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A robust baro-radar-inertial odometry m-estimator
for multicopter navigation in cities and forests

Rik Girod1, Marco Hauswirth1, Patrick Pfreundschuh1, Mariano Biasio1, and Roland Siegwart1

Abstract— Search and rescue operations require mobile
robots to navigate unstructured indoor and outdoor envi-
ronments. In particular, actively stabilized multirotor drones
need precise movement data to balance and avoid obstacles.
Combining radial velocities from on-chip radar with MEMS
inertial sensing has proven to provide robust, lightweight, and
consistent state estimation, even in visually or geometrically
degraded environments. Statistical tests robustify these esti-
mators against radar outliers. However, available work with
binary outlier filters lacks adaptability to various hardware
setups and environments. Other work has predominantly been
tested in handheld static environments or automotive contexts.
This work introduces a robust baro-radar-inertial odometry
(BRIO) m-estimator for quadcopter flights in typical GNSS-
denied scenarios. Extensive real-world closed-loop flights in
cities and forests demonstrate robustness to moving objects
and ghost targets, maintaining a consistent performance with
0.5% to 3.2% drift per distance traveled. Benchmarks on public
datasets validate the system’s generalizability. The code, dataset,
and video are available at https://github.com/ethz-asl/rio.

I. INTRODUCTION

Mobile robots are actively researched for disaster re-
sponse. Small, multirotor uncrewed aerial vehicles (UAVs)
are ideal for exploration as they can traverse rubble and
obstacles [1]. In confined spaces UAVs need onboard po-
sitioning to correct inertial measurement unit (IMU) drift.
Vision, lidar, and thermal navigation solutions have been pro-
posed [2, 3, 4], but these are vulnerable to visual degradation,
geometric ambiguity, or weak temperature gradients.

With the availability of automotive single-chip frequency-
modulated continuous-wave (FMCW) radars [5], Doer and
Trommer [6] demonstrated the first radar-inertial-stabilized
quadcopter flights. Due to its active sensing principle, radar
is robust to visual degradation, such as darkness or fog.
Further, radar’s ability to measure linear displacements and
IMU’s ability to measure orientation changes make them an
outstanding sensor combination to estimate the standard nav-
igation state of position, velocity, and orientation. This work
considers the fusion of bearing Doppler radar detections with
IMU measurements.

A core assumption in our work and others is that all radar
detections are static. However, moving objects and singu-
lar ghost targets introduced by multipath propagations or
electromagnetic noise often violate this assumption. Fig. 1a
shows that these outliers have a radial velocity inconsistent
with the robot movement, and thus, statistical outlier tests
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(a) Urban environment hovering. (b) Forest path forward flight.

Fig. 1: Onboard view from our radar-stabilized quadcopter.
The points show 1 s accumulated, overlayed radar detections
colored by their radial velocity (green: zero, orange: towards
the radar, blue: away from the radar).

robustify a radar-inertial odometry (RIO) estimator. Our
work shows robust optimization sufficiently suppresses noise
across realistic environments. In contrast to binary outlier
rejection, e.g., RANSAC, m-estimation requires only a single
tuning parameter.

A second necessity for estimating body motion is at least
three radar detections with linearly independent direction-
of-arrival (DoA). Our experiments show that sufficient inde-
pendent detections are generally given across human-made
and natural environments. The estimation is always stable,
even in scenes where the bearing angle distribution is ill-
conditioned, such as the dense ground reflections in Fig. 1b.

Finally, the DoA may be biased, causing drift, especially in
the gravity-affected elevation direction. Differential barom-
etry efficiently mitigates vertical drift. Robust optimization
also helps to reject noise induced by propeller downwash.

This work presents an experimental validation of BRIO
for quadcopter navigation in urban and natural environments.
It derives a factor-graph m-estimator with robust bearing
Doppler and differential pressure factors. Extensive exper-
iments show estimator robustness against common outliers,
such as cyclists, pedestrians, streetcars, multipath detections,
and aerodynamic effects. The estimated trajectory shows
low drift and sufficient smoothness for multirotor feedback
control. Summarized, our contributions are

• A BRIO m-estimator with robust bearing Doppler, ro-
bust differential barometry, and zero-velocity factors.

• Experimental tuning, robustness and performance anal-
ysis through radar-stabilized quadcopter flights in real-
istic natural and human-made environments.

• Demonstrating generalizability and state-of-the-art per-
formance on a public dataset benchmark.

• Open-source estimator, sensor drivers, and dataset.
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II. RELATED WORK

Yokoo et al. [7] introduced the idea of pose estima-
tion from sparse FMCW radar bearing Doppler and IMU
measurements. Consequently, Kellner et al. [8] showed that
cost-efficient, single-chip FMCW radar delivers ego-motion
estimation for autonomous driving. They showed that two
linearly independent radial velocity measurements are suffi-
cient to compute a car’s linear velocity.

Doer and Trommer [6] generalized this concept to three-
dimensional navigation. They introduced a navigation filter
combining IMU and barometry with linear velocities com-
puted from at least three radial velocities and least squares.
However, their binary radar outlier tests require 16 tuning
parameters, complication setup adaptation. Their barometry
neglects aerodynamic disturbances and bias observability.

Their follow-up work uses multiple radars and introduces
yaw estimation through a Manhatten world assumption [9].
Their results with additional sensors are mixed, and the
assumption is unsuited for natural environments. Instead, our
results show sufficient yaw accuracy can be achieved on a
consumer-grade IMU using turn-on-bias calibration.

Huang et al. [10] examine how radar resolution affects
state estimation accuracy. A robust optimization computes
the linear velocity from multiple radar detections and extracts
the covariance. A sliding window estimator fuses it with IMU
data. Our experiments show that a simpler single radar-baro
setup provides competitive performance and smooth state
estimation for aerial robots in real-world environments.

Michalczyk et al. [11] combine instantaneous radar veloc-
ity updates with radar landmark tracking in a filter frame-
work. The follow-up work achieves a drift between 0.17%
to 1.62% [12]. However, feature tracking and mapping add
complexity and are a source of error [13]. In particular,
generalizing feature association is challenging due to the
fluctuating nature of radar reflections [14, pp. 106-108].
Michalczyk et al. [12] only present results in a small lab
environment with artificially placed corner reflectors. We
limit tracking to static scenes to detect standstill. Thus, we
avoid restrictive radar target assumptions. Our approach has
similar accuracy while showing broader applicability.

Kramer and Heckman [15] present a fixed-lag smoother,
similar to a total least squares problem. They co-estimate
robot velocity, orientation, radar detection DoA, and Doppler
velocity. However, to stabilize the optimizer, they require
MLESAC prefiltering on top of robust loss. Our approach
considers radar reflections fixed, has fewer optimization
variables, and does not require prefiltering.

Kramer et al. [16] work is closest to our approach. They
directly fuse individual bearing Doppler measurements in a
robust optimization using Cauchy loss to reject radar outliers.
However, our work goes far beyond their work. We compare
different loss functions and demonstrate robust barometer
fusion, closed-loop quadrotor control, robustness to dynamic
objects, position estimation, turn-on-bias calibration, and
zero-velocity tracking. Our work is available as open-source.

Finally, multiple radar state estimation approaches tailored
for ground robots exist [17]. However, most, such as full

Fig. 2: Quadcopter side view with coordinate frames and two
radar detections.

SLAM pipelines or large spinning radars on autonomous
cars, are unsuited for quadcopter control, which requires
lightweight velocity estimation and not a dense map.

III. NOTATION

Capital letters denote right-handed coordinate frames. The
origin of a specific coordinate frame is denoted by the same
letter. Matrices and vectors are bold. AtBC is the vector
from source B to target C, expressed in coordinate frame
A. AeB ∈ S2 is the unit vector on the 2-sphere pointing
from the origin of coordinate frame A towards location B.

The direction cosine matrix RAB ∈ SO(3) represent a
rotation and maps vector BtAB from frame B to frame A.

AtAB = RAB · BtAB (1)

Consequently, a rotation RAC can be expressed by

RAC = RABRBC . (2)

A rigid transformation TAB ∈ SE(3) is a composition of
the rotation RAB ∈ SO(3) and translation AtAB ∈ R3.

IV. RADAR-INERTIAL STATE ESTIMATION

The system is described by the three coordinate frames,
denoted by capital letters I , B, and R in Fig. 2. The unit
vectors Iex, Iey , Iez define the inertial frame I , where Iex
and Iey span a plane tangential to the earth ellipsoid and
Iez points up. B denotes the body frame which coincides
with the IMU axes with Bex forward, Bey left, and Bez
up. R is the radar frame, where Rex points at positive
azimuth direction, Rey at boresight, and Rez at positive
elevation direction. The coordinate frames are linked by rigid
transformation TIB and TBR. TIB is the online estimated,
time-varying robot pose. TBR is the extrinsic calibration
between IMU and radar and obtained from CAD.

A. System State

The IMU pose Ti
IB ∈ SE(3), composed of orientation

Ri
IB ∈ SO(3) and translation It

i
IB ∈ R3, the body velocity

Iv
i
IB ∈ R3, the gyroscope biases Bb

i
g ∈ R3, and the

accelerometer biases Bb
i
a ∈ R3 form the 15-dimensional

state x at time i. Our framework also tracks the location of
zero velocity radar detections tj with track index j, where



Fig. 3: Factor graph representation with two, one, and
four Doppler measurements and a zero-velocity landmark
observed from the first and second state.

It
i,m
IT is the estimated position of the m-th radar detection

observed at time i, tracked over multiple frames Kj ⊆ Kk.

xi =
[
Ri

IB , It
i
IB , Iv

i
IB , Bb

i
g, Bb

i
a

]T
tj =

[
It

i,m
IT

]T
(3)

The estimator creates a new state with each radar frame.
Xk is the set of all estimated states with Kk the set of all
radar frames up to time k. Analogously, Tk is the set of all
estimated zero velocity detection positions with Lk the set
of all tracks up to time k.

Xk = {xi}i∈Kk
Tk = {tj}j∈Lk

(4)

B. Measurements
The inputs to our system are bearing Doppler radar

detections, IMU measurements, and optionally barometric
pressure. We denote Ri as the set of all detections at time i.
Ii,i+1 is the set of IMU measurements between radar frame
i and i+ 1. Bi is the pressure measurement closest to time
i. The measurement set up to time k is

Zk = {Ri, Ii,i+1,Bi}(i,i+1)∈Kk
. (5)

C. Optimization Criterion
The online estimator evaluates the maximum a posteriori

probability (MAP) of states Xk and zero-velocity tracks Tk
given all available observations Zk.

XMAP
k = arg max

Xk,Tk

p(Xk, Tk|Zk) (6)

The factor graph in Fig. 3 represents the unnormalized
posterior [18].

XMAP
k =arg min

Xk,Tk

∥r0P ∥2ΣP︸ ︷︷ ︸
(prior)

+
∑

(i,i+1)∈Kk

∥ri,i+1
I ∥2ΣI︸ ︷︷ ︸
(IMU)

+
∑
j∈Lk

∑
i∈Kj

∥ri,jT ∥2ΣT︸ ︷︷ ︸
(zero-velocity track)

+
∑
i∈Kk

∑
m∈Ri

ρ

(
∥ri,mD ∥
σD

)
∥ri,mD ∥2ΣD︸ ︷︷ ︸

(robust bearing Doppler)

+
∑
i∈Kk

ρ

(∥riB∥
σB

)
∥riB∥2ΣB︸ ︷︷ ︸

(robust barometry)

,

(7)

where rP are prior, rI IMU, rT zero-velocity track, rD
bearing Doppler, and rB barometry factor residual errors.
ΣP , ΣI , ΣT , ΣD, ΣB , σD, and σB are the corresponding
measurement covariances respectively standard deviations.
∥ϵ∥2Σ = ϵTΣ−1ϵ is the squared Mahalanobis distance with
covariance Σ. ρ is a robust loss function specified in Sections
IV-D and IV-E.

D. Robust bearing Doppler Factor

We consider FMCW radar with a standard detection pro-
cessing chain. Upon receiving an asynchronous triggering
signal, the multiple-input and multiple-output (MIMO) radar
emits a predefined FMCW chirp sequence. The returning
analog signal is mixed with the transmitting signal, converted
to digital, windowed, range, and Doppler processed, constant
false alarm rate (CFAR) filtered, and DoA processed. The
CFAR detection extracts strong reflections separated in the
range-Doppler space. CFAR detection is an efficient data
reduction step as DoA processing and data transfer to the
host computer only need to be done on a few data points.
Also, the CFAR effectively filters reflections from noise.

The result is a sparse pointcloud with detections Ri

at time i ∈ Kk. Detection T i,m ∈ Ri contains direction-
of-arrival Re

i,m
T = Rti,mRT

∥Rti,mRT ∥ , Doppler velocity vi,mT , range

riTm
= ∥Rti,mRT ∥, signal-to-noise ratio (SNR) SNRi,m

T , and
noise wi,m

T . Fig. 1 shows these detections mostly occur on
geometric edges and strong changes in relative permittivity,
e.g., from air to metal on the window frame. We use the DoA
and Doppler velocity to constrain the body velocity into the
direction of the detection as indicated in Fig. 2.

The bearing Doppler residual ri,mD is the difference be-
tween the estimated radar linear velocity Rv

i
IR projected

onto the detection direction and the measured Doppler. It
depends on the state variables Ri

IB , Iv
i
IB , and Bb

i
g , radar

measurements Re
i,m
T and vi,mT , and angular velocity Bω

i
IB .

ri,mD = −
(
Rv

i
IR

)T · Rei,mT − vi,mT (8)

= −
((

Ri
IBRBR

)T · Ivi
IR

)T
· Rei,mT − vi,mT , (9)

with the radar velocity Iv
i
IR derived from the body velocity.

Iv
i
IR = Iv

i
IB +Ri

IB

((
Bω

i
IB − Bb

i
g

)
× BtBR

)
(10)

In a static scene, the bearing Doppler residual noise is
normally distributed with standard deviation σD as shown in
Fig. 4b. However, the radar occasionally detects ghost targets
or moving objects, creating long-tailed residual noise. For
example, the streetcar in Fig. 4a generates approaching (or-
ange/red) and receding (blue/purple) radial velocity outliers.
Fig. 4b shows the corresponding bearing Doppler residual
error distribution with a visible outlier set located between
10 to 50 standard deviations. The following evaluated loss
functions [19] suppress these outliers to varying degrees.

Our experiments with moving objects have shown that a
loss function should be selected where the weighting function
ρ approaches zero. Fig. 4c shows the velocity estimate during
hover while the streetcar passes. The estimate should be



(a) Quadcopter onboard view. Streetcar passing from left to right.
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(b) Normalized absolute bearing Doppler pre-fit residuals across
one optimization window with and without moving object in the
radar field of view. σD = 0.05, and optimizer using Welsch loss.
Robust loss functions tuned to 95% asymptotic efficiency [19].
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(c) Estimated body velocity while hovering in front of the streetcar.

Fig. 4: Robust bearing Doppler loss function analysis based
on streetcar passing hovering quadcopter. Radar detections
accumulated over 10 s optimization window.

close to zero. A pure quadratic loss causes significant non-
zero velocity estimates. Also, Fair and Huber’s losses are
insufficient to suppress the streetcar detections. Even Cauchy
loss will still predict some movement in the presence of
outliers. Welsch loss shows the steadiest hover estimate and
is selected for the estimation problem (7).

One beauty of using only robust loss for outlier rejection
compared to additional statistical tests, such as RANSAC, is
that only σD requires tuning to normalize the residuals (7).
We keep σD constant throughout all experiments. We did
not observe instabilities in the optimization with any of the
evaluated ρ functions.

E. Robust Barometric Factor

In principle, the radar factor is sufficient to observe the
body velocity and integrated position if three linearly inde-
pendent radial velocities are measured. However, systematic

bias in these measurements, paired with errors in the extrinsic
calibration, gravity constant, and IMU biases, cause altitude
estimation drift. To compensate for errors in height, we
measure differential barometry. The barometer residual riB
is the difference between estimated height, offset by bias z0p ,
and measured height zip.

riB = Iez
T · ItiIB + z0p − zip, (11)

with zip a function of the pressure pi at time i, derived from
an earth atmosphere model [20].

zip =
288.08

(
pi

101290

) 1
5.256 − 273.1− 15.04

−0.00649
(12)

Barometric measurements are biased by ambient temper-
ature changes [21]. Unlike Doer and Trommer [6], who co-
estimate the pressure bias z0p , we set it constant using the
first barometer measurement. We noticed that z0p is unob-
servable because the ambient pressure drift due to weather
changes is much smaller than the RIO height estimation drift.

However, our estimator is robust to sudden disturbances,
such as ground effects during touch-down (Fig. 5a). With-
out suppression, this noise can falsely deviate the vertical
velocity estimate, as seen in red in Fig. 5b. The Fair robust
loss function ensures a smooth estimate. Apart from these
few aerodynamic occasions, the barometric residuals are
normally distributed as shown in Fig. 5c.

F. Zero-Velocity Detection Tracking

Before take-off and after landing, all static reflections have
zero Doppler velocity and cannot be separated in Doppler
space by the CFAR detector. Thus, the radar point cloud often
consists of only one or two targets, representing the strongest
reflections that can be separated by range. This is insufficient
to compute the linear body velocity, so the state estimate
will drift on a sphere or circle. Since the environment and
robot are static, consecutive reflections are identical within
the sensor resolution. We track these targets, making the full
state observable at zero velocity.

Let T i,m ∈ Ri be detection m at time i and T i,m ∈ Ri

be detection m at time i. Tracks are discarded after being
unobserved for a fixed amount of radar frames. Targets are
associated if they have identical measurements.(

Rt
i,m
RT = Rt

i,m
RT

)
∧
(
vi,mT = v

i,m
T = 0

)
∧(

SNRi,m
T = SNR

i,m
T

)
∧
(
wi,m

T = w
i,m
T

)
⇒ T i,m = T i,m

(13)

The optimizer estimates the position of each track in the
inertial frame. The residual, when represented in Cartesian
coordinates, is the difference between the estimated detection
position tj and the measured detection position Rt

i,m
RT . The

estimated detection location is transformed from the inertial
to the radar frame.

ri,jT =
(
Ri

IBRBR

)T (
tj − It

i
IB −Ri

IB · BtBR

)
− Rt

i,m
RT

(14)



(a) Photo of quadcopter landing next to take off location.
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Fig. 5: Barometer noise and robust loss analysis.

G. IMU Factor

Integrating high-rate IMU measurements as individual fac-
tors quickly increases variables in the optimization, making
it computationally intractable. Forster et al. [22] presented
a method to preintegrate a set of IMU measurements into a
single factor. The method successively computes the relative
change in orientation, velocity, position. The combined IMU
residual between two states is

ri,i+1
I =

[
r∆Ri,i+1

IB
, r∆ti,i+1

IB
, r∆vi,i+1

IB
, r∆bi,i+1

g
, r∆bi,i+1

a

]
.

(15)

H. Prior Factor

Proper optimizer initialization ensures a consistent state
estimate from the start. The yaw bias and orientation require
special handling. Observing yaw bias is difficult due to
the small lever arm BtBR and relatively large radar noise
σD [9].We calibrate the gyroscope bias by averaging the first
messages and initializing it with high certainty. A parallel

Fig. 6: Quadcopter state estimation and controller diagram.

Madgwick filter [23] aligns orientation with the attitude
controller (Fig. 6). All other values are initialized to zero.

r0RIB
= Log

((
R0

IB

)T
R̃0

IB

)
(16)

r0
ItIB = It

0
IB − I t̃

0
IB (17)

r0
IvIB

= Iv
0
IB − I ṽ

0
IB (18)

r0
Bbg

= Bb
0
g − Bb̃

0

g (19)

r0
Bba

= Bb
0
a − Bb̃

0

a, (20)

with the logarithmic map transforming a rotation to its
tangent space [24] and tilde denoting initial values. The
combined prior factor is

r0P =
[
r0RIB

, r0
ItIB , r

0
ItIB , r

0
Bbg

, r0
Bba

]
. (21)

V. EXPERIMENTS

We evaluate our approach with radar-stabilized quadcopter
flights. The pilot gives velocity setpoints via RC, and if no
input is given, the drone hovers stably. Controller, state esti-
mation, and logging run onboard a Nvidia Jetson Orin NX,
communicating with a BMI088 IMU, a AWR1843AOPEVM
radar, a BMP390 barometer, and ESCs through Linux user
space drivers and ROS middleware (Fig. 6). The optimiza-
tion, implemented with GTSAM [25], runs in two threads
using the iSAM2 solver [26]. An optimization thread solves
the MAP with a 10 s data window typically within 40ms
upon radar measurement arrival. A navigation thread outputs
the latest state prediction at IMU rate to the controller [27].

The IMU is tuned to capture the drone dynamics but
digitally filter as much noise as possible. The accelerom-
eter has a range of 6 g, 4-fold oversampling, and 400Hz
rate. The synchronized gyroscope has a range of 250 ◦ s−1,
and a 47Hz low-pass filter. The radar maximizes velocity
resolution at 0.04m s−1, with 2.56m s−1 maximum radial
velocity and 10.95m maximum range. The CFAR detection
threshold is 15 dB for normally distributed residuals. Radar
frames are asynchronously triggered at 8Hz. The barometer
runs asynchronously at 50Hz with 8-fold oversampling and
a cumulative average filter with window size 3. Zero-order-
hold interpolation synchronizes the three sensor timestamps.

In the following, RIO refers to our optimization without
barometer factor and BRIO with it. All flight experiments
used RIO controller feedback. In addition, we collected data
handheld. An experiment starts and ends at the same location



TABLE I: Summary of experiments. The mode describes the experiment settings. H: Handheld, F: Flying

Scenario No. Mode Length Maximum
Velocity

Median
Detections

Moving
Objects

Final Position
Drift

XY-Position
Drift

Position Drift
per Distance

Final Yaw
Drift

Yaw Drift
per Distance

[m] [ms−1] [1] [1] [m] [m] [%] [◦] [◦ m−1]
Urban Night 01 RIO-H 179.7 1.82 15 0 3.54 1.48 1.97 -0.79 -0.004

BRIO-H 184.7 1.83 15 0 1.42 1.41 0.77 -0.67 -0.004
02 RIO-H 151.5 1.95 14 0 3.35 0.98 2.21 -1.70 -0.011

BRIO-H 156.5 1.96 14 0 0.89 0.80 0.57 -1.70 -0.011
03 RIO-H 153.9 1.82 13 0 3.09 2.29 2.00 2.11 0.014

BRIO-H 157.5 1.83 13 0 2.39 2.36 1.52 2.76 0.018
04 RIO-H 156.4 1.79 15 1 3.24 0.81 2.07 1.56 0.010

BRIO-H 163.5 1.80 15 1 1.14 1.08 0.70 1.50 0.009
05 RIO-F 160.0 1.91 10 1 5.35 5.31 3.34 9.03 0.056

BRIO-F 166.9 1.91 10 1 5.27 5.26 3.16 8.31 0.050
06 RIO-F 157.0 1.78 11 2 4.79 4.57 3.05 8.94 0.057

BRIO-F 162.4 1.81 11 2 4.78 4.77 2.94 8.59 0.053
07 RIO-F 185.4 1.62 11 0 4.36 4.09 2.35 8.98 0.048

BRIO-F 194.9 1.62 11 0 4.41 4.27 2.26 8.69 0.045
Forest Path 08 RIO-H 477.6 2.03 8 1 7.50 2.54 1.57 1.56 0.003

BRIO-H 480.3 2.07 8 1 2.77 2.52 0.58 1.15 0.002
09 RIO-H 125.1 1.87 6 2 0.48 0.46 0.38 0.55 0.004

BRIO-H 126.4 1.90 6 2 0.77 0.50 0.61 0.57 0.005
10 RIO-H 099.4 1.97 5 1 3.20 0.54 3.21 0.80 0.008

BRIO-H 101.5 2.00 5 1 0.51 0.46 0.50 0.94 0.009
11 RIO-F 487.4 1.98 7 0 17.19 15.00 3.53 12.41 0.025

BRIO-F 492.8 1.97 7 0 13.56 13.56 2.75 11.80 0.024
12 RIO-F 487.5 2.24 6 0 13.23 12.83 2.71 7.56 0.016

BRIO-F 490.4 2.25 6 0 11.77 11.37 2.40 6.58 0.013
Flat Field 13 RIO-F 198.9 2.54 6 0 4.55 3.50 2.29 5.63 0.028

BRIO-F 202.7 2.62 6 0 3.43 3.23 1.69 6.08 0.030
14 RIO-F 295.2 2.08 9 3 7.15 6.99 2.42 8.57 0.029

BRIO-F 299.0 2.08 9 3 5.93 5.92 1.98 8.32 0.028
Tree Slalom 15 RIO-F 159.2 2.37 8 0 3.56 0.64 2.24 4.30 0.027

BRIO-F 161.9 2.37 8 0 0.74 0.59 0.46 4.0 0.029

with an accuracy of approximately 2 cm and 2◦ in the
heading to compute the final drift. Table I summarizes all
experiments, with numerical values obtained by rerunning
the algorithm on collected raw sensor data.

A. Exceptional Robustness
Our main result is the outstanding robustness of radar

navigation. Unlike vision or lidar, radar measures velocities,
avoiding feature tracking failures that cause state estima-
tion divergence and crashes. Seven handheld experiments
(20min total) and eight flights (35min total) without failure
demonstrate this robustness. RIO in the control loop shows
sufficient latency and smoothness.

The median number of detected points per scan drops in
natural forests compared to urban environments. The urban
environment has more objects with high radar cross section
(RCS), such as the window frames in Fig. 1a. However,
detections from trees or the ground are generally sufficient to
estimate the body velocity. Fig. 7 shows accumulated point
clouds for different environments. Urban Night (Fig. 7a) and
Tree Slalom (Fig. 7c) have points distributed in elevation,
while Forest Path (Fig. 7b) is mostly flat with occasional
tree trunks. This demonstrates robustness in geometrically
degenerate environments where lidar-inertial odometry can
fail. Additionally, Fig. 7a shows multipath detections on
the stairs and Fig. 7b a pedestrian detection. Both leave
the estimate unaffected, highlighting the robustness of the
selected Welsch bearing Doppler loss.

B. Performance Overview
Fig. 8a reports less than 1% start-to-end drift in BRIO

handheld experiments and 2% to 3% in RIO and BRIO

flights. The state estimate performs consistently across en-
vironments (Fig. 8b). The best result, 0.5% drift over a
162m trajectory, was in the Tree Slalom 15 BRIO-F ex-
periment. The results align with other state-of-the-art RIO
estimators [6, 12]. Well-tuned visual-inertial odometry (VIO)
estimators report drift as low as 0.3% [2] but are vulnerable
to poor lighting conditions, as in Urban Night (Fig. 4a).

Barometry significantly reduces vertical drift (Fig. 8c).
However, its influence on total xyz-drift (Fig. 8a) depends on
the horizontal drift magnitude. Handheld experiments mostly
drift vertically. Thus the barometer cuts total drift from 2%
to almost 0.5%. Flights are dominated by horizontal drift
(Fig. 8d). Hence, total drift remains between 2% to 3%.

C. Discussion: Vibrations Leading to Horizontal Flight Drift

Fig. 8d shows that the horizontal drift increases from
0.5% to almost 2.5% when comparing handheld to flown
experiments. We attribute this error to gyroscope scale er-
ror introduced by platform vibrations [28, p. 49]. Fig. 8e
shows that there is a 0.03 ◦ m−1 yaw drift in flight versus
0.01 ◦ m−1 handheld. The yaw drift is best seen in the
trajectory overview in Fig. 9b, where it causes the flown
trajectory estimates to twist inwards on the four left-hand
bends, leading to horizontal drift. Our quadcopter design
does not dampen the low-cost IMU likely causing vibration
rectification [29].

The scale-error possibly also explains the lowest drift in
Tree Slalom 15 BRIO-F. Fig. 7c shows the slalom flight is
dynamic with many changes of directions, causing various
vibration modes. These may cause alternating yaw drift,
potentially canceling each other out.



(a) Urban Night 02 BRIO-H (b) Forest Path 08 BRIO-H (c) Tree Slalom 15 BRIO-F

Fig. 7: Isometric view of accumulated point cloud and poses for selected experiments. Grid with 10m spacing and Doppler
point coloring. Photos show three multipath detections on stairs and a pedestrian detection on the forest path (red points).

(a) Iex, Iey , Iez all. (b) Iex, Iey , Iez BRIO. (c) Iez all. (d) Iex, Iey all. (e) Heading drift all.

Fig. 8: Start-to-end drift comparison.

(a) Urban Night (b) Forest Path. (c) Flat Field.

Fig. 9: Satellite image trajectory overlay. Trajectories are manually aligned.

VI. BENCHMARK ON COLORADAR DATASET

We compare Our approach to x-RIO [9] on the Colo-
Radar dataset [30]. x-RIO, configured with a single radar
and without Manhattan assumption, required modifying 16
radar prefiltering parameters for compatibility. Notably, Ours
only needs the Doppler standard deviation, which we kept
unchanged. Both approaches used different IMUs, so we
adjusted the IMU parameters to match the ColoRadar dataset.
Barometer support was omitted as it is not provided in the
dataset. We calibrated the gyroscope turn-on-bias for both
approaches using each sequence’s first 3 s.

We evaluate relative pose error (RPE) [31], split into trans-
lational and rotational root-mean-square error (RMSE), and
the final XY-Position and yaw drift normalized by distance.
Table II shows similar performance between the approaches.
x-RIO slightly outperforms in rotational RPE but exhibits
strong terminal yaw drift in most datasets. We suspect their
precise binary outlier filtering leads to better estimates, but
any false positive induces inconsistencies, such as a wrong
yaw rate. Our system, with smooth outlier rejection and fixed
yaw rate bias, performs consistently well.

Comparing our dataset and ColoRadar’s, our algorithm’s
final XY-position drift is better in our handheld experiments

TABLE II: ColoRadar Dataset Results

Dataset Pipeline RPE (RMSE) Final Drift per Distance
Trans. [%] Rot. [◦] XY [%] Yaw[◦ m−1]

hallways 0 x-RIO 4.41 0.39 2.80 0.031
Ours 4.97 0.91 4.59 -0.066

arpg 1 x-RIO 3.36 0.48 8.28 0.752
Ours 2.88 0.98 2.81 0.096

aspen 0 x-RIO 3.15 0.37 2.47 0.288
Ours 3.02 1.13 3.79 0.038

army 2 x-RIO 3.73 0.41 3.97 0.017
Ours 3.63 1.10 0.76 -0.025

classroom 0 x-RIO 6.92 0.51 4.73 0.116
Ours 4.28 1.52 1.68 -0.006

outdoors 0 x-RIO 3.19 0.37 1.45 0.128
Ours 3.19 1.09 1.55 0.007

(0.36% to 1.49%) than in theirs (0.76% to 4.59%). Our
hardware likely has a better extrinsic calibration and more
suitable, i.e., restrictive, CFAR configuration.

VII. KNOWN LIMITATIONS

Despite the robustness and performance demonstrated, the
proposed estimator has a few known limitations.
Fixed chirp configuration limits the radar’s range and ve-
locity. To address this, we restricted the quadcopter’s maxi-
mum input velocity vref to 2m s−1 and kept the radar within
structure range. Larger velocities or distances would require
online chirp adaptation, reducing radial velocity resolution.



Ambient pressure bias changes are ignored. Abrupt tem-
perature changes, like moving indoors to outdoors, can cause
altitude jumps. One solution is resetting the altitude offset or
integrating absolute height or temperature measurements.
Extrinsic calibration is inferred from CAD. However, bear-
ing biases still cause noticeable estimation errors. Calibrating
additional effects, such as gravity constant, phase biases, or
sensor discretization, will enhance future performance.
Yaw rate offset and scale are hardly observable. Improved
yaw observation and vibration management would reduce
drift, especially under vibration.
Zero-velocity detection tracking before take-off and after
landing requires at least one repeatable CFAR detection.
Otherwise, the estimator relies on IMU readings and drifts.

VIII. CONCLUSION

This work presents an open-source m-estimator for baro-
radar-inertial odometry. The estimator is robust to moving
objects, ghost targets, and aerodynamic disturbances. Radar-
stabilized quadcopter flights in human-made and natural
environments show its general applicability for multirotor
navigation. Accumulated drift as low as 0.5% per dis-
tance traveled and robustness in visually and geometrically
degraded and dynamic environments highlight the poten-
tial of radar to replace lidar or vision-based navigation in
GNSS-denied environments. A benchmark shows that our
m-estimator has fewer tuning variables and performs more
consistently than the x-RIO Kalman filter, which uses binary
outlier rejection. Future work may investigate DoA accuracy,
vibration management, and yaw observability.
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A. LIST OF SYMBOLS
I Inertial frame
Iex Inertial frame x-axis
Iey Inertial frame y-axis
Iez Inertial frame z-axis
B Body frame
Bex Body frame x-axis
Bey Body frame y-axis
Bez Body frame z-axis
R Radar frame
Rex Radar frame x-axis
Rey Radar frame y-axis
Rez Radar frame z-axis

Xk Set of all estimated states up to time k
XMAP

k Set of MAP state estimates up to time k
x State vector
TIB Robot pose
RIB Robot orientation
ItIB Robot translation
IvIB Robot linear velocity
RvIR Radar linear velocity in radar frame
IvIR Radar linear velocity in inertial frame
Bbg Gyroscope bias
Bba Accelerometer bias

Tk Set of all estimated zero-velocity track posi-
tions up to time k

t Zero-velocity track
ItIT Tracked zero-velocity detection position

Zk Set of all measurements up to time k

R Set of all radar detections in a frame
T Radar detection
ReT Radar detection bearing vector
RtRT Radar detection position vector
vT Radar detection Doppler velocity
SNRT Radar detection SNR
wT Radar detection noise
α Radar detection bearing vector bias

I Set of all IMU measurements between two
radar frames

BωIB Robot angular velocity
BaB Robot linear acceleration

B Set of barometer measurements
zp Barometer height measurement
p Barometer pressure measurement

Kk Set of all radar frames up to time k
Kj Set of all radar frames containing track j
Lk Set of all zero-velocity tracks up to time k
i Time index
j Zero-velocity track index
k Most recent time index
m Detection in radar frame index

ρ Robust loss function
rI IMU factor residual
rT Zero-velocity track factor residual
rD Doppler factor residual
rB Barometer factor residual
rP Prior factor residual
rRIB

Prior orientation factor residual
rItIB Prior position factor residual
rIvIB Prior linear velocity factor residual
r
Bbg Prior gyro bias factor residual

r
Bba Prior accelerometer bias factor residual

TBR Radar extrinsic calibration
RBR Radar calibration rotation

BtBR Radar calibration translation

ΣP Prior measurement covariance matrix
ΣI IMU measurement covariance matrix
ΣT Zero-velocity track position measurement co-

variance matrix
ΣD Doppler measurement covariance
ΣB Barometer measurement covariance
σD Doppler measurement standard deviation
σB Barometer measurement standard deviation

vref Velocity control input

B. RADAR CONFIGURATION

AWR1843AOPEVM radar configuration using
the Texas Instruments mmWave SDK [32].

1 % Created for SDK ver:03.06
2 % Created using Visualizer ver:3.6.0.0
3 % Frequency:77
4 % Platform:xWR18xx_AOP
5 % Scene Classifier:best_vel_res
6 % Azimuth Resolution(deg):30 + 38
7 % Range Resolution(m):0.214
8 % Maximum unambiguous Range(m):10.95
9 % Maximum Radial Velocity(m/s):2.56

10 % Radial velocity resolution(m/s):0.04
11 % Frame Duration(msec):100
12 % RF calibration data:None
13 % Range Detection Threshold (dB):15
14 % Doppler Detection Threshold (dB):15
15 % Range Peak Grouping:enabled
16 % Doppler Peak Grouping:enabled
17 % Static clutter removal:disabled
18 % Angle of Arrival FoV: Full FoV
19 % Range FoV: Full FoV
20 % Doppler FoV: Full FoV
21 sensorStop
22 flushCfg
23 configDataPort 921600 1
24 dfeDataOutputMode 1
25 channelCfg 15 7 0
26 adcCfg 2 1
27 adcbufCfg -1 0 1 1 1
28 profileCfg 0 77 115 7 15 0 0 100 1 64 9142 0 0 30
29 chirpCfg 0 0 0 0 0 0 0 1
30 chirpCfg 1 1 0 0 0 0 0 2
31 chirpCfg 2 2 0 0 0 0 0 4
32 frameCfg 0 2 128 0 100 1 0
33 lowPower 0 0
34 guiMonitor -1 1 1 0 0 0 1
35 cfarCfg -1 0 2 8 4 3 0 15 1
36 cfarCfg -1 1 0 8 4 4 1 15 1
37 multiObjBeamForming -1 1 0.5
38 clutterRemoval -1 0
39 calibDcRangeSig -1 0 -5 8 256
40 extendedMaxVelocity -1 0
41 lvdsStreamCfg -1 0 0 0
42 compRangeBiasAndRxChanPhase 0.0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0
43 measureRangeBiasAndRxChanPhase 0 1.5 0.2
44 CQRxSatMonitor 0 3 4 19 0
45 CQSigImgMonitor 0 31 4
46 analogMonitor 0 0
47 aoaFovCfg -1 -90 90 -90 90
48 cfarFovCfg -1 0 0 10.97
49 cfarFovCfg -1 1 -2.49 2.49
50 calibData 0 0 0
51 sensorStart
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