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Abstract

In this work we present a protocol for self-synchronized duty-cycling in wireless sensor net-
works with energy harvesting capabilities. The protocol isimplemented in Wiselib, a library of
generic algorithms for sensor networks. Simulations are conducted with the sensor network simu-
lator Shawn. They are based on the specifications of real hardware known as iSense sensor nodes.
The experimental results show that the proposed mechanism is able to adapt to changing energy
availabilities. Moreover, it is shown that the system is very robust against packet loss.

1 Introduction

Sensor networks [14] consist of a set of small, autonomous devices which may be used, for example,
for environmental monitoring, patient monitoring in health care, and industrial machinery surveil-
lance. As sensor nodes may be distributed in areas without power supply, or they may be mobile, they
are generally equipped with batteries, which makes energy ascarce resource. A basic idea for saving
energy is to periodically switch off the sensor nodes. The mechanism that establishes the alternation
between the active and inactive states is generally calledduty-cycling(see, for example, [13]). In
some cases, duty-cycling is energy-aware (see, for example, [9, 11, 10]). The main disadvantage of
these approaches is that they require a quite regular pattern for the availability of energy from the
environment.

In previous work [8, 7, 6] we introduced and studied a possible technique for energy-aware duty-
cycling in (mobile) sensor networks with energy harvestingcapabilities. This system is inspired by
self-synchronized sleeping patterns of natural ant colonies [4]. The focus of these first studies was
purely on the swarm intelligence aspects of the proposed system. The experiments were performed
without considering, for example, packet loss, collisionsand network failures. Before we outline the
contributions of this work, we introduce already a glimpse of the basic behavior of this previously in-
troduced system; see Figure 1. The solid line shows the fraction of active nodes over time, whereas the
slashed line shows the average battery level of the nodes over time. Finally, the dotted line represents
the sun power that is used to establish the amount of energy which can be harvested by the sensor
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Figure 1: A first glimpse of the working of energy-aware, self-synchronized duty-cycling.

nodes at each time step. Note that all three measures are scaled to[0, 1]. At this point we would like
the interested reader to understand the following two aspects. First, self-synchronized duty-cycling is
indicated by the repetitive appearance of activity peaks over time (see solid line). Second, the adapta-
tion to changing energy conditions is indicated by the changing height of the activity peaks. At times
of lower battery levels, activity peaks are lower as well. This is the mechanism used by the sensor
nodes to adapt to varying energy conditions.
Contribution of this Work. The first contribution of this work is the design of a protocolthat cap-
tures the essential aspects of the swarm intelligence system previously proposed in [8, 7, 6]. The
second contribution consists in the implementation of thisprotocol in Wiselib [1], a library of generic
algorithms for wireless sensor networks. Finally, we experimentally test our duty-cycling protocol in a
real scenario, simulating iSense sensor nodes from Coalesenses GmbH [3] with the network simulator
Shawn [12].

The organization of the paper is as follows. In Section 2 the extension of Wiselib for duty-
cycling algorithms is introduced, followed by the description of the protocol for self-synchronized
duty-cycling in Section 3. Finally, experimental results are presented in Section 4, and conclusions
and an outlook are given in Section 5.

2 Wiselib: Duty-Cycling Concept

The Wiselib [1, 16] is a generic algorithm library for heterogeneous wireless sensor networks. The
main objective concerns the implementation of algorithms that may be applied on different hardware
and software platforms. Not only real sensor hardware such as MicaZ or TelosB nodes are supported
by Wiselib, but also simulation environments such as Shawn and TOSSIM. The algorithms included in
the Wiselib are organized in topics according to their functionality. In order to abstract the algorithms
from the hardware and the operating system, a set of connectors specifies interfaces for interacting
with them. A connector is also defined to interact with wireless sensor network simulators such as
Shawn [12]. Those connectors are defined such that the same algorithm can be run on a physical
platform or on a simulator.

The design of a new algorithm class in Wiselib requires the definition of a concept, that is, a
specification of how an algorithm looks and behaves. In this paper we provide a generic concept
for energy-aware duty-cycling algorithms, and provide onemodel for this concept (see Section 3).
In particular, a duty-cycling algorithm must assist sensornodes in their decision of being active or
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Figure 2: Division of time between the duty-cycling mechanism and user applications. The protocol
works in a sequence of time periods of length∆. In each period, the first phase is dedicated to
duty-cycling (DC), and the second phase to the user application.

inactive. This is handled via a call-back to the sensor node when it is supposed to change mode. Based
on this call-back, the sensor node is then responsible for the executing the corresponding action.

Therefore, a duty-cycling algorithm has basically two functionalities: It can be enabled and dis-
abled, and a call-back can be (un)registered to indicate changes in activity. The concept looks as
follows:

concep t DutyCyc l ing {
enum D u t y C y c l i n g A c t i v i t y {

DC ACTIVE , DC INACTIVE
} ;
vo id enab le (vo id ) ;
vo id d i s a b l e (vo id ) ;
template<c l a s s Cal lee , vo id ( C a l l e e : :∗ TMethod ) ( i n t )>

i n t r e g c h a n g e d c a l l b a c k ( C a l l e e ∗ o b j p n t )
vo id u n r e g r e c v c a l l b a c k (i n t ) ;

} ;

With the aid of this generic concept, it is possible to cover abroad range of duty-cycling algo-
rithms. The exact behavior of a potential duty-cycling model is not mandatory. It can be asynchronous
or synchronized, it may rely on exact time-synchronizationor do not have any requirements. The im-
portant aspect is that the method signatures from the concept are implemented, so that it can be passed
to other algorithms as a template parameter.

3 Proposed Duty-Cycling Model

As mentioned before, in [8, 7, 6] a swarm intelligence technique with the potential application of self-
synchronized duty-cycling in (mobile) wireless sensor networks with energy harvesting capabilities
was introduced. This section aims at designing and implementing a duty-cycling protocol on the
basis of this work. The current version of the protocol assumes that there is a time synchronization
algorithm executed by a lower layer of the network. The protocol works in periods. Each period
has a length of∆ time units (say, seconds). Each period is divided in two phases: the first phase
is dedicated to actions concerning the management of duty-cycling, whereas the second phase is
dedicated to application-specific tasks that sensor nodes must perform (see Figure 2). The first phase
of each period is very short. In this phase all nodes may receive transmissions from neighboring nodes
and themselves they execute one duty-cycling event. The outcome of the first phase decides if a node
will be activeor inactive for the rest of the corresponding period. In case of being active a node is
available for user-defined applications (environmental data monitoring, tracking, etc). However, if the
state of a sensor node is set to inactive the node will turn offthe radio and will sleep until the start of
the following period.

In the following we focus on the description of the duty-cycling algorithm executed in the first
phase of each period. This algorithm consists in a so-calledduty-cycling eventthat is executed by
each sensor nodei exactly once. The time of executing this event is, at the moment, randomly chosen
by each sensor node within the first phase of each period. Eachsensor nodei maintains a real-valued
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state variableSi. The value of this state variable is initially set to the so-calledactivity thresholdSact,
which is a parameter of the mechanism. Moreover,ai is a binary variable whose value determines if
the sensor nodei is active(ai = 1) or inactive(ai = 0) in phase of two of the corresponding period.
The value of the variableai is determined as follows:

ai := Φ(Si − θact) , (1)

whereθact is the so-called activation threshold, andΦ(x) = 1 if x ≥ 0, andΦ(x) = 0 otherwise. Note
that an inactive sensor node can return to the active state either due to local interactions (as explained
below in Eq. 2) or spontaneously with a probabilitypa and an activity levelSa.

In addition, each sensor node maintains a queueQi for incoming duty-cycling messages from
neighboring sensor nodes. Each messagem ∈ Qi contains a single fieldmactivity, which is set to
the activitySj of the sensor nodej that has sent the message. When sensor nodei executes its duty-
cycling event, the value of state variableSi is updated depending on the messages inQi. Subsequently
sensor nodei sends a duty-cycling message, containing the new value ofSi, using a certain transmis-
sion power level. Note that the choice of the transmission power level is a crucial component for the
working of our duty-cycling technique. More specifically, the value of state variableSi of a sensor
nodei is computed as follows:

Si := tanh(g · (Si +
∑

m∈Qi

mactivity)) , (2)

whereg is a gain parameter whose value determines how fast the valueof variableSi diminishes.
After this update, all messages are deleted fromQi, that isQi := ∅. Note that with this update the
valueSi of an inactive sensor may increase sufficiently enough in order to be greater than the activity
thresholdSact.

For the working of the duty-cycling mechanism, the choice ofthe power level for the transmission
of the duty-cycling messages plays a crucial role. Here we assume a standard antenna model which
allows sensor nodes—for each transmission—to choose from afinite setP = {P 1, . . . , Pn} of differ-
ent transmission power levels.1 More specifically, the choice of a sensor nodei depends on its battery
level, which is denoted bybi ∈ [0, 1]. Hereby,bi = 1 corresponds to a full battery. In the following
we first outline the determination of a so-calledideal transmission power level, which then leads to
the choice of the real transmission power level. The ideal transmission power level (pi) of a sensori
depends on the current battery level:pi := pmin · (1− bi) + pmax · bi, wherepmin, respectivelypmax,
are parameters that fix the minimum, respectively maximum, transmission power levels. Only when
batteries are fully charged the ideal transmission power level may reachpmax. The ideal transmission
power level is then translated into thereal transmission power level(Ti) as follows:Ti := P k ∈ P
such that

pi ∈
(

(P k−1 + P k)/2, (P k + P k+1)/2
]

(3)

At this point it is important to realize that the transmission power levelTi is used only for sending the
duty-cycling message. For other messages during the secondphase of each period, the user applica-
tion is responsible for choosing transmission power levels. The duty-cycling event described above is
summarized in Algorithm 1. As mentioned above, the battery level of the sensor nodes is responsible
for their choice of a transmission power level for sending the duty-cycling message. Therefore, the
battery level of course affects the communication topologyin the context of the duty-cycling mecha-
nism.

1Popular sensor hardware such as iSense nodes or SunSPOTs areequipped with such antennas.
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Algorithm 1 Duty-cycling event of a sensor nodei
1: Calculateai (see Eq. 1)
2: if ai = 0 then
3: Draw a random numberp ∈ [0, 1]
4: if p ≤ pa then Si := Sa andai := 1 endif
5: end if
6: Determine transmission power levelTi (see Eq. 3)
7: Compute new value for state variableSi (see Eq. 2)
8: Send duty cycling messagem with mactivity := Si with transmission power levelTi

4 Experimental Evaluation

In the following we first describe the experimental setup andthe experimentation environment before
we present the obtained results. The implementation of the presented protocol in the Wiselib provides
us with options for executing it on real test-beds but also toperform simulations with some sensor
network simulators. In the context of this paper we decided for the second option. More specifically
we used the sensor network simulator Shawn [12], which is a discrete event simulator with a very high
level of parameterization which is able to execute algorithms from the Wiselib. The user can easily
run experiments simulating the behavior of different sensor nodes and also add own sensor node
specifications. A peculiarity of Shawn is the fact that packet collisions are not explicitly considered.
Instead Shawn simulates these collisions and the consequent packet loss under different constraints
and in different scenarios. Thus, any packet-loss model canbe implemented.

We decided to experiment withiSensesensor node hardware from Coalesenses GmbH [3]. For
this purpose we added the specification ofiSensenodes to Shawn. These sensor nodes use a Jennic
JN5139 chip, a solution that combines the controller and thewireless communication transceiver in a
single chip. The controller has a 32-bit RISC architecture and runs at 16Mhz. It is equipped with 96kb
of RAM and 128kb of serial flash. The maximum transmission power level of iSense nodes reaches
a distance of about 500m in all directions in open air conditions. Note that iSense nodes are being
used by two of the currently largest European projects on sensor networks: WISEBED [2, 15] and
FRONTS [5]. In our simulations, iSense nodes are supposed tobe equipped with solar panels. Ac-
cording to their documentation, iSense nodes require0.025mA to work without using any additional
peripheral such as the radio or the sensing devices. The state in which the radio is also turned on
requires a power supply of12.8mA. Additionally, to receive or send a message with4 bytes of infor-
mation, as required by duty-cycling messages, implies a consumption of7.43µC. The batteries have
a maximum capacity of2600µC. Energy harvesting by solar panels can reach a maximum nominal
value of1.6W. This information is summarized in Table 1. Finally, let usmention that iSense nodes
offer 6 possible transmission power levels, in addition to the state in which the radio is turned off. The
five transmission power levels other than the maximum one areobtained by reducing the maximum
transmission power level by1

6
, 2
6
, 3
6
, 4
6
, and 5

6
.

One of the aspects that has not been described so far is the simulation of the light source for energy
harvesting. This was done as follows. The light source at timez > 0 has an intensity ofs(z) ∈ [0, 1].
Hereby,s(z) = 0 corresponds to absolute darkness. In [8] we described a model for the evolution of
the sun light intensities, that is, for the evolution ofs(z) over time. Here we consider exactly the same
model. Additionally, we assume a variable cloud densityc(z) ∈ [0, 1]. Depending on the technical
characteristics of the solar panels used, a sensor nodei can transform a fractionf of the available light
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Table 1: Power devices and parameters for the energy model.
Data Device specifications

Tx/Rx (4 bytes) 7.43µC
Radio On 12.8mA
Radio Off 0.025mA

Battery capacity 2600µC
Energy harvesting (f) 1.6W

Max. Tx Power 500m

intensity into energy:

eharv
i ((t−∆, t]) := f ·

∫ t

t−∆

s(z) · (1− c(z))dz (4)

In the experiments presented in this article we do not consider any specific user application, that is,
the energy consumption of phase two of the proposed protocolmust be simulated. This is done by
removing an amount ofeappof energy from the battery for each execution of phase two. The parameter
values used for simulation are as follows:

pmin pmax g pa eapp f

0.07 0.14 0.1 0.001 0.001 0.0027

It is important to note that the information which refers to the power profile of the iSense nodes is
obtained by properly rescaling the values from Table 1 to the[0, 1] range that is used by the description
of duty-cycling given in Section 3.

4.1 Experiments

Assuming that∆—that is, the length of one period—corresponds to 60 seconds, the simulations that
we conducted span30 days (each day consists of1440 periods). The first phase of each period, which
is reserved for the duty-cycling events, was given0.05 seconds. Information about the state of the sen-
sor nodes (active versus inactive) is collected at the startof each period. The most important measure
taken is themean activityof the sensor network, which is measured—at any time—as follows:

A :=
1

k

k
∑

i=1

ai ∈ [0, 1] (5)

Note that, the greaterA the more sensors are active at the specific time at whichA was determined.
Self-synchronization behavior is characterized by an oscillating value ofA over time. This was shown
already for a mobile sensor network withk = 120 sensor nodes in Figure 1 of the introduction (see
solid line). However, the results from that figure were obtained in aperfect environmentwith no
collisions or transmission failures and no propagation times. Moreover, the energy model that was
used had no relation to real sensor node hardware.

The experiments that we present in this section aim at proving the applicability of the proposed
mechanism in real sensor networks. All experiments are doneon the basis of a static network of
k = 120 iSense nodes as simulated by the Shawn sensor network simulator. For the first experiment
that we conducted we assumed a zero probability for packet collisions. Moreover, we assume a cloud
density of zero, that is,c(z) = 0 for z ≥ 0. Figure 3 shows the obtained duty-cycling behavior.
Again, the solid line shows the fraction of active sensor nodes over time, whereas the slashed line
shows the average battery level of the sensor nodes over time. Finally, the dotted line represents the
sun power that is used to establish the amount of energy whichcan be harvested by the sensor nodes at
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Figure 3: Simulation results (network size:120; 11th day of simulation). Solid line: evolution of the
fraction of active nodes. Dashed line: average battery level. Dotted line: evolution of the sun light
intensity.

each time step. The graphic shows the behavior for one day of simulation, that is, 1440 periods. Self-
synchronized duty-cycling is indicated by the appearance of activity peaks over time. It is remarkable
how the system adapts to the available energy resources, reducing the height of the peaks when the
battery level of the nodes is reduced. Note that when a lot of energy is available the system can even
prescind from switching off sensor nodes. This can be seen bythe existence of a large activity peak
of about 200 periods of length located around period 14000. Note that for this experiment the average
fraction of nodes that are active at each period is approximately 0.6. This measure will henceforth be
called themean system activity.

Concerning the energy spent by the duty-cycling protocol with respect to the user application, we
took measures over the whole simulation of43200 periods (that is, 30 days).

Duty-cycling User Appl.
Tx Rx Idle Active

Energy (%) 0.757 18.591 0.001 0.035 80.616

The energy spent by duty-cycling is hereby split into the ”Idle” and ”Active” states as well as the
energy spent for transmitting the duty-cycling messages (Tx) and receiving duty-cycling messages
(Rx). Note that message reception is the task which consumesmost of the energy. In total, the duty-
cycling mechanism consumes approximately20% of the total amount of spent energy. This may seem
quite high at first. However, consider that this percentage strongly depends on the value ofeapp, which
we have set to a very moderate value of 0.001. Increasing thisvalue will obviously cause the decrease
of the percentage of energy spent by duty-cycling.

After these initial studies we will now test the duty-cycling mechanism in two adversarial scenar-
ios. In first place, it is shown how the system responds to situations with communication failures. In
second place, the behavior of the system is studied in scenarios where energy harvesting is limited,
for example, due to cloudy weather. Finally, we present a mechanism for the automatic parameter
adaptation of the system for what concerns different network sizes.

4.1.1 Effect of Packet Loss

With the next experiment we aim at studying the robustness ofthe system with respect to communica-
tion failures. The experiment consists in simulating the duty-cycling protocol under different packet
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loss rates. A packet loss rate ofploss ∈ [0, 1] means that the probability of correctly receiving a mes-
sage is1−ploss. We repeated the initial experiment as outlined above for all packet loss rates between
0 and 1, in steps of 0.01. The results are shown in terms of the obtainedmean system activityfor
each considered packet loss rate in Figure 4 (top). It can be observed that the behavior of the system
does not visibly change until a packet loss rate of about0.3. This means that the proposed system is
quite robust against packet loss. Only for packet loss ratesgreater than about0.3 the system behavior
degrades.

4.1.2 Limited Energy Harvesting

Another interesting question concerns the possible changein system behavior when energy harvesting
is restricted. Considering the example of solar panels, this is the case, for example, with bad weather
conditions. Remember that the proposed model is able to simulate bad weather conditions by means
of cloud densities greater than zero. We repeated the initial experiment (that is, without considering
packet loss) for a range of different cloud densities between 0 and1. Figure 4 (middle) shows the
evolution of the obtained mean system activity when moving from low to high cloud densities. As
expected, with increasing cloud density the mean system activity decreases. Interestingly, the relation
between cloud density and the mean system activity is linear.

4.1.3 Adapting to Different Network Sizes

When changing to differently sized networks (we only considered 120 node networks so far), it is
intuitively clear that some parameter values must be adjusted in order to maintain a functional system.
Note that when changing the network size, the node density changes. Hence, it is reasonable to
assume that for maintaining the shape of the activity peaks,the choice of the transmission power level
and the probability of spontaneous activation should be adapted to the new network size. A way of
obtaining the new system parameters is described in the following. Withknew, panew andtnew we refer
to the new number of sensor nodes, the probability of spontaneous activation and the transmission
power level of the new, differently sized, network. First, in order to obtain the same wake-up rates
as in the case of a 120-node network, the following rule can beapplied:panew := pa · k/knew, where
pa andk are the parameters from the original network. Note that thisrule increases the probability
of spontaneous activation of the nodes when the network sizeis decreased, and vice-versa when the
number of nodes increases. Moreover, the average number of nodes’ spontaneous activations per time
unit is maintained. Next we introduce a rule for adapting thetransmission power level. The basic
idea is to have a constant average number of sensors being reached by a transmission. Due to the
fact that the sensor nodes form a random topology, the following reasoning was used. In general, the
number of nodes that can be reached by the ideal transmissionof a sensor can be estimated as follows:
π · t · 2 · k/S, wherek is the number of sensor nodes andS is the space in which the sensor nodes
reside. In our case it holds thatS = 12 = 1. Therefore, this term reduces toπ · t · 2 · k. As t is
known for the case of 120-node networks, an adjusted transmission power level can be calculated for
networks of different sizes as follows:

tnew =

√

t · 2 · k

knew

, (6)

whereknew is the size, respectivelytnew is the transmission power level, of the new network. However,
note that the transmission power level is not directly modifiable as an algorithm parameter. The
only parameters of our algorithm for what concerns to the transmission power level arepmin and
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Figure 4: Behavior of the duty-cycling mechanism under varying conditions. Top figure: different
packet loss rates. Middle figure: different cloud densities. Bottom figure: different network sizes.

pmax. These values are used as the boundaries of the region for theideal transmission power levels.
Therefore, our scaling method consists in using Eq. 6 for obtainingpnew

min andpnew
max for delimiting the

value of the new networks’ ideal transmission power level.
With this scaling methodology we repeated the initial experiment (that is, without packet loss) for

a range of different network sizesk ∈ [0, 300]. The graphic in Figure 4 (bottom) shows the evolution
of the resulting mean system activity. Ideally we would haveexpected a more or less straight line at
about0.6. This would have meant that the introduced parameter scaling method leads to a system that
behaves equally for all network sizes. However, as can be seen, the scaling method only works well
for networks with more than 100 nodes. For smaller networks,the mean system activity decreases.
However, this can be explained by the decreasing connectivity and communication ability.
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5 Conclusions and future work

In this paper we introduced a protocol for self-synchronized duty-cycling in wireless sensor networks
with energy harvesting capabilities. This protocol, inspired by real ant colonies, has been imple-
mented in the generic algorithm library Wiselib. Moreover,experiments have been performed with
the network simulator Shawn configured to simulate iSense hardware. The proposed technique adapts
to changing energy conditions in a self-organized way. Moreover, it is very robust for what concerns
packet loss and limitations of energy harvesting. In the future we plan to combine this protocol with
real user applications such as monitoring or tracking. Moreover, we plan to verify the experiments on
real hardware. Finally, as our technique does not depend on nodes being static, the results obtained in
this paper can be reproduced for mobile sensor networks.
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