
●● �Title: SDKD: Saliency Detection with 

Knowledge Distillation
●● �Members: Lin Yang and Baoquan 

Chen
●● �Affiliation: Peking University, Beijing, 

China; Shandong University, Qing­
dao, China; and Beijing Film Acad­
emy, Beijing, China 

●● �Method: The approach disentangled 
this problem with two aspects: back­
ground removal problem and classifica­
tion problem. The entrant used saliency 
maps to implement background re­
moval and knowledge distillation to 
address catastrophic forgetting.

Vidit98 Team
●● �Title: Intelligent Replay Sampling for 

Lifelong Object Recognition
●● �Members: Vidit Goel, Debdoot Sheet, 

and Somesh Kumar
●● �Affiliation: Indian Institute of Tech­

nology, Kharagpur, India 
●● �Method: This approach sampled vali­

dation data from the buffer and used 
them as replay data. It intelligently 

created the replay memory for a task. 
The replay memory was an efficient 
representation of previous task data, 
whose information was lost and 
sampled from the validation set.

HYDRA-DI-ETRI Team
●● �Title: Selective Feature Learning with 

Filtering Out Noisy Objects in Back­
ground Images

●● �Members: Soonyong Song, Heechul 
Bae, Hyonyoung Han, and Young­
sung Son

●● �Affiliation: Electronics and Telecom­
munications Research Institute, 
Korea

●● �Method: The team proposed a selec­
tive feature learning method to elim­
inate irrelevant objects in target 
images. A single-shot multibox de­
tection (SSD) algorithm selected the 
desired objects [23]. The SSD algo­
rithm alleviated performance degra­
dation by noisy objects. Then SSD 

weights were trained with anno­
tated images in task 1 and the 
refined data were fed into a classifi­
cation module.

NTU_LL Team
●● �Title :  Lifelong Learning with 

Regularization and Data Aug­
mentation

●● �Members: Duvindu Piyasena, Sathur­
san Kanagarajah, Siew-Kei Lam, and 
Meiqing Wu

●● �Affiliation: Nanyang Technological 
University, Singapore 

●● �Method: The team utilized a combi­
nation of an SI-based regularization 
method [9] and data augmentation 
for each task.
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