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Abstract—Automatically generating descriptive captions for
images is a well-researched area in computer vision. However,
existing evaluation approaches focus on measuring the similar-
ity between two sentences disregarding fine-grained semantics
of the captions. In our setting of images depicting persons
interacting with branded products, the subject, predicate,
object and the name of the branded product are important
evaluation criteria of the generated captions. Generating image
captions with these constraints is a new challenge, which
we tackle in this work. By simultaneously predicting integer-
valued ratings that describe attributes of the human-product
interaction, we optimize a deep neural network architecture
in a multi-task learning setting, which considerably improves
the caption quality. Furthermore, we introduce a novel metric
that allows us to assess whether the generated captions meet
our requirements (i.e., subject, predicate, object, and product
name) and describe a series of experiments on caption quality
and how to address annotator disagreements for the image
ratings with an approach called soft targets. We also show
that our novel clause-focused metrics are also applicable to
other image captioning datasets, such as the popular MSCOCO
dataset.
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I. INTRODUCTION

Marketing companies have decades of experience in an-
alyzing text fragments in order to investigate sentiment and
consumer-brand-relationships. However, large collections of
images in social media rarely come with a description
connected to them. By transcribing images into text, we
want to enable marketing companies to rely on text analysis
tools that capture two important aspects in descriptions: (1)
Occurrence of words that identify a certain brand and (2)
attributes and verbs that allow to detect sentiment, affection
to a brand and other relevant properties depicted by an
image.

Encoder/decoder networks, like the one presented by
Vinyals et al. [1] are promising, when generating captions for
input images. Inspired by their work, we build a multi-modal
model which simultaneously predicts image ratings. Image

Figure 1: Test images from our dataset. Our model generates
“a female hand holds a can of cocacola above a tiled floor.”,
“a hand is holding a kinderriegel bar.”, “a hand is holding
a can of heinz.”, and “a young woman is holding a nutella
jar in front of her face.” for the top left, top right, bottom
left, and bottom right image, respectively.

ratings describe three different attributes of interactions
between humans and branded products in our case. In other
words, our model processes three modalities: images, textual
descriptions, and image ratings.

In particular, we look at images that contain an object
which is related to a brand by depicting a logo of this brand
on it. Such an image, for instance, could depict persons
drinking out of a Coca-Cola bottle. Figure 1 shows example
images from our test set together with generated captions.

It is of particular interest to us to correctly identify the



brand contained in the image, but state of the art models
like [1], [2] tend to produce rather generalized descriptions,
i.e., the model could just leave out the brand, because it has
generalized from pictures of persons holding bottles from
different brands. For example, the caption generated by [1],
[2] for the top-left image in Figure 1 is “a close up of a
person holding a cell phone”. In contrast, we want our model
to correctly mention the name of the brand contained in the
image within the sentence.

Our second goal is to simultaneously predict attributes
that describe the involvement of the human with the brand,
whether the branded product appears in a positive or neg-
ative context, and whether the interaction is functional or
emotional. For example, in a functional interaction a person
eats a product, while an emotional interaction would depict
people taking selfies with branded products. We call these
attributes image ratings, which are integer values from 0 to
4 encoding how much the rating attribute holds. Our goal
is to simultaneously predict ratings and, thus, improve the
overall quality of the generated sentences in a joint multi-
modal optimization.

Our contributions are (1) We show that using soft targets
as a training signal in a classification setting can lead
to a better accuracy and model the occasional uncertainty
between multiple ground-truth annotators. (2) We propose a
constituent sensitive metric to assess the quality of the sub-
ject, predicate, and object of generated sentences. Bundled
with synonym tables, we are able to verify the generated
captions under the aspect of semantical correctness. We also
show that this metric can be calculated on popular image
captioning datasets such as MSCOCO [3].

II. RELATED WORK

The generation of image descriptions by recurrent neural
networks is part of late research. Vinyals et al. [1], [2] use
this approach in form of an LSTM network. Furthermore,
Karpathy et al. use a Bidirectional Recurrent Neural Net-
work [4] for generating captions. In contrast to Vinyals et
al., Karpathy et al. gradually extend their technique to not
only describe a whole image, but parts of the image which
they call dense captioning [5], [6]. Kiros et al. [7] also use
an encoder/decoder approach, where they embed images and
sentences in the same common space and use an LSTM for
encoding the sentences.

Using soft targets in a classification setting has also
been explored by Teney et al. [8]. In a different task
called Visual Question Answering, they face a classification
problem, where multiple annotators gave an answer to a
question regarding the content of an input image. Several
thousand unique answers given by the annotators constitute
the possible classes. Obviously, annotators do not always
agree on the same answer, hence, this classification problem
was modeled using soft targets (probability distributions of
each answer) given the relative frequency of given answers.

Multi-task learning (MTL) is a long studied domain in
machine learning (cf. Caruana [9]). Luong et al. [10] work
on MTL with focus on sequence to sequence learning.
They introduce three different MTL settings for sequence
to sequence models, i.e., the one-to-many setting, the many-
to-one setting, and the many-to-many setting using multiple
decoders and encoders. Our work falls into the category of
one-to-many MTL setting, i.e., we use the same encoder
(CNN) and multiple decoders (image captioning and three
image ratings). Harzig et al. [11] use the same configuration,
where they generate image captions and image ratings with
linear regression at the same time.

III. MULTI-MODAL BRAND IMAGES CAPTIONING

Our model uses a real-world dataset, which was created by
a market research non-profit association (GfK Verein). The
dataset consists of images that depict scenarios of persons
interacting with branded products, e.g., a man holding a can
with a Coca-Cola logo on it. Figure 1 depicts four sample
images from this dataset showing four different classes. For
a subset of all images (2,718), five annotators created three
image ratings with five possible values (0−4) each. There are
three kinds of image ratings, the first (r1) describing whether
the person interacts with the branded product in a positive
(0) or negative (4) way, the second (r2) describing if the
person in the image is involved (0) with the branded product
or uninvolved (4), and the third (r3) describing if there is
an emotional (0) or a functional (4) interaction with the
branded product. Five annotators created a caption for each
image, hence, our dataset contains three different modalities
with a total of 10,529 images, 52,645 captions and 13,590
image ratings. Because of the small number of images in
our dataset, we split it into a training and test dataset with a
ratio of 9 to 1 and use use 10-fold cross-validation to select
the best performing model.

A. Image captioning model

We build upon the model from Harzig et al. [11], which
use an encoder/decoder network structure similar to Vinyals
et al. [1]. The encoder network is a CNN (Inception-v3)
that encodes the contents of an image I into a feature map.
The decoder network is an LSTM optimized to maximize
the probability of generating the ground-truth image cap-
tion given an input image. Additionally, they introduce a
classification-aware loss function Lcls, which penalizes if
the correct brand name is not part of the generated caption.
Thus, we optimize the loss function

L(I, S) = −
N∑
t=1

St log nt + Lcls(I, S), (1)

where N is the number of words in sentence S, St is the
ground-truth word one-hot vector at time step t and nt the
predicted word probability vector at time step t.



B. Soft targets for annotator disagreements

For a subset of images, we have three annotations from
five different annotators each, rating the interactions between
the person and product in the following three dimensions:
sentiment (positive vs. negative), involvement (high vs. low),
and motive (emotional vs. functional). The sentiment of
the interactions is perceived differently by different anno-
tators. In order to account for this issue, we propose (1) a
majority rating and (2) soft targets for learning to predict
the image ratings. Every image rating can have an integer
value between 0 and 4. (1) We automatically determined
the majority rating, i.e., the rating that most of the five
annotators agree on. If there was no majority, we asked an
additional annotator to determine this rating based on the
image shown. In this case we train with a softmax cross-
entropy loss Lr and the majority rating being the ground-
truth. (2) We use soft targets as ground-truth labels. With
soft targets, we model the occasional uncertainty between
the 5 annotators, e.g., if 4 annotators choose 4 as rating
and one annotator chooses 3 as rating, our ground-truth
signal ~gr would be [0, 0, 0, 0.2, 0.8], which describes the
probability distribution of the 5 possible values of each
rating (r ∈ {r1, r2, r3}). We use the sigmoid (σ) cross-
entropy as loss function

~Lr(I) = −~gr� log(σ(~ρr))−(1−~gr)� log(~gr−σ(~ρr)) (2)

with ~gr being the ground-truth and ~ρr being the prediction
for image rating r. Note, that the sigmoid function and the
log are applied element-wise. This can be seen as logistic
regression, which predicts the probability of each rating
value. The total loss of our model now changes to

Ltotal = L(I, S)+~1 · ~Lr1(I)+~1 · ~Lr2(I)+~1 · ~Lr3(I). (3)

IV. SPO CAPTIONING METRICS

Common metrics developed for the task of machine
translation are BLEU [12] and METEOR [13]. CIDEr [14]
is a metric developed specifically for image captioning and
designed to correlate well with human judgment [14]. All
these metrics have shown to score higher for machine-
generated sentences than for human-generated sentences for
the MSCOCO captioning challenge in some cases. We also
find that captions generated by our models score higher in
comparison to the ground-truth sentences (see Section V-E
and Table I). Common machine translation metrics also
have the downside that they do not capture tiny important
pieces of generated sentences like the object of interest
or the predicate. For example, the generated sentence A
male hand holds a can of cocacola above a tiled floor. for
the ground-truth sentence A female hand holds a can of
cocacola above a tiled floor. has a BLEU-4 score of 0.827,
which is very high. In our setting such minor differences
are very important and, thus, we introduce novel metrics

and make the assertion that popular metrics may disregard
the semantics of the captions.

To allow for a more fine-grained evaluation of generated
captions than existing methods do, we introduce subject-
predicate-object (SPO) accuracies. We show in Section V-F
that we can also use this metric on the MSCOCO [3] image
captioning dataset, therefore, it is presenting itself as an
alternative to the common metrics that try to measure the
quality of generated sentences. For our dataset, we manually
collect the subject, predicate, and object of each of our
ground-truth sentences. Since the brand names of the objects
on the images are already known, we made sure that the
annotators do not choose the brand name as object, but the
actual object, i.e., the caption “A hand is holding a Coca
Cola can in a car.” results in the SPO triple (hand, hold,
can).

Because we have five sentences from different annotators
per image, we also get 5 ground-truth SPO triples per image.
We require the LSTM generated sentence to only match
one of the SPO triples. We define three different matching
criteria mn per generated sentence: (1) we set ms = 1, if
the subject of the generated sentence matches, (2) mp = 1,
if the predicate matches and (3) mo = 1 if the object
matches. ms,mp,mo are set to 0, otherwise. By combining
those matching criteria, we define eight derived matchings
m0 := ¬mp ∧ ¬mo ∧ ¬ms, m1 := mo, m2 := ms, m3 :=
mo ∧ms, m4 := mp, m5 := mp ∧mo, m6 = mp ∧ms and
m7 := mp ∧mo ∧ms. For example, m4 describes whether
the predicate was generated correctly and m7 equals 1 if
subject, predicate, and object were generated correctly. We
define the accuracies an based on those matching criteria to
be the fraction of generated captions over the test set, which
satisfy the matching criterion. Thus, we have a number of
different accuracies, which tell us how often we generated a
sentence with the correct subject, predicate, or object, and all
combinations of these. Different matching accuracies have
different evaluation emphases. For example, for a captioning
task that focuses on the interactions between persons and
objects the a4 accuracy may be of special interest, while for
a task that specializes on correctly identifying the actor, the
a2 accuracy may be suited best.

Since two different words can literally have the same
meaning (e.g., ad and advertisement), we use synonym
tables for our subjects and objects. Based on an analysis
of captions collected by our annotators, we found that
annotators tend to avoid repeating words (e.g., they alternate
between pack, package and packaging). Hence, we created
synonym tables consisting of manually encoded bidirectional
and unidirectional synonyms. Bidirectional synonyms are of
equal meaning. Unidirectional synonyms can not be used
synonymous in all contexts, e.g., the words man and boy
can be replaced by guy, but we can not implicitly infer the
age of a guy.



Table I: Results for our models. The first column states the model name, columns 2-4 depict the ratings accuracies for ratings
r1, r2, r3. The following 8 columns represent the SPO accuracies which are followed by the BLEU-4 (B-4), METEOR
(Met) and CIDEr (Cid) scores. The last two columns show the overall accuraccy (OA) and mean accuracy (MA) as defined
in [11].

Method (Initialization) ar1 ar2 ar3 a0 a1 a2 a3 a4 a5 a6 a7 B-4 Met Cid OA MA

MM Regression [11] (ft) - - - - - - - - - - - 0.61 0.29 2.11 0.91 0.83

base (IC-v3) 0.57 0.51 0.55 0.00 0.76 0.83 0.68 0.80 0.66 0.68 0.59 0.53 0.33 1.56 0.75 0.56
base-cls (IC-v3 Logos) 0.63 0.59 0.58 0.00 0.81 0.78 0.65 0.80 0.68 0.65 0.56 0.54 0.33 1.75 0.91 0.81
fuse (IC-v3 Logos) 0.62 0.62 0.57 0.00 0.81 0.83 0.69 0.80 0.70 0.68 0.60 0.54 0.34 1.78 0.88 0.77
fuse-ft (fuse) 0.76 0.67 0.70 0.00 0.76 0.80 0.63 0.81 0.67 0.66 0.56 0.51 0.33 1.62 0.77 0.46

soft targets (base-cls) 0.63 0.59 0.58 0.00 0.81 0.78 0.65 0.80 0.68 0.65 0.56 0.54 0.33 1.75 0.91 0.81

soft targets (fuse-ft) 0.76 0.70 0.71 0.00 0.85 0.87 0.76 0.86 0.75 0.76 0.68 0.61 0.37 2.04 0.90 0.79
soft targets-ft (fuse-ft) 0.75 0.71 0.71 0.00 0.86 0.89 0.78 0.86 0.76 0.78 0.70 0.61 0.38 2.07 0.91 0.80
ratings cls (fuse-ft) 0.73 0.68 0.68 0.00 0.84 0.88 0.75 0.84 0.72 0.75 0.65 0.60 0.37 2.04 0.91 0.82
ratings cls-ft (fuse-ft) 0.75 0.70 0.67 0.00 0.86 0.88 0.77 0.85 0.75 0.76 0.67 0.61 0.37 2.06 0.92 0.84

gt - - - - 0.68 0.98 0.67 0.98 0.67 0.97 0.66 0.52 0.38 1.94 - -

V. RESULTS

We conducted a series of experiments on different models.
In this section, we present results for 9 models, which
we depict in Table I. All models are trained using the
classification-aware loss (see [11]). Model base is a model
initialized with parameters from a vanilla Inception-v3 net-
work. base-cls is initialized with an Inception-v3 network
finetuned to classify our 26 logo classes. fuse is initialized
the same way, but trained on the LogosExtended dataset (lo-
gos + MSCOCO) with the CNN network freezed, while fuse-
ft is trained for 2M additional iterations with the Inception-
v3 CNN unfreezed. Our final models soft targets, ratings
cls and the corresponding finetuned models (ft) use fuse-
ft as initialization and the logos only dataset. To show the
effectiveness of MTL, we also trained a model with base-cls
as initialization (soft targets (base-cls)) without unfreezing
the encoder network. All scores except the sentence classifi-
cation accuracy decrease considerably when compared to a
model trained in a multi-task setting (e.g., soft targets (fuse-
ft)).

A. Training

We train the captioning model with the same parameters
Vinyals et al. [1], [2] use. We train our logos only dataset for
68 epochs and decay the learning rate 8 times by a factor
of 0.5. We train the fuse model with the LogosExtended
dataset, where we multiply our dataset 8 times to compensate
for the fewer examples compared to the MSCOCO dataset.
We train fuse with the extended dataset for 56 epochs and
decay the learning rate 7 times. For our extended model
with the classification-aware loss, we just optimize all losses
simultaneously according to Equation 3. In this step, we
freeze the Inception-v3 parameters.

B. Image ratings

In the following, we present the results for predicting our
three different image ratings r1, r2 and r3. For each rating,
we use FC layers with 5 output neurons and model it (1) with
a softmax cross-entropy loss as a classification problem and
(2) with a sigmoid cross-entropy loss as a logistic regression
problem, i.e., we predict the probality distribution among the
different rating values (an integer-value between 0 and 4).
We evaluate the performance by using the accuracy measures
ar1 , ar2 and ar3 , which tell us how often our model predicts
the correct rating out of all evaluation examples. To allow
comparison between (1) and (2), we use the majority rating
as ground-truth for both methods. For the predicted value,
we take the argmax value of the probability distribution
vector in case of (2) and the argmax of the softmax for
method (1) as is common practice. As we see in Table I,
our best model soft targets-ft achieves 0.75, 0.71 and 0.71
for the accuracies ar1 , ar2 and ar3 , respectively. For the
top left image in Figure 1 the image ratings predict that
the interaction is neither positive nor negative (r1 = 2), the
person is rather involved with the product (r2 = 1) and the
interaction is more functional than emotional (r3 = 3).

In addition to analyzing the image ratings with the ac-
curacy measure, we also compare the predicted probability
distribution (2) against the distribution generated by the
annotators, i.e., we want to examine if we can imitate
the occasional uncertainty between our human annotators.
We calculate the L2 distance from the predicted value to
the majority rating for both the ground-truth values and
predicted values. In Figure 2, we visualize the prediction
distribution of model soft targets-ft compared to the test
split ground-truth. The green bars show the fraction of
predicted ratings, which have an L2 distance to the ground-
truth rating of 0−4, while the red bars show the L2 distance
of each annotator to the majority rating. We can observe
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Figure 2: The predicted (green) L2 deviations from the ground-truth majority rating in comparison to the mean L2 deviations
(red) of the annotator labels to the majority rating.

that the predicted distribution closely models the annotator
disagreement on the hold-out test set. We also visualized the
normal distributions of the predictions and ground-truth and
their mean and standard deviations. For r1 the annotators
deviate µ = 0.30 from the majority rating on average and
have a standard deviation of σ = 0.50. The distribution
predicted by our model comes really close with µ = 0.28
and σ = 0.49. Also, rating r3 has a very similar distribution
and only r2 differs slightly from the ground-truth.

Harzig et al. [11] face a similar problem, and they model
image ratings as linear regression which directly predicts the
rating value as a float value. They evaluate the predictions
by calculating the L2 distance from the float value prediction
to the mean of the ground-truth annotations. To compare the
predicted deviations, they also calculate the deviation from
one annotator to the mean of the others and average this
value for all annotators. The best model in their work (see
the first row of Table I) achieves mean L2 distances of 0.52,
0.78, and 0.70 for ratings r1, r2, and r3, respectively. The
mean L2 distances for the ground-truths (they compare one
annotator against the mean of the other 4 and average over
all 5 annotators) are 0.25, 0.19, and 0.31, i.e., the mean of
the predictions differ from the ground-truth by 0.27, 0.59,
and 0.39, respectively. In comparison, our best model only
differs from the ground-truth mean by 0.02, 0.07, and 0.03
for ratings r1, r2, and r3, respectively.

For a thorough analysis, we employed the classical classi-
fication approach, i.e., we used a softmax cross-entropy loss
for the image ratings with the majority rating as the ground-
truth. In Table I, we denote the majority rating sampling
strategy as ratings cls and ratings cls-ft. None of those
experiments could surpass the classification accuracy of the
soft targets approach (0.75, 0.70, and 0.67 vs. 0.75, 0.71, and
0.71 for rating accuracies ar1 , ar2 , and ar3 , respectively).

C. SPO accuracies

In Table I, we also report the scores our models achieve
with our proposed SPO accuracy metrics. As we did for all
other evaluation measures, we calculated the ground-truth
accuracies for a0 - a7 by calculating the accuracies for every

annotator against the other four annotators and averaged over
the accuracies. In our models we use beam search with a
beam size of k = 3 during evaluation and inference. During
evaluation, we choose the caption which matches most of
the three sentence clauses defined by us (subject, predicate,
object). With the soft targets-ft model, we achieve the best
scores, i.e., we identify the correct predicate in 86% of all
cases and generate completely correct sentences (according
to the SPO metric) in 70% of all cases. In comparison, our
base model only generates sentences with matching subjects,
predicates and objects only in 59% of all cases (base). Note,
that a0 = 0 represents a perfect accuracy for the accuracy
a0. This means that for every generated caption at least one
matching clause was generated.

D. Sentence classification accuracy

We employ the SCA metrics from [11], which we use as
an indicator on how well our model performs in terms of
generating the correct brand name. Compared to [11], we
achieve similar performance with our model soft targets-
ft and better performance when using the traditional clas-
sification approach for the image ratings (ratings cls-ft).
Unsurprisingly, the finetuned models (. . . -ft) perform better
than the base model.

E. Common captioning metrics

Additionally, we also evaluate our models with common
machine translation and image captioning metrics. We use
the official script provided by MSCOCO to calculate these
metrics. We report ground-truth scores in the last row of
Table I. We calculated them by comparing each annotator
against the other four and then averaging over all of them.
We only report scores calculated on our dataset without
MSCOCO. Hence, when training on both datasets at once
(fuse-ft), the scores drop in comparison to training on the
logos dataset only (see method base-cls). For final optimiza-
tion we use the fuse-ft as initialization for the logos only
dataset. We see that this model (soft targets-ft) performs
best for the common sentence metrics except for the CIDEr
metric. Thus, we conclude that using soft targets instead



of linear regression (cf. Harzig et al. [11], MM Regression)
has no negative effect on the overall sentence quality. Using
the traditional classification approach instead of soft targets
(ratings cls-ft) yields similar results.

F. SPO accuracies on MSCOCO

Table II: SPO accuracies for the Show and Tell model on
the MSCOCO development test split.

a0 a1 a2 a3 a4 a5 a6 a7

NICv2 [2] 0.00 0.63 0.67 0.42 0.64 0.37 0.39 0.22

We want show that our SPO accuracies measure can be
used on other image captioning datasets. To do so, we gen-
erated SPO ground-truth triples from the human-annotated
sentences of the MSCOCO validation split. We use the
natural language processing library spaCy1 to extract SPO
triples from sentences similar to how our human annotators
extracted the triples from our dataset and publish these
annotations2. We then trained the Show and Tell [1], [2]
implementation from the TensorFlow models repository on
MSCOCO, which yielded scores slightly worse than those
published by Vinyals et al. [2].
We found that the ground-truth captions of MSCOCO often
contain no predicate (e.g., A room with blue walls and a
white sink and door.). We were able to automatically extract
SPO ground-truth triples (including the triples without a
predicate) from 184,308 out of 202,654 image captions in
total. Additionally, we did not collect synonym tables for
the MSCOCO ground-truth SPO triples, which decreases
the final SPO accuracies. In Table II, we list the different
accuracies the MSCOCO model achieves with our metric.
We match at least one object in 63.14%, the subject in
66.82%, and the predicate in 63.91% of all cases. However,
as we see with the a7 accuracy, the Show and Tell model
only produces captions which contain the correct subject,
predicate and object only in 21.97% of all cases. Manually
annotated SPO triples would lead to a more accurate result.

VI. CONCLUSION

We presented an architecture capable of simultaneously
generating image captions and ratings for images depicting
scenes of interactions between humans and branded prod-
ucts. Our focus lies on generating captions that satisfy other
constraints than traditional image captioning pipelines. First,
we presented novel clause-focused accuracy metrics that
focus on the correct transcription of the subject, object, and
predicate. In addition to the ground-truth image captions,
we annotated subject, object, and predicate (including syn-
onyms) for our dataset to be able to measure the quality of
our generated sentences in terms of these important clauses

1https://spacy.io/
2https://github.com/philm5/mscoco-spo-triples

of the sentence. Furthermore, we automatically extracted
subject, predicate, and object from the ground-truth annota-
tions of the popular MSCOCO dataset to verify our approach
by applying our metrics on a different dataset. Second, in a
multi-modal training procedure, we predicted ratings from
the input image, which describe (1) if the person is involved
with the brand, (2) whether the interaction is rather positive
or negative, and (3) whether the interaction is functional or
emotional. By modeling the occasional uncertainty between
annotators with a soft target logistic regression, we were
able to improve overall sentence quality in an end-to-end
multi-task optimization.
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