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Abstract— In previous work, we demonstrated how perceptual
modeling can be applied to dither modulated quantization index
modulation and rational dither modulation, to improve both
robustness and fidelity. These algorithms were shown to be sig-
nificantly more robust to valumetric scaling. However, they, and
their predecessors, remain extremely sensitive to re-quantization
which commonly occurs due to JPEG compression, numerical
rounding and analog-to-digital conversion. It is well known that
spread transform dither modulation (STDM) is more robust to
re-quantization. In this paper we describe how to incorporate a
perceptual model into this framework and present two algorithms
based on Watson’s perceptual model. Experimental results of
robustness to JPEG compression are reported for 1000 images
at embedding rates of 1/32 and 1/320. At the high embedding
rate, the robustness of the two algorithms is the same as STDM
but the perceptual distortion is reduced from 23 to about 4,
based on Watson’s perceptual distance. At the lower embedding
rate, we simultaneously observed superior robustness to STDM
as well as improved fidelity. If the perceptual distance rather
than the document-to-watermark ratio (DWR) is held fixed, then
the two adaptive spread transform methods exhibit significant
improvements in robustness to JPEG compression.

I. INTRODUCTION

Quantization index modulation (QIM) is a popular form
of digital watermarking based on the framework of commu-
nications with side information [1]. In their original paper,
Chen and Wornell [2] described a number of variants of
the basic QIM algorithm, namely dither modulation QIM
(DM), distortion compensated dither modulation (DC-DM)
and spread transform dither modulation (ST-DM).

The popularity of QIM is, in part, due to its ease of
implementation, computational flexibility and amenability to
theoretical analysis. Nevertheless, there are practical limita-
tions of the approach due to its extreme sensitivity to valu-
metric scaling and re-quantization. Valumetric scaling is a very
common signal processing operation and occurs whenever the
volume of an audio signal or the brightness of an image
is changed. Re-quantization is also commonly occurring, for
example, when a signal undergoes lossy compression or nu-
merical rounding.

The problem of valumetric scaling has received widespread
attention and a number of solutions have been proposed
[3]–[8]. In contrast, there has been only limited research
focused on the issue of re-quantization, among which JPEG
compression is a typical one.

Fei et al. [9] analyzed the performance of two popular
classes of watermark embedding techniques, spread spectrum

watermarking and quantization-based embedding, in the pres-
ence of JPEG compression. They also proposed a hybrid
watermarking scheme to exploit the theoretically predicted
advantages of spread spectrum and quantization-based wa-
termarking to achieve superior performance. In contrast, this
paper is focused on improving the fidelity and/or robustness
of ST-DM.

Pérez-Gonzàlez et al. [10] examined the performance of
Distortion Compensated Dither Modulation (DC-DM) against
JPEG compression and proposed a new method for detection
based on a weighted Euclidean distance. Experimental results
demonstrated improved performance over traditional DC-DM.
However, here is no comparison with ST-DM and it remains
unclear whether this method is superior to ST-DM.

In this paper, we describe preliminary work to introduce
a perceptual model within the ST-DM framework. Section II
provides a brief introduction to quantization index modulation
and particularly ST-DM and provide experimental results
demonstrating the sensitivity to re-quantization and the relative
robustness of ST-DM. Section III then describes how the
projection vector used in ST-DM can be determined so as to
minimize the perceptual distortion. The experimental results
of Section IV show that for a document-to-watermark ratio
(DWR) of 35 dB, the perceptual distortion as measured by
Watson’s distance [11] is reduced from 23 to as little as 4,
while the bit error rate (BER) is the same or better. However, if
the perceptual distance rather than DWR is held fixed, then the
new algorithm demonstrates a very significant improvement
in BER. Section V summarizes our results and describes
directions for future work.

II. SPREAD TRANSFORM DITHER MODULATION

The basic quantization index modulation (QIM) algorithm
quantizes each signal sample, x, using a quantizer, Q(.), that is
chosen from a family of quantizers based on the message bit,
m, that is to be embedded. The watermarked signal sample,
y is given by:

y = Q(x, ∆,m, δ), m ∈ {0, 1} (1)

where ∆ is a fixed quantization step size and δ a random
dither. The quantizer Q(.) is defined as follows:

Q(x, ∆,m, δ) = ∆.Round

(
x− δ −m∆

2

∆

)
+ δ + m

∆
2

(2)



At the detector, the received signal sample, z, a corrupted
version of y, is re-quantized using the family of quantizers to
determine the embedded message bit, i.e.

m̂ = arg min
b∈{0,1}

|z −Q(z, ∆, b, δ)| (3)

Note that the re-quantization at the detector is not a source
of noise and does not refer to the re-quantization due to say
JPEG compression, that we will discuss shortly.

Equations (1) and (3) assumed that one message bit is
embedded in one sample. To improve robustness, it is common
to embed the same message bit across several input signal
samples {x1, . . . , xN}. The detection equation then becomes:

m̂ = arg min
b∈{0,1}

N∑

i=1

|zi −Q(zi, ∆, b, δ)| (4)

where we have assumed the use of a soft decoder.
Note that a dither signal is used because (i) it improves

the perceptual fidelity of the watermarked signal, (ii) the
quantization noise can then be modeled as independent from
the cover signal and (iii) the pseudo-random noise can be
considered a key, without which, detection is not possible.

Both QIM and DM are very sensitive to re-quantization.
Figure 1 illustrates this point for DM. Here, robustness to
JPEG compression is examined for DM in the discrete cosine
transform (DCT) domain, i.e. we quantize the DCT coeffi-
cients rather than the pixel value.1 Two embedding rates are
depicted of 1/32 and 1/320, i.e. embedding 2 bits per 8×8block
nand 1 bit per 5 blocks. Testing was performed on 1000
images. If we arbitrarily consider when the BER exceeds 20%,
this occurs at a JPEG quality factor of about 96%. Even when
the embedding rate is reduces by a factor of 10, the BER
exceed 20% for a quality factor of about 92%. These quality
factors are extremely high and in many scenarios much better
robustness may be needed.

A. Adaptive QIM

QIM and DM are also very sensitive to valumetric distor-
tion. A number of algorithms have recently been proposed
to counter this [3]–[8], specifically rational dither modulation
(RDM) [4], adaptive QIM using a modified Watson distance
(QIM-MW) [5] and adaptive RDM using a modified Watson
distance (RDM-MW) [7]. These latter methods are based on
adaptively changing the quantization step size.

Since the step size varies in these systems, we had hoped
that they would exhibit some improved robustness to requan-
tization. However, Figure 2, which looks at the robustness
of RDM-MW to JPEG compression reveals that, perhaps
surprisingly, it is actually slightly less robust.

B. Spread transform Dither Modulation

Figure 3 illustrates the basic framework for spread transform
QIM.

ST-DM differs from regular QIM in that the signal, x is
first projected onto a randomly generated vector, u, and the

1Similar performance was observed in the pixel domain.
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Fig. 1. Bit error rate (BER) as a function of JPEG compression for DM
with embedding rates of 1/32 and 1/320 and fixed DWR of 35 dB
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Fig. 2. Bit error rate (BER) as a function of JPEG compression for RDM-
MW with embedding rates of 1/32 and 1/320 and a fixed DWR of 35 dB

resulting scalar value is then quantized before being added to
the components of the signal that are orthogonal to u. The
equation for embedding is thus:

y = x +
(
Q(xTu, ∆,m, δ)− xTu

)
u, m ∈ {0, 1} (5)

and the corresponding detection is given by:

m̂ = arg min
b∈{0,1}

|zTu−Q(zTu, ∆, b, δ)| (6)

III. SPREAD TRANSFORM QIM WITH PERCEPTUAL
MODELING

¿From Equation (5) we see that the change to the signal x
is in the direction of the random vector u, and the magnitude
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Fig. 3. Block diagram of spread transform Dither Modulation

of the change is controlled by the quantization error. Since u
is random, no consideration is given to the perceptual qualities
of the signal x.

In principle, a perceptual model can provide an estimate
of the smallest change that each component of the signal
x accepts before becoming just noticeable. In prior work,
we have referred to the change needed to introduce a just
noticeable distortion (JND) as the “slack”.

In practice, for image signals, Watson provides a perceptual
model for calculating the slack associated with each discrete
cosine transform (DCT) coefficient within an 8 × 8 block
[11]. Thus, given an image, x, and its block-based DCT
coefficients, X, we can apply Watson’s model to compute
the corresponding slack vector associated with each DCT
coefficient. The larger a element of this vector, the more we
may change the corresponding DCT coefficient before the
change becomes noticeable.

For DM, we propose assigning to the projection vector, u,
the slacks computed by Watson’s perceptual model, s, rather
than pseudo-randomly generating the vector. Note that the
vector magnitude is normalized to unity and quantization is
performed in the DCT domain, as illustrated in Figure 4.
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Fig. 4. Block diagram of STDM watermark embedder and detector with a
perceptual model.

In this arrangement, which we refer to as STDM-W (STDM
Watson), the change in x is no longer randomly distributed,
but is arranged based on the perceptual properties of the

signal - more change is directed to coefficients with larger
slack. As a result, the perceptual distortion introduced by DM
should be substantially reduced, as is confirmed by subsequent
experiments.

Since the projection vector is now a function of the signal
(image), it is unique for each image. Consequently, a blind
watermark detector must be able to estimate the projection
vector from the received, watermarked signal, as illustrated
in Figure 4. However, since watermark embedding alters the
signal, the detector’s estimate of the projection vector may not
be exact.

In order to overcome this potential weakness, we also
consider an alternative algorithm which does not require
knowledge of Watson’s perceptual slacks at the detector. When
we look at the original STDM algorithm depicted in Figure 3,
the embedding algorithm simply reduces to “modify the cover
Work x so that its projection onto some random vector u
is equal to a given value”. An obvious and straightforward
solution is to move the cover Work along the projection
direction u. However this is not mandatory! One may prefer
to move the cover Work along a direction, close to u, but
which introduces significantly less perceptual distortion. In this
perspective, previous work (E PERC OPT in [12]) suggests to
use a perceptually shaped version, us, defined for each sample
as follows:

us(i) =
(
u(i)s(i)4

) 1
3 (7)

where s are Watson’s perceptual slacks. The embedding
process can then be written:

y = x +

(
Q(xTu, ∆,m, δ)− xTu

)

uT
s u

us, m ∈ {0, 1} (8)

Simple manipulation of Equation (8) reveals that yTu =
Q(xTu,∆, m, δ). This implies that the detector given in
Equation (6) can be reused. The key point is that this detector
does not require the knowledge of Watson’s perceptual slacks.
We refer to this algorithm as STDM-RW (STDM random
Watson).

IV. EXPERIMENTAL RESULTS

Experiments were performed on 1000 images from the
Corel image database. Each image has dimensions 512× 512.
Quantization was performed on the DCT coefficients. We
considered two embedding rates of 1/32 and 1/320. Thus, the
1/32 rate code embeds two bits in each 8×8 block. However,
the number of modified coefficients is 62 rather than 64 since
we ignore both the lowest and highest frequency coefficients
of each block. Similarly for the rate 1/320 code.

Figures (5) and (6) illustrate the robustness of the original
STDM together with the two perceptually adaptive methods,
STDM-W and STDM-RW for the two embedding rates. At a
rate of 1/32 we observe a small improvement in robustness
compared with Figures 1 and 2. The point at which the BER
exceeds 20% is now at about a JPEG quality factor of 92%
compared with about 96% for regular DM and 97% for RDM-
MW. It should also be noted that the BER does not increase



as rapidly for the spread transform methods. A BER of 50%
is not reached until the JPEG quality factor is almost 50%,
while for DM and RDM-MW, this occurs for JPEG quality
factors of 75% and 85% respectively.
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Fig. 5. Bit error rate (BER) as a function of JPEG compression for STDM-
based schemes using an embedding rate of 1/32 and a DWR of 35 dB
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Fig. 6. Bit error rate (BER) as a function of JPEG compression for STDM-
based schemes using an embedding rate of 1/320 and a DWR of 35 dB

At the rate of 1/320, we observe significant improvements,
as shown in Figure 6. First, the point at which the BER exceeds
20% is now at about a JPEG quality factor of 84% for STDM
and STDM-RW and about 75% for STDM-W. In comparison,
DM and RDM-MW exceed the 20% BER for JPEG quality
factors of 92% and 97% respectively. Once again, the BER
does not increase as rapidly. A BER of 50% occurs at a JPEG
quality factor of 55% for STDM and STDM-RW and at about
50% for STDM-W.

The performance of the STDM and STDM-RW methods is

approximately the same. This is to be expected. The perceptual
modeling was not intended to improve robustness, but rather
improve fidelity. And indeed, the perceptual distortion is con-
siderably reduced. For a constant DWR of 35 dB, the average
Watson distance between the original and watermarked images
was 23 for STDM but only 4.7 for STDM-W and 4.1 for
STDM-RW. However, surprisingly, for STDM-W, we not only
observe and improvement in fidelity but also an improvement
in robustness at low embedding rates.

Finally, Figure 7 shows the robustness to JPEG compression
for the three ST methods when the Watson distance is fixed at
23 (rather than fix the DWR to 35 dB). In this case, we observe
significant improvements in robustness for a fixed fidelity.
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Fig. 7. Bit error rate (BER) as a function of JPEG compression for STDM-
based schemes using an embedding rate of 1/32 and a Watson distance of
23

V. CONCLUSIONS

Quantization index modulation methods are fragile to val-
umetric scaling and re-quantization. While considerable work
has been directed to improving the robustness to scaling, the
issue of re-quantization has received much less attention. This
is surprising since re-quantization commonly occurs due to
lossy compression, numerical rounding and analog-to-digital
conversion.

Of the number of QIM variants, spread transform dither
modulation exhibits most robustness to re-quantization. We
proposed two modifications to STDM to incorporate percep-
tual modeling. In the first method, referred to as STDM-
W, the random projection vector is replaced with the vector
representing the magnitudes of the slacks associated with each
DCT coefficient. This has the effect of directing the change
to the cover signal to those areas of the signal where the
changes will be least noticeable. Since the projection vector
is now image dependent, the detector must also be able to
estimate the slack for each image. Although the very act of
watermark embedding may slightly change these slack values,



experimental results indicate that these changes are sufficiently
small to permit very good detector performance.

Nevertheless, a second method, called STDM-RW, was also
proposed, which avoided the need for the detector to determine
the perceptual slacks for each image.

Experimental results were performed on 1000 images from
the Corel database. We examined the robustness of the spread
transform algorithms for embedding rates of 1/32 and 1/320.
At high embedding rates, all three ST algorithms performed
similarly. However, the perceptual distortion, as measured by
the Watson distance, was 23 for the original ST algorithm,
but only 4.7 for STDM-W and 4.1 for STDM-RW. For a
JPEG quality factor of 92% or less, all three STDM algorithms
exhibited a BER or over 20%. In comparison, regular DM and
RDM-MW exceeded the 20% BER for JPEG quality factors
of 96 and 97% respectively.

At the lower rate of 1/320 the improvement over DM and
RDM-MW is much greater. Here a BER of 20% is exceeded
for a JPEG quality factor of approximately 84% for STDM
and STDM-RW and at 75% for STDM-W. This compares with
quality factors of 92% and 96% for DM and RDM-MW.

Surprisingly, at the lower code rate, we also observe signifi-
cant improvements in robustness as well as fidelity for STDM-
W. It is unclear why this is so.

If the Watson distance rather than the DWR is held fixed,
then the two adaptive methods show much more robust to
re-quantization. Experimental results showed that for a fixed
Watson distance of 23, and an embedding rate of 1/32 (i.e. 2
bits per block), the STDM-RW is robust to JPEG compression
with a quality factor of about 65 before the BER exceeds 20%.
For STDM-W, even at a JPEG qualitay factor of 50%, the BER
did not exceed 15%.

The proposed ST algorithms, while exhibiting improved
performance to re-quantization, are not invariant to valumetric
scaling. This remains a direction of future work.

REFERENCES

[1] M. Costa, “Writing on dirty paper,” IEEE Transactions on Information
Theory, vol. 29, no. 3, pp. 439–441, May 1983.

[2] B. Chen and G. Wornell, “Quantization index modulation: A class
of provably good methods for digital watermarking and information
embedding,” IEEE Transactions on Information Theory, vol. 47, no. 4,
pp. 1423–1443, May 2001.

[3] K. Lee, D. Kim, T. Kim, and K. Moon, “EM estimation of scale factor
for quantization-based audio watermarking,” in Proceedings of the 2nd
International Workshop on Digital Watermarking, ser. Lecture Notes in
Computer Science, vol. 2939, October 2003, pp. 316–327.
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