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INTRODUCTION

Often, in the field of geophysics, huge volumes of information need to be processed with complex

and time-consuming algorithms, in order to better understand the nature of the data at hand. A

particularly useful instrument within a geophysicist’s toolbox is a set of decorrelating transforms.

Such transforms play a key role in the acquisition and processing of satellite-gathered information,

and notably in the processing of hyperspectral images. Satellite images have a substantial amount of

redundancy that not only renders the true nature of certain events less perceivable to geophysicists,

but also poses an issue to satellite makers, who have to exploit this data redundancy in the design of

compression algorithms due to the constraints of down-link channels. This issue is magnified for

hyperspectral imaging sensors, which capture hundreds of visual representations of a given target –

each representation (called a component or a band) for a small range of the light spectrum. Albeit

seldom alone, decorrelation transforms are often used to alleviate this situation by changing the

original data space into a representation where redundancy is decreased and valuable information

is more apparent.

The Karhunen-Loève Transform (KLT) is a powerful decorrelating transform. Once it is applied

no correlation remains among its outputs. However, the KLT has several drawbacks. It has a very

high computational cost, as well as high memory requirements and a lack of component scalability,

as described below. Because of these facts, it has not achieved widespread use in practice, even

though it dates back to more than 60 years ago. To partially alleviate these drawbacks, researchers

have resorted to employing well-known approaches that help achieve a similar performance but

without the burdens of the original technique. One of these well-known approaches is a divide-and-



conquer strategy, with hundreds of years of history behind it (the Euclidean algorithm to compute

the greatest common divisor of two numbers dates to several centuries BC).

Divide-and-conquer spectral decorrelation is a recent development that allows the KLT to be

approximated at a fraction of the computational cost, with lower memory requirements, while also

providing some component scalability. Having efficient approximations of the KLT is important

because results can be obtained earlier in time and with less hardware costs. Not only that, it allows

equipping satellites, which have significant constraints in their computational resources, with better

redundancy-removing methods in their image coding units, enabling them to increase the resolution

of the images they acquire.

It has been in the field of hyperspectral image coding where divide-and-conquer decorrelation

strategies have flourished most vigorously, motivated in part by the large potential benefits. Differ-

ent research teams have proposed several contributions applicable to this area [1, 2, 3, 4, 5, 6]. In an

historical context, divide-and-conquer spectral decorrelation is a very recent topic, with contribu-

tions starting five years ago [7, 8], and with most contributions occurring in the last two years. This

article focuses on developments in the use of divide-and-conquer spectral decorrelation, mostly for

hyperspectral image coding. Nonetheless, we also show other areas which may also benefit from

this approach.

The KLT is a transform that adapts to the statistics of its input to provide decorrelated output

vectors. It is defined by

yi = KLTΣX
(xi) = QT (xi − x̄).

The forward application of the transform consists of the matrix/vector multiplication of QT and

(xi − x̄), where QT is specially crafted in a training stage from the eigendecomposition of the

covariance matrix ΣX of the whole set of input data vectors X = {xi}∀i. The term x̄ is the input

vector average, used to guarantee centered or zero-mean data. As QT and x̄ are different for each

input, the inverse transform requires that both are preserved as side information along with the

output data set Y = {yi}∀i.

The computational cost of the KLT is dominated by the quadratic cost of the matrix/vector

multiplication that occurs on its forward and inverse applications, and partially by the covariance

matrix calculation. Divide-and-conquer strategies tackle this issue by, instead of applying one large
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Fig. 1. Example of a divide-and-conquer strategy for a 16-input KLT. The dependencies of input 12 are
highlighted in yellow.

transform, dividing the KLT into a collection of smaller transforms with a lesser overall cost, and

with an important point in mind: smaller transforms have to be arranged in a way that they are

applied only where they are more effective. To this end, it is worth noting that transforms provide

little overall benefits, if any, in portions of data with low amounts of information regardless of how

correlated they are. An example of a possible organization is shown in Fig. 1. In this example,

a first level of KLT transforms is applied to provide local decorrelation, with the most significant

half of the outputs of each transform forwarded to a next level. This process is applied recursively

to account for global correlation. Note that, in this example, “less important” portions are indeed

successively excluded at each level from the decorrelation process.

In the example, one large transform is replaced by seven smaller transforms each of one fourth

of the original size. Since the transform cost is mainly quadratic, each smaller transform has one

sixteenth of the original cost, yielding a cost for the whole approach of 7/16 ' 45% of the original

cost. Larger inputs and more sophisticated methods yield further cost reductions. The approach

of the example above also improves component scalability, which is the ability to gain random

access to specific components in a compressed codestream, without having to decompress the entire

codestream. This ability is greatly affected by computational dependencies in the inverse transform.

For example, in Fig. 1, there are only eight outputs (highlighted in yellow) required to be able to

perform inverse transform operations to obtain input 12, whereas for the KLT all sixteen outputs

would be required. More generally, having a low degree of computational dependency allows

for partial applications of the forward and inverse transforms, which in turn allows decoding of

portions of a compressed image without having to process or download the full compressed data. It

also may allow online processing, where, as the original image is read, the compressed codestream

is progressively produced, without having to allocate memory for the whole image. In practice,



online compression also requires careful management of the memory needed for designing the

transform (i.e., buffering of training data). This is discussed subsequently in the context of the

pairwise orthogonal transform (POT).

With schemes like the one above, a full KLT can be closely approximated by a collection of

smaller transforms. However, even for a given divide-and-conquer strategy, there is a combinatorial

explosion in the number of possible divide-and-conquer schemes, and not all of them have equal

decorrelating performance. For example, with no other constraint than to follow the successive-

refining pattern as given in Fig. 1, there are as many as 8.77 · 1026 possible divide-and-conquer

schemes for a 16-input KLT (it is estimated that the number of seconds since the Big Bang is of

the order 1017). To further exacerbate the situation, actual data do not always follow the Gaussian

model on which the theory is based, and therefore the quality assessments that the Gaussian model

provides are insufficient to guide the selection of the best possible scheme. In the face of such

issues, as will be seen in the next section, researchers in this field have resorted to the use of

heuristics and empirical tests to select the “best” strategy for a particular task.

Other tools and methods related to spectral decorrelation, to the KLT, and to divide-and-conquer

strategies, not central to this article, but nonetheless worth mentioning, are now reported:

• On a KLT, a direct calculation of the covariance matrix is an expensive operation. In [9], the

use of statistical sampling is introduced to reduce this cost to a negligible percentage. Simple

random sampling of 1% of the input is usually enough to obtain sufficiently good approxi-

mations of a covariance matrix with minimal variation of the KLT transform. Sampling is

implicitly used throughout this article whenever possible.

• It is trivial to see that the KLT application can be expressed as a matrix/matrix product if all

input elements are transformed at once. In that case, the use of sub-cubic matrix multiplication

algorithms, such as the Strassen algorithm [10], yields a sub-quadratic per element application

of the KLT. Divide-and-conquer strategies are complementary to fast matrix multiplication

algorithms, as the former provides computational cost reductions by changing the applied

operation by a simpler approximation and may still use the latter in its matrix operations.

Results provided in this article do not incorporate these methods, as fast matrix multiplication

is still an evolving field, and would require a much deeper review of the subject.



• While the KLT is the optimal decorrelating transform under the assumptions of jointly Gaus-

sian data and scalar quantization (but not only under this set of assumptions), others have tried

to provide optimal transforms under other criteria. This is the case for Independent Compo-

nent Analysis [11, 12], which tries to maximize statistical independence of non-Gaussian

signals (originally designed as an extension to the KLT), and also the case for the Optimal

Spectral Transform and its variations which minimize end-to-end mean square error under

high resolution quantization hypotheses [13, 14]. Minor coding gains can be obtained at the

expense of training stages with cost increases of varying degrees.

• Finally, other related tools worth mentioning are wavelet transforms [15, 16]. Wavelets pro-

vide moderate spectral decorrelation at low computational cost, and will be used in this article

to provide a reference framework due to their presence in the hyperspectral image coding lit-

erature (see [17] for a good review).

REVIEW OF DIVIDE-AND-CONQUER STRATEGIES

The benefits of employing divide-and-conquer strategies in a plethora of disciplines have been well

established [18]. In the following sections we will illustrate the benefits of divide-and-conquer

strategies for hyperspectral image processing. Now, we provide a chronological review of divide-

and-conquer strategies for spectral decorrelation.

Divide-and-conquer strategies on transforms for spectral decorrelation have, as explained

above, a relatively short historical time-line, originated by recent developments in computing hard-

ware that have enabled a more widespread adoption of the KLT as a decorrelating transform. Once

the technological obstacles were overcome, independent research teams developed a variety of

strategies almost in parallel, with perhaps one strategy —the recursive subdivision— leading the

way. Existing strategies can be classified in four families according to their general traits: recursive,

single-level, two-level, and multi-level strategies. These families are described here in chronologi-

cal order of publication, and thoroughly compared below. For the reader’s convenience, illustrative

diagrams of each family of divide-and-conquer transforms are provided in Fig. 2.

The recursive strategy [7, 8] is the only member of the recursive family, and was not origi-

nally proposed for remote sensing image processing, although we have adapted it for hyperspectral
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Fig. 2. Illustrative diagrams of divide-and-conquer strategies.

image coding. This strategy is based on a successive subdivision of a KLT into three half-sized

KLTs. Two half-sized KLTs provide a first level of local decorrelation, while the third one provides

partial global decorrelation from the outputs of the other two. This three-element division is ap-

plied recursively for each half-sized KLT. The use of this recursion is mathematically convenient to

prove a computational complexity below that of the KLT, on the assumption of a Toeplitz covari-

ance matrix. Note that under that assumption, both a KLT and a Fourier Transform can be used to

diagonalize the covariance matrix. Apart from a good theoretical decorrelating performance, the re-

cursive approach also exhibits experimental performance very close to that of the KLT (as opposed

to a Fourier Transform). The recursive strategy provides a good starting point into the subject, but,

as will be discussed later, there are other strategies that provide a similar approximation penalty /

performance with a lower computational cost.

The second family of divide-and-conquer strategies is the one of single-level strategies [3, 4],

which are based on a single level of small transforms that provide only local decorrelation. Even

if the decorrelation properties of a single-level strategy are limited, since it produces low amounts

of side information, it may work well on situations where the size of the side information is a

significant portion of the bitrate budget, i.e., at very low bitrates, or when the spatial dimensions

are notably small.

The third family of divide-and-conquer strategies to a KLT subdivision is that of two-level

strategies [1, 2]. The idea is to achieve decorrelation locally on a first level and globally on a

Fig. 2. Illustrative diagrams of divide-and-conquer strategies.

image coding. This strategy is based on a successive subdivision of a KLT into three half-sized

KLTs. Two half-sized KLTs provide a first level of local decorrelation, while the third one provides

partial global decorrelation from the outputs of the other two. This three-element division is ap-

plied recursively for each half-sized KLT. The use of this recursion is mathematically convenient to

prove a computational complexity below that of the KLT, on the assumption of a Toeplitz covari-

ance matrix. Note that under that assumption, both a KLT and a Fourier Transform can be used to

diagonalize the covariance matrix. Apart from a good theoretical decorrelating performance, the re-

cursive approach also exhibits experimental performance very close to that of the KLT (as opposed

to a Fourier Transform). The recursive strategy provides a good starting point into the subject, but,

as will be discussed later, there are other strategies that provide a similar approximation penalty /

performance with a lower computational cost.

The second family of divide-and-conquer strategies is the one of single-level strategies [3, 4],

which are based on a single level of small transforms that provide only local decorrelation. Even

if the decorrelation properties of a single-level strategy are limited, since it produces low amounts

of side information, it may work well on situations where the size of the side information is a

significant portion of the bitrate budget, i.e., at very low bitrates, or when the spatial dimensions

are notably small.

The third family of divide-and-conquer strategies to a KLT subdivision is that of two-level

strategies [1, 2]. The idea is to achieve decorrelation locally on a first level and globally on a



second level, but, as opposed to the former recursive strategy, without any recursion. Instead, this

family segments the first level of decorrelation in a larger number of small KLTs, and, in a second

level, the important outputs of a first-level KLT are decorrelated together with the equivalent output

of the other first-level KLTs. We refer to this approach as a static two-level strategy if used as just

described, or as a dynamic two-level strategy if some pruning is performed after the transform is

trained to sever “less contributing” inputs of second-level KLTs. Once more we refer the reader to

Fig. 2 for a clearer idea of the heuristics.

Finally, the last family of methods is the one of multi-level strategies [3, 5, 6], which includes

four different sub-types of strategies. Multi-level strategies are based on a progressive sieving over

multiple levels that yields local to global decorrelation over multiple levels. At each level, compo-

nents are sliced into clusters of KLTs, and for each cluster some of its outputs are forwarded to a

next level, until one last level decorrelates together all the remaining components. It is particularly

notable that these strategies do not incorporate a permutation of components between each level,

and nonetheless, as will be shown below, they still provide good performance.

• The regular strategy is the most naive family member: it includes strong regularity constraints

to keep at bay the combinatorial explosion of feasible multi-level structures.

• As was the case for two-level strategies, we can also devise static and dynamic approaches,

that help to partially lift the aforementioned constraints with the use of eigenthresholding

methods, which are analytical methods used to quantify the relevant outputs of each KLT.

On the static variant, the possible structures are reduced from millions to a few hundred with

eigenthresholding and within-level regularity, e.g., at each level of the multi-level structure,

the clusters are all of the same size, and the same number of components is forwarded to the

next level. The best structures are empirically selected for and from a training data set.

• On the other hand, the dynamic variant produces one structure of equal cluster size in all

levels, but then a different number of important outputs for each small KLT may be selected

as the transform is applied.

• The fourth member of this family is the Pairwise Orthogonal Transform (POT), characterized

by its minimal structure of two-component KLTs. The POT is a particular case of regular



multi-level worth mentioning on its own due to the additional benefits of its minimal struc-

ture, namely, the possibility of operation under strong memory constraints, as well as the

elimination of the numerically cumbersome eigendecomposition procedure required in the

other structures. More details on the POT are provided in the “Practical Cases” section.

BOX: Eigenthresholding, or where to “cut”

There are methods whose purpose is to estimate the number of factors that have influenced the

observed data, be it the factors involved in a chemical reaction [19], or the “minerals” present

in a hyperspectral scene [20]. Oftentimes, these methods are based on determining how many

components should be retained after a KLT, in which case they can be properly categorized as

eigenthresholding methods (i.e., a threshold on the eigenvalues of the KLT).

One famous test is the “Scree test” from Cattell [21], which is simply based on plotting, in

descendant order, the variances of the KLT outputs, and selecting components up to the sharp

break in the plot by visual inspection. According to Cattell himself [22] such method would not

have pleased the statistician community, yet the method was widely adopted by psychologists with

quite reliable results (his article received more than 2900 citations since 1966).

BOX: How to evaluate the success of a strategy

In order to properly evaluate the benefits and advantages of the several approaches for a divide-

and-conquer strategy for hyperspectral image processing, different criteria may be considered,

mostly depending on the process at hand. Here we report those commonly used when addressing

hyperspectral image coding.

Coding Performance is a trade-off between quality and bitrate, where the higher the quality for

a given bitrate, the better the coding performance is. Quality is computed comparing the

original image x with the recovered image x̂: several measures can be taken, although in the

case of remote-sensing images, it is customary to employ a Signal-to-Noise Ratio defined for

instance as
SNRσ2 = 10 · log10

(
σ2

MSE

)
, (dB)



where σ2 is the variance of the input image, and the Mean Squared Error (MSE) is

MSE =
1

NxNyNz

∑
i

∑
j

∑
k

[x(i, j, k)− x̂(i, j, k)]2.

The bitrate is the normalized length of the compressed file produced by the coding tech-

nique after applying the spectral decorrelation transform, and is reported herein using the

unambiguous unit: bits per pixel per band (bpppb).

Computational Cost is computed taking into account the number of operations that need be per-

formed for applying a given spectral decorrelation transform. The lower the computational

cost, the higher the speed of applying that particular transform. It can be measured either in

number of operations or in seconds.

Component Scalability is defined as the ability to retrieve a single component, as is often needed

in remote-sensing applications, for example in false color composition for visualization pur-

poses. The lower the number of spectral components (or bands) that are needed for inverting

the spectral decorrelation transform if only a single component is to be retrieved, the higher

the scalability. Component scalability aims to employ as low a number of components for

inverting the spectral decorrelation as possible, both because of memory constraints and be-

cause of faster computation.

Memory Requirements is a criterion that assesses the peak computer memory capacity needed

to apply the spectral decorrelation transform, where lower is better, since this transform is

sometimes devised for application on board aircraft or satellites, with restricted memory

capability. It is often measured in MBytes.

Comparative Evaluation

We have summarized above eight divide-and-conquer heuristic strategies, and while all of the de-

scribed strategies provide approximations to the KLT, each entails a different trade-off among dis-

tinct performance characteristics. In the current scope, such characteristics of a strategy include:

coding performance, computational cost, component scalability, and memory requirements. We



Table 1. Qualitative summary of spectral transforms, notably of the divide-and-conquer strategies. The
performance of each transform for a given criterion is ranked from (worst) to (best), according to
quantitative data from [23].
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Authors Publication
Date Reference(s)

Coding
Performance

Computational
Cost

Component
Scalability

Memory
Requirements

KLT
KLT Karhunen, Loève 1946 [24, 25]

Divide-and-conquer strategies
Recursive

Recursive Wongsawat, Oraintara, Rao 2006 [7, 8]
Single-level

Single-level Blanes, Serra-Sagristà;
Du, Zhu, Yang, Fowler 2009 [3, 4]

Two-level
Static Two-level Saghri, Schroeder, Tescher 2009 [1, 2]
Dynamic Two-level Saghri, Schroeder, Tescher 2009 [1, 2]

Multi-Level
Regular Multi-Level Blanes, Serra-Sagristà 2009 [3]
Static Multi-Level Blanes, Serra-Sagristà 2010 [5]
Dynamic
Multi-Level Blanes, Serra-Sagristà 2010 [5]

Pairwise Orthogonal
Transform Blanes, Serra-Sagristà 2011 [6]

Wavelets
Wavelet CDF 9/7 Cohen, Daubechies, Feauveau 1992 [16]
Wavelet CDF 5/3 Cohen, Daubechies, Feauveau 1992 [16]
Wavelet Haar Haar 1910 [15]
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are shown in Table 1. For the purpose of comparison, the KLT and three common wavelet trans-

forms have also been included. On one side of the comparison there is the KLT, with top coding

performance but lower scores on all the other characteristics, while on the other side there are the

wavelets, with extremely low cost, as well as low memory requirements, but with only moderate

spectral decorrelation performance. In between the KLT and wavelets, there are the divide-and-

conquer strategies, which provide a gradient of trade-offs from one extreme to the other.

It is interesting to look at the different trade-offs, since not all transforms provide reasonable

compromises. In Figure 3, the characteristics of each transform are plotted in a three-dimensional

space corresponding to coding performance, computational cost (speed), and component scalabil-

ity. Each point in the plot is projected to the coordinate planes to show the trade-offs that each

method provides for a given pair of characteristics. From the plot, it can be seen that wavelets
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Fig. 3. Comparison of spectral transforms trade-offs among: coding performance, computational cost
(speed), and component scalability.

relation to divide-and-conquer strategies. In particular, as indicated by the double sided arrow in

the speed/coding performance plane, the CDF 9/7 wavelet provides poor performance in relation to

its speed.

BOX: A few more degrees of freedom

Each divide-and-conquer strategy generally has a few degrees of freedom, e.g., the recursion depth

on the recursive strategy, or the number of first-level clusters and the number of forwarded outputs

on the static two-level strategy. Usually, authors of strategies sort through the possible variations

within a strategy with empirical experimentation and recommend one or two items as the repre-

sentative elements.

This is the case of Fig. 3 and Table 1, where the performance of a single representative element

for each strategy is reported. This approach is necessary for an understandable presentation of

ideas, but also necessary to bring an element comparison to tractable size.

Nonetheless, it is an interesting exercise to compare structures in the span of their degrees of

freedom, even though the comparison has to be limited in scope. Such a comparison is provided in



the figure below, where the relation between coding performance and computational cost is shown

(the former measured as the coding performance difference with the original KLT, and the latter

measured as the data samples transformed per unit of time). The scope of this comparison has

been limited to the relative coding performance difference with respect to a full KLT on just one

image when coded in combination with JPEG2000 [24] at the fixed bitrate of 1 bit per pixel per

band (bpppb), and only some of the best variations of each strategy are shown. While a narrowly-

scoped example like this is not useful to extract global conclusions, it is still insightful to the

understanding of the particularities of the strategies.
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In the figure it can be observed that, by changing the free parameters of structures, a gradation is

produced between high cost/coding performance to low cost/coding performance. In this particular

case, best trade-offs are provided by the recursive strategy on high coding performance, followed,

as coding performance decreases, by the regular multi-level strategy, the static multi-level strategy,

and the POT. Three wavelets are also included as reference, and two of them provide the best

trade-offs on the lowest coding performance segment.

Results for principal component analysis (PCA) are also included. The KLT and PCA are

basically the same operation, but the latter terminology is often used to indicate that the transform

only retains the “principal” components (PCs) of its output. Since PCA uses a smaller number of

operations than the KLT because not all outputs need to be produced, the question of whether to use



PCA as an approximation of the KLT often arises. Using a PCA instead of a divide-and-conquer

strategy for KLT has its merits, as, by producing just a few outputs, future processing stages are

simplified (in this case JPEG2000 has less bands to code). However, there are two drawbacks.

One is that the coding performance and speed relation of the PCA alone is quite bad, so it is very

dependent on the speed gains of simpler future stages. The other drawback, and perhaps the most

problematic, is that the number of PCs to be kept varies with different images and bitrates, and that

number is hard to guess before the coding has taken place.

PRACTICAL CASES

Three examples of practical usage furnish evidence of the benefits of divide-and-conquer strategies.

The first example is a step by step application of the recursive strategy, posed such that interested

readers can reproduce it easily. The second example reports the potential of the Pairwise Orthogo-

nal Transform (POT) assuming a use case on board a satellite. Due to its extremely low complexity

it may be used to improve coding performance, despite the resource constrained environment of

satellites. The third example reports the use of divide-and-conquer strategies to improve the com-

putational performance of a Reed-Xiaoli (RX) anomaly detector, where the distance operations

are normally performed in the KLT domain. The objective of this last example is to show the

applicability of divide-and-conquer strategies on geophysical signal-processing fields other than

hyperspectral image coding.

RECURSIVE STRATEGY EXAMPLE FOR AVIRIS HYPERSPECTRAL IMAGE CODING

In this first example, divide-and-conquer is applied with the recursive strategy using four recursion

steps on a remote-sensing image which is later compressed using a lossy image coder. To ensure

the reproducibility of this example, the image used is the widely distributed hyperspectral image

“Cuprite” from the AVIRIS sensor from NASA’s Jet Propulsion Laboratory1, and the image coder

is the “Kakadu v6.4.1” implementation of JPEG2000 [24].

The first step towards this example’s purpose is to infer the structure of the transform, or equiv-

1The image technical name is “f970619t01p02_r02”, and its size is 614× 2206× 224 pixels (w × h× b)



Fig. 4. Structure of the recursive divide-and-conquer strategy when applied to 224 components with a recur-
sion depth of four.

alently define the sequence of small KLTs that have to be applied. The spectrum at each spatial

location is taken as an input vector to the transform, yielding 614× 2206 input vectors each of di-

mension 224. Given the 224-input transform and the four recursions, a sequence of 81 small KLTs,

each of 14 inputs, is applied as shown in Fig. 4.

Once the structure is defined, each small KLT is applied. Here, the small transform on bottom

left of the diagram is detailed. Since the elements of the input vector to the first small KLT have

mean values other than zero (i.e., 962.9, 1275.8, 1752.7, . . . ), the mean is subtracted from each

sample to force a zero mean value. As the outputs of a KLT have zero mean, some of the other small

transforms do not need this adjustment. Then, the covariance matrix is calculated, and diagonalized

with a standard QR algorithm, obtaining QT . In this case,

QT =



0.037 0.053 · · · 0.399

0.216 0.350 · · · −0.321

...
...

. . .
...

0.003 0.003 · · · −0.368


,

which is applied to its input at this point. The 80 remaining KLTs are applied similarly, in a bottom-

up order, preserving the dependencies between individual KLTs.

After all the KLTs have been applied, the result can be assumed mostly free of inter-band redun-

dancy, and each band can be coded independently. Using the JPEG2000 coding system provides

efficient coding within a band and allows a different rate allocation for each band that maximizes

the overall coding performance.

With the described approach, and targeting at a rate of one bit per pixel per band (bpppb), the



combination of Recursive subdivision and JPEG2000 yields a SNR of 54.12 dB, which is only

0.01 dB lower than when a full KLT is used.

To decompress, one simply needs to reverse each individual operation in the inverse order in

which they where applied, i.e., first the JPEG2000 codestream is decoded and then, using the side

information, each of the small KLTs, starting with the last one applied in the coding process.

Counting the arithmetic operations performed in this example yields a total of 273 Giga-

operations for the KLT, or in other words, more than four minutes on a theoretical 1 Gigaflop/s

CPU just for the spectral transform. At virtually no quality loss, by using the recursive strategy, the

total amount of operations is reduced to 31%, or about 1.2 minutes. By way of contrast, if a DWT

CDF 9/7 was used it would have required less than 9 seconds, but it would have had a significant

coding quality penalty of 3.46 dB.

While the KLT cost might be quite a nuisance while one waits a few minutes for an image to

decode, there are important use cases that forbid such a high cost. For example with a KLT it is not

possible to perform real-time coding of hyperspectral images. This is a quite important use case

for remote-sensing acquisition hardware, for which hyperspectral images must be coded efficiently

under the hardware constraints of such devices. The following example addresses this use case

explicitly.

POT STRATEGY EXAMPLE FOR ON-BOARD SATELLITE APPLICATION

Due to the radiation hardening required in space-borne hardware, as well as other factors such as

smaller economies of scale, weight restrictions or power consumption limitations, satellite hard-

ware is often heavily constrained in its capabilities in comparison with the average office desktop

computer. The POT divide-and-conquer strategy is specially designed for satellite image coding,

and employs a minimal multi-level structure, where only two components are decorrelated at once.

In addition to the low computational cost, using a minimalistic strategy allows the reduction of

the memory requirements for the transform, and a much simpler eigendecomposition stage. High

memory requirements for the KLT are caused by the fact that the KLT is a two stage transform: it is

first trained over the whole input, and then it is applied. Having to keep the whole image in memory

while the transform is trained is the main source of memory consumption. Taking into account that

satellite imaging devices usually capture images line by line as the satellite moves along its orbit,



Fig. 5. Line-based application of a POT divide-and-conquer strategy for on-board satellite image coding.

a natural solution for this problem would be to use blocks of image lines and transform them

independently; however, this solution clashes with the relatively high amount of side information

that would be required by the KLT of each block. On the other hand, the POT has fewer degrees

of freedom and requires a much smaller amount of side information which allows the use of spatial

blocks. Such blocks may even be as small as a single image line. In Fig. 5 a graphical representation

of a single-line application of the POT is shown.

The eigendecomposition stage (i.e., where the covariance matrix is diagonalized and QT is

obtained) is the most complicated (not the most time-consuming) stage of the whole KLT and, by

extension, of a divide-and-conquer approach. This process is usually performed by a QR algorithm,

or possibly by a Jacobi eigenvalue algorithm if the process needs to be parallelized. Both algorithms

are well-known numerical iterative methods that converge to a solution, and nonetheless both of

them present very complicated numerical instabilities that pose significant risks apart from the

implementation complexity. In contrast, as the POT uses only two-component KLTs, the transform

matrix QT =
(
p t
q u

)
can be derived in a straightforward manner from ΣX =

(
a b
b d

)
, to yield t =

−q = b
|b|

√
1
2 −

(a−d)
2s , p = u =

√
1− t2, and s =

√
(a− d)2 + 4b2. Note that all the elements

in QT can be produced from t alone, and thus the side information for the POT are the offsets to

force a zero mean on each input and the value of t for each two-component transform.

Figure 6 reports a comparison of the performance of the line-based POT in relation to the KLT

and the CDF 9/7 wavelet when used in combination with JPEG2000, to encode an image captured

by the EO-1 satellite while orbiting over the Erta Ale volcano (Afar Region, Ethiopia). For this data

type, the POT provides performance between the KLT and wavelets, with extremely low complexity

and memory requirements as needed to operate on satellite equipment. At low-medium to high

bitrates (usually the only ones of interest in practice), the performance of the line-based POT is
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Fig. 6. Coding performance of POT in comparison to the KLT and the CDF 9/7 wavelet. Performance
measured in variance signal-to-noise ratio (SNR σ2) in relation to the image bitrate.

above that of the DWT and especially close to that of the KLT. We attribute this closeness to

the KLT due to the relatively low SNR of the Hyperion sensor itself. At very low bitrates, the

performance of the POT can be undermined by the required side information. Even though the

side information is only, for each row, one parameter per two-component transform and one offset

per input, it amounts to 0.07 bpppb for this example, as this is a rather narrow image of only 256

columns. If this were an issue, applying the transform in blocks of two or three lines would address

this problem.

Following with the theoretical 1 Gigaflop/s CPU of the previous example, even if not corre-

sponding with most space-borne hardware, the application of both the forward DWT CDF 9/7 and

the forward POT would stay below 3 seconds, while the KLT would take more than a minute and a

half.

HYPERSPECTRAL IMAGE PROCESSING EXAMPLE FOR ANOMALY DETECTION

A third example of the use of a divide-and-conquer strategy is in combination with the conventional

RX anomaly detector [25]. Among others, airborne detection of landmines is one of the applica-

tions of an anomaly detector. The conventional RX discussed here is the baseline reference in this

research field, and more powerful alternatives exist such as Support Vector methods [26] or Kernel

RX [27]. The objective of this example is to provide some insight into how the strategies presented

throughout this article can be extended to other fields of interest of the geophysics community in

addition to image coding; not to improve the state of the art on said fields, which would be the

object of another article.



Table 2. Performance of an RX detector when applied using divide-and-conquer strategies.
Method Preservation of

Classification
Anomalies
preserved

Cost

KLT (original) 100% 100% 100%
Recursive 99.81% 90.54% 32%
Static Multi-Level 99.68% 84.21% 8%
Dynamic Two-level 99.09% 54.38% 4%

An RX anomaly detector is based on how distant a pixel r in a hyperspectral image is from the

overall background of that image as measured using the Mahalanobis distance,
RX(r) = (r − µ)T Σ−1

X (r − µ),

where µ is the average background. If the covariance matrix is a diagonal matrix, then the problem

is simplified. By performing the substitution Σ−1
X = QΛ−1QT , the problem becomes

RX(r) = (QT (r − µ))T Λ−1(QT (r − µ))

where QT (r − µ) is the KLT of (r − µ). As the matrix multiplication by QT can be applied

approximately by a divide-and-conquer strategy, the computational cost of the anomaly detector is

diminished.

In this example, the RX detector is used on a hyperspectral image acquired near the Moffett

Federal Airfield (California, USA). An RX detector is an unsupervised classifier that ranks how

anomalous is each location, and then locations ranked over a threshold –in this case, the top 2%–

are classified as anomalies. Table 2 reports results when using several divide-and-conquer strate-

gies. Detector performance is measured with the KLT as reference, either in “Preservation of Clas-

sification,” which is the percentage of locations that do not change class (anomaly/no anomaly) in

comparison with the KLT, or in “Anomalies preserved,” which is the percentage of the anomalies

that are detected in both classifications. Detector performance decreases along with the method

cost, with up to 54% of the anomalies preserved with only 4% of the original cost. It is worth

noting that the anomalies that are not preserved are often situated on the edges of anomaly zones,

with no significant variations on locations or shapes of the detected zones. Figure 7 shows a visual

representation of the detector output.

CONCLUSIONS

Remote-sensing technologies gather each year an increasing amount of hyperspectral information,

which is treated with more sophisticated data processing methods demanding large amounts of
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Fig. 7. Visual comparison of an RX detector.

computing resources. Spectral decorrelation is a widely used method with a significant compu-

tational cost, in particular in the image coding context that is being described in this article. We

have shown that divide-and-conquer strategies mitigate these issues with schemes that provide ap-

proximate decorrelation at a fraction of the original cost, as well as with improved component

scalabilities and lower memory requirements. We have reported, in three practical cases of divide-

and-conquer decorrelation strategies for hyperspectral images, the benefits and advantages of these

strategies, and given insights into the applicability of these technologies to adjacent fields, which

we hope may foster its use in other research fields.
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tational cost, in particular in the image coding context that is being described in this article. We

have shown that divide-and-conquer strategies mitigate these issues with schemes that provide ap-

proximate decorrelation at a fraction of the original cost, as well as with improved component

scalabilities and lower memory requirements. We have reported, in three practical cases of divide-

and-conquer decorrelation strategies for hyperspectral images, the benefits and advantages of these

strategies, and given insights into the applicability of these technologies to adjacent fields, which

we hope may foster its use in other research fields.

BOX: Source code is available

Java and MATLAB implementations of the described methods, together with simple example ap-

plications, are available at http://gici.uab.es.
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