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Abstract

Single molecule microscopy is a relatively new optical microscopy technique that allows the 

detection of individual molecules such as proteins in a cellular context. This technique has 

generated significant interest among biologists, biophysicists and biochemists, as it holds the 

promise to provide novel insights into subcellular processes and structures that otherwise cannot 

be gained through traditional experimental approaches. Single molecule experiments place 

stringent demands on experimental and algorithmic tools due to the low signal levels and the 

presence of significant extraneous noise sources. Consequently, this has necessitated the use of 

advanced statistical signal and image processing techniques for the design and analysis of single 

molecule experiments. In this tutorial paper, we provide an overview of single molecule 

microscopy from early works to current applications and challenges. Specific emphasis will be on 

the quantitative aspects of this imaging modality, in particular single molecule localization and 

resolvability, which will be discussed from an information theoretic perspective. We review the 

stochastic framework for image formation, different types of estimation techniques and 

expressions for the Fisher information matrix. We also discuss several open problems in the field 

that demand highly non-trivial signal processing algorithms.

I. Introduction

OPTICAL microscopy has a long history going back several centuries during which it was a 

key technique for the discovery of biological processes. The basic optical principles have 

not changed, but what has changed in the instrumentation in recent decades is the 

availability of highly sensitive detectors, computer control and powerful laser-based light 

sources [1], [2]. With these improvements in instrumentation came the possibility to analyze 

the acquired microscopy data using advanced signal and image processing techniques (see 

e.g. [3], [4]). Equally important, however, are the major advances in molecular biology and 

physical chemistry that have drastically improved the available technology for the labeling 

of cellular specimens [5]-[7].

These technological developments coincided with a time when the revolution in molecular 

biology has demanded powerful exploratory tools for the investigation of molecular 

processes in cells [1], [7]. For example, through genomic analyses, biologists have identified 

a large array of proteins, such as growth factor receptors, that are known to play a role in 

cancer. Standard techniques in molecular biology and biophysics, e.g. X-ray 

crystallography, allow the study of these proteins to a very high level of detail. However, to 
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investigate their biological functions, it is important that these proteins are studied in their 

cellular context.

Fluorescence microscopy is the imaging technique of choice for the study of molecular 

processes within cells due to its ability to detect specifically labeled proteins, receptors, 

molecules or structures [2], [7], [8]. There are, however, two aspects of fluorescence 

microscopy that limit its power. The first aspect is the spatial resolution of optical 

microscopy, which is a measure of the ability to distinguish two closely spaced point-like 

objects [9]. While molecular interactions occur on the low nanometer scale, classical 

resolution criteria predict a resolution limit in the range of several hundred nanometers [9]-

[11]. The second aspect is the sensitivity of the technique. A fluorescent molecule emits 

only a limited number of photons [1], [12]. This fact, together with the limited resolution of 

an optical microscope, implies that in classical fluorescence microscopy only relatively large 

accumulations of fluorescent molecules are detected. These detection limitations of classical 

fluorescence microscopy and in particular their associated averaging effects stand in the way 

of examining the molecular processes and structures at the level of individual molecules, i.e. 

precisely at the level that is required to study these phenomena in their full detail.

Single molecule microscopy is a technique that promises to overcome the deficiencies of 

classical fluorescence microscopy by allowing the detection of individual molecules rather 

than larger accumulations of molecules [1], [12]. Single molecule microscopy goes back to 

the work by W. E. Moerner and L. Kador published in 1989 [13], followed by that of M. 

Orrit and J. Bernard published in 1990 [14]. Amongst the many stages of development, we 

mention a few. In 1991, the image of a single molecule was recorded for the first time [15]. 

In 2003, single molecule microscopy played a crucial role in the measurement of the step 

size that the molecular motor myosin V takes in moving along an actin in an in vitro model 

[16]. This was based on being able to estimate the location of the myosin V molecule within 

1.5 nm [16]. The Green Fluorescent Protein (GFP) brought about a major breakthrough in 

fluorescent microscopy of proteins in living cells as the protein of interest can be genetically 

tagged by the GFP gene [5], [6]. The first single molecule experiments in live cells using a 

GFP tag were reported in [17], [18]. In a series of papers, it was recognized that the classical 

resolution criteria do not apply and distances well below those criteria can be measured 

using single molecule microscopy [10], [11], [19]. One of the key observations was that 

resolution is significantly improved if the molecules to be imaged are not excited at the same 

time [20]. Various photophysical processes were investigated such as blinking [19], 

photobleaching [11], and photoswitching [21]. This knowledge was exploited in [21]-[23] 

when it was recognized that various fluorophores can be stochastically excited which allows 

only a small number of the total fluorophores present in a sample to be imaged at any time 

point. This led to the development of localization based super-resolution microscopy 

techniques [21]-[23]. The development of techniques continues at a significant rate with the 

introduction of new approaches and refinements of existing ones.

This tutorial paper is organized as follows. The next section addresses image formation in a 

fluorescence microscope as it is relevant for single molecule microscopy. This is followed 

by a brief explanation of two important types of single molecule experiments, i.e. the 

tracking experiment and the localization based super-resolution experiment, in Section III. 
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The importance of the location estimation for single molecules will be discussed and 

appropriate data models will be introduced in Section IV. This will allow us to proceed to 

address the related parameter estimation problems in Section V. The role the Fisher 

information matrix and Cramér-Rao lower bound calculations play in the analysis of single 

molecule experiments will be explored in Section VI, which also contains a discussion of the 

resolution problem. Extensions to single molecule microscopy in three dimensions and the 

inherent problems will be the subject of the subsequent section. This is followed by 

comments on current challenges and concluding remarks.

II. Image Formation

Fig. 1(a) shows the schematic of an optical microscope. Excitation light from the light 

source is reflected off a dichroic mirror and passes through an objective lens to illuminate a 

fluorescent object (e.g. a point source) that is located in the object space. The fluorescence 

signal from the object is collected by the same objective lens, then passes through the 

dichroic mirror and an emission filter, and is then focused on a detector by a tube lens. 

Image formation in an optical microscope can be described by optical diffraction theory [9]. 

A fluorophore, i.e. the fluorescent label of a single molecule, is typically modeled as a point 

source (i.e. a Dirac delta function) and as such its image is given by the Point Spread 

Function (PSF), i.e. the impulse response, of the microscope [9]. For an in-focus single 

molecule, classical diffraction theory predicts that the image can be described by an Airy 

profile (see Fig. 1(b)) whose analytical expression is given by [9]

(1)

where α characterizes the width of the profile, J1 denotes the first order Bessel function of 

the first kind, and ||·|| denotes the Euclidean norm. It is important to note that the Airy profile 

may not be an accurate model in practice and more advanced PSF models are available (see 

Section V) [24]-[26]. In addition, as will be discussed in Section VII, the image of an out of 

focus single molecule depends strongly on the distance from the plane of focus and is 

distinct from the Airy profile [9], [24]. A fluorescent object can be described as a collection 

of closely spaced single molecules. As an optical microscope can be modeled as a linear 

shift-invariant system [9], the image of a fluorescent object is the superposition of the 

images of point sources at the locations of the single molecules, i.e. the superposition of 

PSFs, translated according to the locations of the corresponding single molecules.

Most important from our perspective is that the image of a point source is not a point itself 

but has a non-zero width. Therefore, if there are too many single molecules in close 

proximity, their images will overlap and the individual single molecules can no longer be 

differentiated in the image. As a result, in many situations, information about the locations 

of the single molecules is lost in a fluorescence microscopy image. One of the approaches in 

single molecule microscopy is therefore to overcome this crowding problem, i.e. to arrange 

the imaging experiment in such a way that the images of the single molecules are placed 

sparsely enough so that they can be properly separated. This crowding problem is of course 

closely related to the notion of resolution that will be the topic of Section VI.
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III. Localization and Tracking Experiments

In this section, we discuss the principles behind two of the most important single molecule 

experiments. The first one, a single molecule tracking experiment, aims at obtaining the 

trajectories of individual molecules as they move in a cell [3], [4], [27]-[29]. The second 

one, a localization based super-resolution experiment aims to provide an image with a 

resolution well beyond what is achievable by classical methods [19], [21]-[23].

A. Tracking single molecules

The movement of molecules such as receptors and proteins in cells is crucial for the 

functioning of the cells [16], [27]. Despite the importance of these processes much remains 

unknown. Therefore, tracking experiments, i.e. experiments that record such dynamic 

behavior over time, are of particular importance [3]. In order to obtain the most detailed 

analysis, it is essential to carry out these experiments in live cells at the single molecule 

level (see Fig. 2).

Such single molecule tracking experiments, however, are not without significant challenges. 

Foremost amongst them is the need to be able to image isolated single molecules [3], [27] 

(see Fig. 2(a)). This can often be achieved with sparse labeling. Another significant problem 

is the photobleaching of many of the conventional fluorescent labels, which means that a 

fluorophore will only emit a certain, typically randomly distributed, number of photons 

before it ceases to emit photons [5], [6]. The phenomenon in effect limits the length of time 

for which the track of a single molecule can be followed.

In designing a single molecule tracking experiment a number of important trade-offs need to 

be made, in particular, regarding the frame rate of the acquisition and the associated 

exposure time for each of the images. High frame rates and corresponding short exposure 

times allow for better sampling of the dynamics of the single molecule. Reducing the 

exposure time, however, decreases the number of photons that are detected during the 

exposure interval and thereby, as will be shown later, will reduce the accuracy with which 

the parameters can be estimated that are associated with the trajectory [12], [27], [29]. 

Increasing the excitation light power could be used to increase the number of emitted 

photons per exposure. However, this will reduce the lengths of trajectories that can be 

imaged due to photobleaching. In addition, subjecting a cellular sample to excitation light 

that is too powerful might damage the living cell that is being imaged.

B. Localization based super-resolution microscopy

The second prototype experiment involves the imaging of fixed, i.e. dead, cells to obtain 

very high resolution information concerning subcellular structures. In a classical 

fluorescence microscopy experiment, all fluorophores are simultaneously excited and 

imaged with one single exposure. As explained earlier, with densely spaced fluorophores, 

the result is that the individual fluorophores cannot be distinguished in the acquired image 

(see e.g. Fig. 3(a) and (b)). The idea that underlies localization based super-resolution 

microscopy is to image the sample a large number of times, but in each of the images that 

make up the full acquisition set, only a small and sparse subset of the fluorophores is imaged 
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(see Fig. 3(c)) [21], [22]. Through a particular choice of fluorescent labels, appropriate 

sample preparation and laser excitation, such sparse, random activation can in fact be 

achieved. The resulting images each are designed such that the positions of the sparsely 

located single molecules can be accurately determined. For each of the typically thousands 

of images, the locations of the single molecules are estimated [22], [23]. The final image is 

then assembled from the location estimates of the single molecules in each of the images 

(see Fig. 3(d)).

Different techniques are available to produce these sparse subsets of fluorophores. These are 

primarily based on the exploitation of new insights into the photophysics of fluorophores 

[11], [19], [20], whereby powerful excitation light sources can be used to stochastically 

excite subsets of fluorophores, put them in non-emitting states, or photobleach them. 

Depending on the specific mechanisms and fluorophores, these techniques are known as 

Photo-Activated Localization Microscopy (PALM), Stochastic Optical Reconstruction 

Microscopy (STORM), direct STORM, etc. [21]-[23].

IV. Stochastic Description of Single Molecule Data

Both the single molecule tracking and the localization based super-resolution experiments 

depend on the accurate determination of the locations of the imaged single molecules [3], 

[29], [30]. In order to analyze the algorithmic aspects of the location estimation it is 

necessary to carefully describe the data generation process that underlies fluorescence 

microscopy and, in particular, a single molecule experiment. Before introducing a data 

model for the practical situation in which an image is acquired by a pixelated camera, it is 

useful to consider an idealized model. In this idealized model, termed the fundamental data 

model, we assume that the object being imaged emits photons as a Poisson process that are 

detected with a rate Λθ(τ), τ ≥ τ0, on an infinitely large unpixelated detector [12], [31]. In 

this formulation, θ ∈ Θ denotes the parameter-vector of interest that contains the attributes 

of the object such as its position, where Θ ⊆ ℝn is an open parameter space. Making these 

assumptions allows us to ignore, for the time being, the deteriorating effects due to finite 

detector size, pixelation and readout noise in the camera [32]. We assume that each photon 

is detected on the detector at a certain position that is distributed according to a two-

dimensional probability distribution fθ,τ(r), r = (x, y) ∈ ℝ2, where τ ≥ τ0 is the time of 

detection of the photon [12], [31]. This probability distribution is, in fact, the (continuous) 

image of the object at the particular time point, normalized such that . For 

instance, this probability distribution can be the Airy profile (see Eq. (1)) or a bivariate 

Gaussian distribution [9], [12], [31], [33].

As an optical microscope is typically modeled as a linear shift-invariant system [9], the 

probability distribution function fθ,τ can be expressed in terms of an image function q in the 

following way

(2)

where (x, y) ∈ ℝ2, M > 0 denotes the lateral magnification, (x0,τ, y0,τ) is the position of the 

object at time τ ≥ τ0. The image function q describes the image of a stationary object that is 
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located on the optical axis in the object space and is imaged at unit lateral magnification 

[12], [31]. In the case that the object is a point source, the image function is the same as the 

PSF of the microscope system.

In practice, the acquired data is corrupted by extraneous noise sources and by the pixelation 

that is introduced during the capture of the image by an imaging detector. In single molecule 

experiments, the imaging detector is typically either a Charge Coupled Device (CCD) 

camera, or Complementary Metal Oxide Semiconductor (CMOS) camera, or an Electron 

Multiplying CCD (EMCCD) camera [32], [34]. For the time being, we will concentrate on 

CCD or CMOS cameras and defer to the end of this section for the discussion regarding 

EMCCD cameras. We represent a pixelated detector with Kpix pixels as {C1, …, CKpix}, 

where Ck ⊆ ℝ2 denotes the area occupied by the kth pixel of the detector. The acquired data 

at the kth pixel is given by , k = 1, …, Kpix.

In the above equation, Sθ,k denotes an independent Poisson random variable with mean μθ(k) 

that describes the detected photon count from the object of interest [12], [35], Bk denotes an 

independent Poisson random variable with mean bk that describes the photon count due to 

background and scattering [31], Wk denotes an independent Gaussian random variable with 

mean ηk and variance  that describes the measurement noise that is introduced during the 

readout step in the detector [32]. The mean μθ(k) of the random variable Sθ,k can be 

expressed in terms of Λθ and fθ,τ, which describe the fundamental data model, and is given 

by [12], [31]

for k = 1, 2, …, Kpix, where r = (x, y) ∈ ℝ2, [t1, t2] denotes the exposure time interval and we 

have made use of (2). When the single molecule is stationary, the above equation becomes

where  denotes the expected number of detected photons on an infinite 

detector plane [12], [36].

As we will see later, the readout noise in a CCD/CMOS detector can severely impair the 

quality of the acquired data, especially in the context of low signal levels, i.e. low photon 

counts. Therefore, over many decades significant efforts have been made to develop image 

intensifiers that amplify the signal before the readout process, with the expectation that this 

will minimize the detrimental effects of the readout noise on the measured signal. This is 

also the idea behind the EMCCD camera [37] that is widely used in single molecule 

experiments. The difficulty in analyzing the suitability of this and other amplification based 

approaches lies in the fact that the amplification process is stochastic, which itself may 

imply a deterioration of the information content of the signal.
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For an EMCCD camera, various probabilistic models have been proposed for the 

amplification process, which is in fact a branching process [34]. In [37], using a number of 

approximations, a binomial model was suggested for every stage of the amplification 

process. For the full process, approximate expressions were also derived for high photon 

counts in [37]. A comprehensive analysis of the modeling of the EMCCD amplification 

process was carried out in [34], where several approximate models were also investigated 

for their accuracy.

V. Single Molecule Parameter Estimation

The benefits of single molecule microscopy arise from being able to localize single 

molecules to very high precision [1], [12], [16]. The effective pixel size (i.e. the actual pixel 

size of the camera chip adjusted for the microscope magnification) in a standard microscope 

is typically in the range of 65 × 65 nm2 to 400 × 400 nm2. Localizing a single molecule up 

to a pixel would not bring any significant advantages, since the localization precision would 

be of the same order as that of the native resolution of the image [9]-[11], and more 

importantly biomolecular interactions typically occur at much lower distance scales. 

Therefore, it is necessary to localize single molecules with sub-pixel precision. This task is 

far from straightforward due to the often very low signal levels in the presence of significant 

noise sources, as discussed above [32].

The first attempts were based on elementary approaches such as the center of gravity 

estimator [28], [38], while current algorithms are primarily based on fitting of a PSF model 

to the acquired data (see Fig. 2(b)) [28], [33], [36]. The most frequently used fitting criterion 

is the least-squares criterion [28], although the maximum likelihood estimator is better 

justified considering the probabilistic model of the acquired data [36]. Specifically, given 

the measured data z1, z2, …, zK in the pixels that make up the ROI which includes the image 

of the single molecule, the least squares criterion is given by [28]

where νθ(k) := μθ(k) + bk, and the maximum likelihood criterion is given by [12], [31], [35]

where  denotes the joint probability 

distribution function (pdf) of the observed data. Considering the stochastic framework 

described in the previous section, for a CCD/CMOS detector, the pdf of the observed data at 

each pixel, for k = 1, 2, …, Kpix, is given by [12], [31]
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The above expression shows that the observed data at each pixel of the detector has a 

Poisson-Gaussian mixture distribution where, as mentioned earlier, the Poisson and 

Gaussian parts model the photon detection and readout processes, respectively [31]. See [34] 

for the pdf for an EMCCD detector.

For the purpose of obtaining a localization based super-resolution image or for the purpose 

of single molecule tracking, the main information that is necessary from this analysis is the 

location of the single molecule, i.e. the (x0, y0) coordinate. However, often other parameters 

also need to be estimated to be able to obtain the coordinate estimates. Examples include 

determining the width parameter of the image profile and the number of detected photons 

during the acquisition period.

The choice of image profile q in the estimation algorithms raises important questions. As 

discussed earlier, classical diffraction theory predicts a profile such as the Airy profile. 

However, very complex PSF models have been advocated to describe optical phenomena 

such as aberrations [9], [24] and the dipole nature of single molecule [25], [26], [39], or to 

deal with out of focus situations [9]. On the other hand, it has been argued that in many 

situations images of single molecules are adequately approximated by 2D Gaussian 

functions [33], [38], [40] and, therefore, they can be used for estimation purposes. It also 

needs to be recognized that, especially in the context of biological samples, even if there is a 

correct model, it is not likely that such a model can be identified with ultimate certainty due 

to the inherent variability of biological samples. There is also a trade-off between 

computational complexity and the accuracy of the model of the resulting estimates. For 

instance, in localization based super-resolution microscopy, typically many tens of 

thousands of estimates have to be carried out to obtain one image [21], [22] and complex 

models are typically much more expensive to compute than simpler ones [41].

VI. Every Photon Counts: A Fisher Information Approach to Resolution and 

Localization Accuracy

An important topic in single molecule microscopy has been the question of how well the 

different single molecule estimation techniques perform in quantitative terms. This is a 

critical aspect in an experimenter’s decision on whether the technique is appropriate for the 

scientific task, for experiment design and for the evaluation of algorithms. In general terms, 

there are two aspects that have received significant attention. One is the localization 

accuracy [12], i.e. the accuracy with which a single molecule can be localized. Second is 

resolution, loosely speaking the capability of the technique to distinguish different features 

in the sample [11]. When assessing the performance of a localization algorithm, its mean 

and standard deviation are most critical. Accuracy of the measurement is paramount even in 

the context of small data samples. Therefore, ideally unbiased estimators are sought with the 

lowest possible standard deviation [35]. While for general estimation problems, it is not 
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always possible to obtain suitable unbiased estimators, many of the estimators that are 

currently applied in single molecule microscopy, have at least numerically been shown to be 

unbiased [25], [36]. According to the Cramér-Rao lower bound, the (co)variance (matrix) of 

any unbiased estimator  of a parameter (-vector) θ, such as the location parameters, is 

bounded from below by the inverse of the Fisher information matrix I(θ) [12], [35], i.e.

The task of assessing the best accuracy with which the various parameters can be estimated 

therefore reduces to calculating the Fisher information matrix for the specific estimation 

problem and data model. In [31] a very general expression for the Fisher information matrix 

was derived for the fundamental data model, i.e. for the ideal case of an infinite detector 

without pixelation and in the absence of extraneous noise sources. Exploiting the nature of a 

spatio-temporal marked Poisson process [35], for a general image profile fθ,τ and photon 

detection rate Λθ(τ), t1 ≤ τ ≤ t2, we have [31]

Specializing this expression to the case of a constant photon detection rate, i.e. Λθ(τ) = Λ, t1 

≤ τ ≤ t2, we immediately obtain that the Fisher information depends linearly on the number 

of photons detected [12], [31], i.e.

where N := (t2 − t1)Λ is the expected number of photons during the exposure interval.

This implies that a lower bound on the standard deviation of the estimate of any parameter (-

vector) has the form , where C is a constant (matrix) related to the specific parameter 

estimation problem. This is an important aspect of single molecule microscopy. It shows that 

for algorithms which attain this bound, the accuracy of the parameter estimate depends 

reciprocally on the square root of the number of collected photons [12], [31].

For the case where the image function is the Airy profile and the single molecule can be 

assumed to be stationary, it can be shown that this expression implies the following limit on 

the standard deviation with which the x and y coordinates of the single molecule can be 

estimated [12]
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where λ is the wavelength of the emitted light and na is the numerical aperture of the 

microscope [9]. We refer to this lower bound as the Fundamental Localization Accuracy 

Measure (FLAM) [36].

The prior expressions are derived assuming the fundamental data model. For the practical 

data model, where we allow for a finite pixelated detector, background and readout noise, an 

expression for the Fisher information matrix can also be derived as follows [34], [36]

(3)

where νθ(k) = μθ(k) + bk, with bk, k = 1, ⋯, Kpix, denoting the photon count due to the 

background noise at pixel Ck. The term ψ(k), k = 1, ⋯, Kpix, is referred to as the noise 

coefficient that depends on the type of detector [34]. In the absence of readout noise, ψ(k) = 

1 for all k = 1, ⋯, Kpix [12]. In the presence of readout noise and when using CCD and 

CMOS detectors, the noise coefficient is given by [31]

where ηk and  denote the mean and the variance of the readout noise at pixel Ck, k = 1, 2, 

⋯, Kpix, respectively. The expression of the noise coefficient for an EMCCD camera is 

omitted for brevity but can be found in [34]. Using these expressions, a lower bound can be 

obtained on the standard deviation with which the x and y coordinates of the single molecule 

can be estimated in a practical situation. We refer to this lower bound as the Practical 

Localization Accuracy Measure (PLAM) (see [36]).

These expressions can be used to not only analyze the influence of pixelation, and the 

various noise sources on the accuracy of the estimates of the location and other parameters. 

Importantly, these results can also be compared to those based on the fundamental 

expressions, which give us the theoretically best possible results and thereby let us 

understand how far a particular experimental configuration is away from the theoretically 

best possible one. For example, Fig. 4 compares the behavior of the FLAM and PLAM 

versus the mean photon count and extraneous noise sources for a specific set of imaging 

conditions.1 For small photon counts, the PLAM is significantly larger than FLAM implying 

that pixelation and extraneous noise worsen the localization accuracy whereas for large 

photon counts the difference is not appreciable (Fig. 4 (a)). In addition, given a certain 

photon count, increasing the background noise (Fig. 4 (b)) and the readout noise (Fig. 4 (c)) 

considerably deteriorate the PLAM (when compared with the FLAM).

1The results can be reproduced using a free software package, the Fand-PLimitTool, available on-line at http://
www.wardoberlab.com/software/.
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Another approach to characterize the accuracy with which a single molecule can be 

localized has been proposed in [38], [42]. Here, using a number of approximations, specific 

algorithms such as the least squares algorithm have been used, assuming a Gaussian image 

profile to obtain an expression for the standard deviation of the particular location estimator. 

However, great care needs to be taken in the use of these expressions as deviations from the 

actual performance of the algorithms have been observed when applied to images with Airy 

profiles [36].

The above analysis, based on the Cramér-Rao lower bound has the advantage that it is 

independent of any particular estimation algorithm and gives bounds that any unbiased 

estimator needs to satisfy [31], [35]. From a practical point of view it is, however, important 

to know how well a particular algorithm performs in comparison to these bounds and 

whether there is an algorithm that attains the bounds. It is well known that, in general, 

assessing whether an algorithm attains the Cramér-Rao lower bound or to what extent it 

differs, is a theoretically difficult question and amenable to a theoretical analysis in only rare 

cases [35]. For the fundamental data model, in case the image is given by a Gaussian profile, 

it was shown in [12] that the maximum likelihood estimator reduces to the center of gravity 

estimator and attains the Cramér-Rao lower bound. For all other cases, no analytical analysis 

was possible but simulations have shown that the maximum likelihood estimator is 

consistently close to and in some cases attains the Cramér-Rao lower bound for a wide range 

of experimental conditions [12], [31], [36].

Classical resolution criteria for microscopy, such as Rayleigh’s or Abbé’s criterion, are 

heuristic criteria that were developed at a time when microscope samples were typically 

investigated by eye, rather than being recorded by a highly sensitive imaging detector [9], 

[10]. Therefore, the classical notions of resolution did not take into account the added 

benefits of a detailed analysis of the acquired data by sophisticated image and signal 

processing algorithms.

Resolution can be defined in a number of ways. One of the most fundamental ones relates to 

the question of the resolution of two point sources, which is the scenario Rayleigh’s classical 

criterion addresses [9], [11], [43]. It states that two point sources can be resolved if they are 

separated by a distance of at least 0.61 λ/na [9], [10]. Interestingly, this expression does not 

show any dependence on the amount of data that is acquired. In [11], this two point 

resolution problem was cast in the above described photon counting framework and the 

question was changed from “whether or not two points can be resolved” to the question of 

“how well two points can be resolved”. An expression for the limit on the standard deviation 

with which the distance d between two point sources can be estimated using the fundamental 

data model was then derived as [11]

(4)

where N is the expected photon count on the infinite detector plane per point source and 

Γ0(d) is a nonlinear function of the distance between point sources (see [11]). Importantly 

this expression shows that arbitrarily small distances can be resolved, but the smaller the 
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distance, the more photons need to be acquired to obtain the same accuracy. This approach 

can be generalized to multiple point sources in a relatively straightforward fashion (see e.g. 

[11], [44]).

The information theoretic resolution measure described above (i.e. (4)) is a powerful tool in 

determining how well two point sources can be resolved, and hence it is suited for 

applications where the structure of interest can be defined by a limited number of molecules. 

However, in other applications where continuous structures with a large number of potential 

labeling sites are imaged, the situation is more complex. One important aspect relates to the 

labeling density. As shown in [45], with decreasing density of the fluorescent labels, the 

structure of interest gradually becomes unresolvable in the acquired image, even when the 

two point resolution measure discussed above is appropriate. A resolution measure based on 

the Fourier ring correlation was recently published in [46]. This measure can be directly 

computed from the experimental data and takes into account the localization accuracy, the 

density of fluorescent labels and the spatial structure of the sample.

VII. Imaging in Three Dimensions

Microscopy is, by its nature, a technique that is most suited to study phenomena that occur 

in one plane, i.e. the focal plane of the microscope [1], [12]. Cells, however, are three-

dimensional (3D) objects, and 3D imaging of cellular processes poses several technical 

challenges, especially at the single molecule level. In the previous section, we discussed 

results that showed that the x- and y-coordinates of an in-focus single molecule can be 

determined with very high accuracy. However, the situation changes dramatically when we 

are concerned with the estimation of the third spatial coordinate, i.e. the z-position of the 

single molecule. Considering the standard Born and Wolf 3D PSF model [9], the image 

function, which now depends on the z0-position, z0 ∈ ℝ, of the single molecule, is given by 

[27]

(5)

where r = (x, y) ∈ ℝ2, A is a normalization constant, α := 2πna/λ, nm denotes the refractive 

index of the immersion medium and J0 is the zeroth order Bessel function of the first kind 

[9]. As seen in Fig. 5(a), if the single molecule is in focus, i.e. for z0 = 0, the image of the 

single molecule is identical to the in-focus image we have seen in Fig. 1(b). However, for 

out of focus positions, i.e. z0 ≠ 0, the image starts to depict out of focus rings with increasing 

z0 and in general becomes flatter and more spread out.

Using the approaches based on the Cramér-Rao lower bound introduced in Section VI, we 

can also compute the accuracy with which the z-position of the single molecule can be 

determined, i.e. the PLAM, (see Fig. 5(b)). Inspecting this plot, we see that far away from 

the focal plane, i.e. above 1.5 μm, the localization accuracy of the z-coordinate is very poor. 

Far from the focus, the spread out images are barely visible above the background [27]. It is 

therefore not surprising that little information can be obtained from them. This indicates that 
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single molecules cannot be satisfactorily localized outside a certain distance from the focal 

plane.

What may, however, be surprising at first glance is that the accuracy of estimation for the z-

position is also very poor when the single molecule is located close to the focal plane (see 

Fig. 5(b)). The reason for this phenomenon, which we refer to as the depth discrimination 

problem, is that, as can be seen in Fig. 5(a), the images of a point source that is located close 

to the focal plane are barely distinguishable (compare profiles at z0 = 0 and z0 = 150 nm). 

Therefore, near the focus there is little information in the images of the single molecules 

about their precise z-positions. The images only start to show appreciable differences when 

the single molecule is farther from the focal plane (see Fig. 5(a) z0 = 450 and z0 = 600 nm). 

Aberrations in the sample can reduce the depth discrimination problem [9], [24], [25], but 

the overall problem persists.

To address the depth discrimination problem, a number of approaches have been proposed. 

In [47], an astigmatic lens is used which introduces an elongation in the image of the single 

molecule when it is out of focus. As can be seen in Fig. 5(c), this elongation occurs along 

different lateral axes depending upon whether the molecule is above or below the plane of 

focus. By determining the extent of elongation of the image profile, the z-location of the 

single molecule can be estimated. Approximate analytical expressions are proposed for the 

PSF of an astigmatic microscope, such as those based on 2D elliptical Gaussian profiles 

[47].

In another approach [48], sophisticated optical designs have been employed to change the 

image of a single molecule. The result, shown in Fig. 5(c), is a bimodal image profile, that 

resembles a double helix and encodes the z-position as a rotation of the profile. The z-

location of the single molecule is deduced by determining the change in the relative 

orientation of the bimodal peaks with respect to the in-focus image. A precise analytical 

expression is not available for the double helix PSF. Nevertheless, using approximate 

expressions, the double helix PSF has been shown to provide a relatively uniform z-

localization accuracy along the z-axis [48].

A further approach, MUltifocal plane Microscopy (MUM), relies on the simultaneous 

imaging of several distinct focal planes within the sample (see Fig. 5(c)) [27], [49]. This 

general approach which is also known by slightly different terminology (e.g. [50], [51]), 

produces multiple images of a single molecule that are acquired from different depths. The 

z-location of the single molecule is deduced by simultaneously fitting these images with 

appropriate 3D PSF models (e.g. (5)). Simultaneous imaging of different focal planes 

provides consistently more information about the z-position of the single molecule than a 

conventional microscopy image, even at the plane of focus [27]. This is possible since the 

Fisher information matrix for a MUM setup IMUM(θ) is the sum of the Fisher information 

matrices of the individual focal planes Ik(θ), k = 1, ⋯, Kpln, due to the independence of data 

acquisition at each focal plane, i.e. we have
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Therefore, the PLAM for MUM shows significant improvements in the z-localization 

accuracy when compared to a conventional microscope, as shown in Fig. 5(b). Other 

approaches such as the iPALM are also proposed which rely on interferometric optics [52]. 

All of the above approaches overcome the depth discrimination problem of conventional 

microscopy. A possibly competing criterion is related to the range of z-positions over which 

the single molecule can be localized to an acceptable accuracy. For a comparison of 

different 3D imaging modalities see e.g. [53].

VIII. Current Challenges

Significant challenges remain in the analysis of single molecule data. One of the 

assumptions that underlies the localization based super-resolution experiments is that during 

each acquisition only one single molecule is imaged in a region of interest that allows for the 

localization of the single molecule [21], [22]. However, since in super-resolution 

experiments the number of excited fluorophores is stochastic, it cannot be guaranteed that all 

imaged single molecules are isolated. Therefore, multi-emitters might be present. Hence, 

there is a significant effort underway to find criteria to determine the number of single 

molecules in a region of interest and to localize the individual single molecules that are 

present in the multi-emitter region [44], [54]. It should be pointed out that these problems 

are highly non-trivial and are closely related to the resolution problem [11].

Additional problems arise from tracking experiments. Often it is assumed that the single 

molecules are stationary during each of the exposures that are taken to capture the single 

molecule dynamics. While this can well be an appropriate assumption in many cases, in 

other experimental situations this is problematic [29]. To analyze this problem, the Fisher 

information matrix has been calculated in [55] for parameter estimation problems involving 

a deterministic trajectory during the exposure interval. Diffusion of single molecules on the 

plasma membrane is an important process that can reveal important biological information 

[27]. Clearly, diffusive behavior of a single molecule during the exposure of an image can 

have a significant impact on the resulting image. This process has been investigated in an 

approximate fashion in a series of papers [29], [56] and approaches have been proposed of 

how to infer the diffusion coefficient from the obtained images.

As discussed earlier, under specific imaging conditions, e.g. immobilized fluorophores, 

polarized excitation and out of focus imaging, the dipole nature of a single molecule may 

become evident in the form of asymmetric image profiles [25], [39], [40]. This can be 

exploited to estimate the dipole orientation of the fluorophore. However, the analysis of such 

data is particularly challenging. For example, fitting an inappropriate image profile to the 

acquired data might lead to biased location estimates [26].

Conventional microscopy produces an image of a sample almost instantly so that the 

microscopist can immediately evaluate the outcome of the imaging experiment. Localization 

based super-resolution microscopy experiments, in contrast, require a large number of 

acquisitions and have a very significant computational overhead, as often images of tens of 

thousands of single molecules need to be analyzed and processed to produce the final 

reconstructed image [21], [22]. Single molecule localization can be computationally 
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complex and will therefore by necessity require a non-trivial amount of computational time. 

In order to make the results of the analysis available to the microscopist as fast as possible, 

considerable efforts are made to speed up the calculations, for example, by parallelizing the 

calculations on Graphics Processing Units (GPUs) [30], [44].

IX. Conclusions

We have reviewed a number of key quantitative aspects of single molecule microscopy. 

Although this is a nascent field, it has created significant interest amongst biologists, 

biophysicists and chemists who benefit tremendously from an imaging technique that allows 

molecular processes to be studied at the level of individual molecules. This new microscopy 

modality inherently relies on image and signal processing methodologies since the central 

component of the approach is the precise determination of the positions and other 

parameters of the imaged single molecules. This localization task is not trivial since the 

acquired image is characterized by a typically very low photon signal in the presence of 

significant noise sources. Estimation approaches and expressions for the Cramér-Rao lower 

bound were reviewed. While much progress has been achieved in a relatively short time, 

significant problems remain that can benefit from advanced signal processing algorithms.
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Fig. 1. 
The schematic diagram of a basic fluorescence microscopy setup. (a) The excitation light, 

which is typically generated by a laser, passes through the objective lens to excite the 

fluorescent molecules in the object space. The fluorescent molecules then emit photons at a 

specific wavelength that pass through the objective lens, the dichroic mirror and the 

emission filter, and are then collected by a detector. (b) The mesh plot of the image of an in-

focus point source as seen on the detector plane.
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Fig. 2. 
Single molecule tracking. (a) A sequence of images acquired at different time points are first 

segmented into multiple Regions of Interest (ROIs) each containing an isolated single 

molecule. (b) In the single molecule localization step, a PSF model such as the Airy profile 

or a bivariate Gaussian distribution is fitted to each ROI to estimate the location of the single 

molecule with sub-pixel precision. This provides a set of coordinates of single molecules. (c) 

The set of coordinates together with their corresponding time points are then analyzed by a 

trajectory linking algorithm. In this way, the trajectory of each single molecule can be 

determined (a sample trajectory is shown). Size bars are 1 μm.
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Fig. 3. 
Localization based super-resolution microscopy. (a) The schematic shows a subcellular 

structure (a microtubule network) that is uniformly labeled with specific fluorophores. (b) In 

conventional imaging, all of the fluorophores in the sample are simultaneously excited. Due 

to the resolution limit of fluorescence microscope, the resulting widefield image is poorly 

resolved and fails to reveal the underlying structure in the sample. (c) In localization based 

super-resolution microscopy, the imaging conditions facilitate activation of random subsets 

of fluorophores that are typically spatially well separated. These fluorophores are then 

localized with sub-pixel precision and their coordinates are then used to create a super-

resolution image of the sample. (d) The resulting super-resolution image provides fine 

structural information of the sample that is not accessible through a widefield image. (e) 

Comparison of a practical widefield image and a super-resolution image. In panel (e), the 

size bar is 2 μm. In all other panels, size bars are 300 nm.
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Fig. 4. 
Single molecule localization measure. Behavior of the localization accuracy using the 

fundamental data model (i.e. the FLAM) and the practical data model (i.e. the PLAM) for 

the x-coordinate of the single molecule as a function of (a) the expected number of detected 

photons N from the single molecule, (b) the background level bk, and (c) the standard 

deviation of the readout noise σk. For all of the plots, the numerical aperture is set to 1.4, the 

emission wavelength is set to 520 nm, the lateral magnification is set to 100, the pixel array 

(ROI) size is set to 25 × 25 and the pixel dimensions are set to 13 × 13 μm. In panels (a) and 

(c), bk is 20 photons/pixel for all the pixels. In panels (a) and (b), the PLAM is calculated 

with σk = 0 e−/pixel for all the pixels. In panels (b) and (c), N is set to 500 photons.
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Fig. 5. 
Single molecule imaging in 3D. (a) Image profile of a point source at different z-positions 

acquired by a conventional (single plane) microscope. (b) Comparison of the localization 

accuracy, i.e. the PLAM, for the z-coordinate of the single molecule along the z-axis for a 

conventional microscope and a 2-plane MUM setup. For a 2-plane MUM setup, the PLAM 

predicts relatively constant z-localization accuracy for a range of z-positions including at the 

plane of focus (i.e. z0 = 0). (c) Comparison of 3D single molecule imaging approaches, 

which encode/deduce the z-position using different strategies.
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