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Abstract— We consider the optimal transport problem be-
tween zero mean Gaussian stationary random fields both in
the aperiodic and periodic case. We show that the solution
corresponds to a weighted Hellinger distance between the
multivariate and multidimensional power spectral densities
of the random fields. Then, we show that such a distance
defines a geodesic, which depends on the weight function, on
the manifold of the multivariate and multidimensional power
spectral densities.

I. INTRODUCTION

The Optimal Transport Problem (OTP) aims in minimizing
the effort to transport one nonnegative measure to another
nonnegative measure according to a cost of moving mass
from a point to another one. This problem has been formu-
lated by Kantorovitch [1] and in the recent years it has been
used for deriving new distances between covariance matrices
and spectral densities, [2], [3], [4], [5], [6]. In particular,
in [7] it has been shown that the OTP between Gaussian
stationary stochastic processes leads to weighted Hellinger
distance between multivariate and unidimensional power
spectral densities. The latter distance is a generalization of
the Hellinger distance introduced in [8], [9].

Distances between spectral densities play a fundamental
role in spectral analysis. Indeed, the latter can be used in
order to design high resolution spectral estimators [10], [11],
[12], [13], [14] as well the multivariate extensions [15], [16],
[17], [18], [19], [20]. These methods have been extended to:
1) stationary (i.e. homogeneous) random fields which are
characterized by multidimensional power spectral densities
[21], [22], [23], [24]; 2) stationary periodic random fields
which are characterized by multidimensional power spectral
densities whose domain is constituted by a finite number of
points [25], [26]. It is worth noting that in the unidimensional
case, the latter case boils down to the so called reciprocal
processes, [27], [28], [29], [30], [31].

The aim of this paper is to extend the results in [7] to
Gaussian stationary aperiodic/periodic random fields. More
precisely, we formulate the OTP and we show that the
corresponding solution is a suitable weighted Hellinger dis-
tance between multivariate and multidimensional spectral
densities. Moreover, we show this distance defines a geodesic
on the manifold of the multidimensional power spectral
densities. The latter can be used in order to perform spectral
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morphing [32] for describing a Gaussian random field whose
description slowly varies over time.

The outline of the paper is the following. In Section II we
introduce the OTP for Gaussian random fields. In Section III
we introduce the OTP for Gaussian periodic random fields.
Section IV regards the spectral morphing problem and in
Section V we present a numerical example. In Section VI
we discuss the general case, i.e. the Gaussian assumption is
not required. Finally, some conclusions are drawn in Section
VII.

Notation: R, Z, N denote the set of real, integer and natural
numbers, respectively. Given two vectors ααα and ϑϑϑ of the
same dimension, then 〈ααα,ϑϑϑ〉 denotes their inner product. Let
A be an Hermitian matrix, then A > 0 (A ≥ 0) means that
A is positive (semi)definite; A∗ denotes its transposed and
conjugate. Moreover, we will consider the Euclidean norms
‖A‖ :=

√
tr(A∗A) and ‖A‖W :=

√
tr(A∗WA) with W =W ∗ >

0. Given a function Φ(e jϑϑϑ ) with Td := [0,2π]d , such that
Φ(e jϑϑϑ ) =Φ(e jϑϑϑ )∗, then Φ > 0 (Φ≥ 0) means that Φ(e jϑϑϑ )>
0 (Φ(e jϑϑϑ ) ≥ 0) for any ϑϑϑ ∈ Td . `m×m

1 (Zd) is the space of
sequences h := {Ht, t ∈ Zd }, with Ht ∈ Rm×m, which are
absolutely summable. Given two sequences h and v, then
h?v denotes the discrete convolution operation.

II. OTP BETWEEN RANDOM FIELDS

Consider two jointly Gaussian stationary random fields
x = {xt, t ∈ Zd} and y = {yt, t ∈ Zd} having zero mean
and taking values in Rm. It is worth noting that the index
t = (t1, t2, . . . td) has dimension d. These random fields are
completely characterized by the finite dimensional probabil-
ity density functions

px(xt,xs; t,s), py(yt,ys; t,s)

with t,s ∈ Zd , while the corresponding joint random field is
completely characterized by the finite dimensional probabil-
ity density

px,y(xt,xs,yu,yv; t,s,u,v)

with t,s,u,v ∈ Zd .
We consider the following optimal transport problem

d(px, py)
2 = inf

px,y∈P
{E[‖xt−yt‖2] s.t. (2)-(3) hold} (1)

where∫
Rm

∫
Rm

px,y(xt,xs,yu,yv; t,s,u,v)dyudyv

= px(xt,xs; t,s), t,s ∈ Zd (2)∫
Rm

∫
Rm

px,y(xt,xs,yu,yv; t,s,u,v)dxtdxs

= py(yu,yv;u,v), u,v ∈ Zd (3)
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and P is the set of Gaussian joint probability densities px,y.
In plain words, the above problem represents the optimal
transport between Gaussian random fields x and y and the
transportation cost is the variance of e := x−y which can be
understood as the discrepancy random field.

Since the joint random field is Gaussian, it is completely
characterized by its covariance field

Rt = RT
−t := E

[[
xt+s
yt+s

][
xT

s yT
s
]]

, t ∈ Zd

or, equivalently, by its discrete-time multidimensional
Fourier transform

Φ(e jϑϑϑ ) := ∑
t∈Zd

Rte− j〈ϑϑϑ ,t〉 (4)

where ϑϑϑ = (ϑ1,ϑ2, . . . ,ϑd) ∈ Td and it represents the power
spectral density of the joint process. Partitioning (4) in a
conformable way with respect to x and y, we obtain:

Φ(e jϑϑϑ ) =

[
Φx(e jϑϑϑ ) Φx,y(e jϑϑϑ )

Φy,x(e jϑϑϑ ) Φy(e jϑϑϑ )

]
where Φx and Φy are the power spectral densities of x and
y, respectively.

Since px,y and Φ represent two equivalent descriptions of
the joint process, we want to rewrite (1) in terms of Φ. We
have

E[‖xt−yt‖2] = trE[xtxT
t +ytyT

t −xtyT
t −ytxT

t ]

= tr
∫
Td
(Φx +Φx−Φx,y−Φy,x)dµ (5)

where

dµ(ϑϑϑ) =
1

(2π)d

d

∏
k=1

dϑk.

Then conditions (2) and (3) imposes that Φx and Φy are
fixed. Accordingly, we obtain the optimal transport problem

d(px, py)
2 =inf

Φxy
tr
∫
Td
(Φx +Φy−Φxy−Φyx)dµ

s.t.
[

Φx Φxy
Φyx Φy

]
≥ 0. (6)

In what follows, we assume that Φx,Φy ∈ S+m(Td) where
S+m(Td) denotes the set of multivariate and multidimensional
power spectral densities which are bounded and coercive.

Proposition 1: It holds that

d(px, py)
2 = tr

∫
Td
(Φx +Φy−2(Φ1/2

y ΦxΦ
1/2
y )1/2)dµ (7)

that is d(px, py) is the Hellinger distance between Φx and
Φy.

Proof: It is not difficult to see that (6) is equivalent to
solve

inf
Φxy
−2tr

∫
Td

Φxydµ

s.t. Φx−ΦxyΦ
−1
y Φyx ≥ 0. (8)

Then, the proof follows the ideas of one of Proposition 1 in
[7] for Gaussian stationary processes. The main difference is

the fact that here we have multidimensional power spectral
densities, while there we have unidimensional power spectral
densities.

In Problem (1) we can consider a weighted function, that
is

dΩ(px, py)
2 = inf

px,y∈P
{E[‖h? (x−y)t‖2] s.t. (2)-(3) hold}

(9)

where h := {Ht, ; t ∈ Zd}, Ht ∈ Rm×m and such that h ∈
`m×m

1 (Zd). Then, the latter admits the multidimensional
Fourier transform,

H(e jϑϑϑ ) = ∑
t∈Zd

Hte− j〈ϑϑϑ ,t〉, ϑϑϑ ∈ Td .

In plain words, in (9) we consider as cost the variance of
random field which is obtained by filtering through h the
discrepancy random field. It is not difficult to see

E[‖h? (x−y)t‖2]

= trE[(h?x)t(h?x)T
t +(h?y)t(h?y)T

t

− (h?x)t(h?y)T
t − (h?y)t(h?x)T

t ]

= tr
∫
Td

Ω(Φx +Φx−Φx,y−Φy,x)dµ (10)

where Ω(e jϑϑϑ ) = H(e jϑϑϑ )H(e jϑϑϑ )∗. Accordingly, (9) is equiv-
alent to solve

inf
Φxy
−2tr

∫
Td

ΩΦxydµ

s.t. Φx−ΦxyΦ
−1
y Φyx ≥ 0. (11)

Proposition 2: It holds that

dΩ(px, py)
2

= tr
∫
Td
(ΩΦx +ΩΦy−2(Φ1/2

y ΩΦxΩΦ
1/2
y )1/2)dµ (12)

that is dΩ(px, py) is the weighted Hellinger distance between
Φx and Φy with weight function Ω.

Proof: The proof is similar to the one of Proposition
1.

III. OTP BETWEEN PERIODIC RANDOM FIELDS

Consider two jointly Gaussian stationary periodic ran-
dom fields x = {xt, t ∈ Zd} and y = {yt, t ∈ Zd} having
zero mean, taking values in Rm and with period N =
(N1,N2, . . . ,Nd). This means that for any t = (t1, t2, . . . td) we
have

y(t) = y(t1, . . . , tl−1, tl +Nl , tl+1, . . . td)

almost surely for any l = 1 . . .d. Accordingly, these random
fields are completely characterized by the finite dimensional
probability density functions

px(xt,xs; t,s), py(yt,ys; t,s)

with t,s ∈ Zd
N and

Zd
N := {t = (t1, t2, . . . , td), 0≤ tl ≤ Nl−1, l = 1 . . .d} .



The corresponding joint random field is completely charac-
terized by

px,y(xt,xs,yu,yv; t,s,u,v)

with t,s,u,v ∈ Zd
N .

We consider the following optimal transport problem

d(px, py)
2 = inf

px,y∈P
{E[‖xt−yt‖2] s.t. (14)-(15) hold} (13)

where∫
Rm

∫
Rm

px,y(xt,xs,yu,yv; t,s,u,v)dyudyv

= px(xt,xs; t,s), t,s ∈ Zd
N (14)∫

Rm

∫
Rm

px,y(xt,xs,yu,yv; t,s,u,v)dxtdxs

= py(yu,yv;u,v), u,v ∈ Zd
N (15)

and P is the set of Gaussian joint probability densities px,y.
Since the joint random field is Gaussian, it is completely

characterized by its covariance field

Rt = RT
−t := E

[[
xt+s
yt+s

][
xT

s yT
s
]]

, t ∈ Zd

which is also periodic, that is

Rt = R(t1,t2,...,tl−1,tl+Nl ,tl+1,...,td)

for any l = 1 . . .d. Accordingly, its power spectral density is

Φ(ζζζ `̀̀) := ∑
t∈Zd

N

Rtζζζ
−t
`̀̀ (16)

where ζζζ = (ζ`1 ,ζ`2 , . . . ,ζ`d ), `̀̀ = (l1, l2, . . . , ld) ∈ Zd
N, ζζζ

−t
`̀̀ =

∏
d
i=1 ξ

−ti
`i

and ξ`i = e
2π
Ni

`i . Thus, (16) is defined on a dis-
cretized d-torus and it represents the power spectral density
of the joint process. Also in this case we partition Φ(ζζζ `̀̀)
according to x and y:

Φ(ζζζ `̀̀) =

[
Φx(ζζζ `̀̀) Φx,y(ζζζ `̀̀)

Φy,x(ζζζ `̀̀) Φy(ζζζ `̀̀)

]
and Φx and Φy are the power spectral densities of x and y,
respectively. Moreover,

E[‖xt−yt‖2] = trE[xtxT
t +ytyT

t −xtyT
t −ytxT

t ]

=
1
|N|

tr ∑
`̀̀∈Zd

N

(Φx(ζζζ `̀̀)+Φx(ζζζ `̀̀)−Φx,y(ζζζ `̀̀)−Φy,x(ζζζ `̀̀))

(17)

where |N| := ∏
d
l=1 Nl . Accordingly, the optimal transport

problem in (13) is equivalent to

d(px, py)
2

= inf
Φxy

1
|N|

tr ∑
`̀̀∈Zd

N

(Φx(ζζζ `̀̀)+Φx(ζζζ `̀̀)−Φx,y(ζζζ `̀̀)−Φy,x(ζζζ `̀̀))

s.t. Φx(ζζζ `̀̀)−Φxy(ζζζ `̀̀)Φy(ζζζ `̀̀)
−1

Φyx(ζζζ `̀̀)≥ 0, ∀ `̀̀ ∈ Zd
N
(18)

where we assumed that Φx(ζζζ `̀̀)> 0 and Φy(ζζζ `̀̀)> 0 for any
`̀̀ ∈ Zd

N.

Proposition 3: It holds that

d(px, py)
2 =

1
|N|

tr ∑
`̀̀∈Zd

N

(Φx(ζζζ `̀̀)+Φy(ζζζ `̀̀)

−2(Φy(ζζζ `̀̀)
1/2

Φx(ζζζ `̀̀)Φy(ζζζ `̀̀)
1/2)1/2)

that is d(px, py) is the Hellinger distance between Φx and
Φy.

Proof: The proof is similar to the one of Proposition
1.

Similarly to the aperiodic case, we can generalize Problem
(13) by considering a periodic weight function h := {Ht, ; t∈
Zd}, Ht ∈ Rm×m, with period N, that is

Ht = H(t1,t2,...,tl−1,tl+Nl ,tl+1,...,td)

for any l = 1 . . .d. The corresponding multidimensional
Fourier transform is

H(ζζζ `̀̀) = ∑
t∈Zd

N

Htζζζ
−t
`̀̀ , `̀̀ ∈ Zd

N.

Thus, we consider

dΩ(px, py)
2 = inf

px,y∈P
{E[‖h∗ (x−y)t‖2] s.t. (14)-(15) hold}

(19)

where the symbol ∗ denotes the circular discrete convolution,
that is

(h∗ x)t := ∑
s∈Zd

N

ht−sxs.

Now, the cost function is the variance of the periodic random
field which is obtained by filtering through h the discrepancy
random field. Accordingly, we have

E[‖h∗ (x−y)t‖2]

= trE[(h∗x)t(h∗x)T
t +(h∗y)t(h∗y)T

t

− (h∗x)t(h∗y)T
t − (h∗y)t(h∗x)T

t ]

=
1
|N|

tr ∑
`̀̀∈Zd

N

Ω(ζζζ `̀̀)[Φx(ζζζ `̀̀)+Φx(ζζζ `̀̀)

−Φx,y(ζζζ `̀̀)−Φy,x(ζζζ `̀̀)]

where Ω(ζζζ `̀̀) = H(ζζζ `̀̀)H(ζζζ `̀̀)
∗.

Proposition 4: It holds that

dΩ(px,py)
2 =

1
|N|

tr ∑
`̀̀∈Zd

N

(Ω(ζζζ `̀̀)Φx(ζζζ `̀̀)+Ω(ζζζ `̀̀)Φy(ζζζ `̀̀)

−2(Φ1/2
y Ω(ζζζ `̀̀)Φx(ζζζ `̀̀)Ω(ζζζ `̀̀)Φy(ζζζ `̀̀)

1/2)1/2) (20)

that is d(px, py) is the weighted Hellinger distance between
Φx and Φy with weight function Ω.

Proof: The proof is similar to the one of Proposition
1.



IV. SPECTRAL MORPHING

Consider a zero mean Gaussian (aperiodic) random field
whose description slowly varies over time. Moreover, sup-
pose that in a sufficiently small time interval [k−σ ,k+σ ],
for some σ ∈ N, the random field can be considered to
be stationary. Therefore, at time k it can be approximately
described by a power spectral density, say Φk(e jϑϑϑ ). It is then
natural to wonder how to construct a smooth interpolation
between nearby power spectral densities, e.g. Φk−1(e jϑϑϑ ) and
Φk(e jϑϑϑ ). The latter task is referred to as spectral morphing.
A possible smooth interpolation is given by the geodesic
defined by the weighted Hellinger distance (12) on the
manifold of the multivariate and multidimensional power
spectral densities. For simplicity, consider the nearby spectral
densities at k = 0 and k = 1, then we have

dΩ(Φ0,Φ1)
2

= tr
∫
Td
(ΩΦ0 +Φ1−2(Φ1/2

0 ΩΦ1ΩΦ
1/2
0 )1/2)dµ

= tr
∫
Td
‖Φ1/2

0 −Φ
1/2
1 UΩ‖2

Ωdµ (21)

where

UΩ(e jϑϑϑ ) = Φ
−1/2
1 (e jϑϑϑ )Ω−1(e jϑϑϑ )Φ

−1/2
0 (e jϑϑϑ )

× (Φ
1/2
0 (e jϑϑϑ )Ω(e jϑϑϑ )Φ1(e jϑϑϑ )Ω(e jϑϑϑ )Φ

1/2
0 (e jϑϑϑ ))1/2 (22)

and UΩ(e jϑϑϑ )UΩ(e jϑϑϑ )∗ = I, i.e. UΩ is an all-pass func-
tion. In view of (21), dΩ(Φ0,Φ1) is the weighted Eu-
clidean distance between the spectral factors Φ

1/2
0 (e jϑϑϑ ) and

Φ
1/2
1 (e jϑϑϑ )UΩ(e jϑϑϑ ) and thus the corresponding geodesic is

the line segment connecting them. Accordingly, the geodesic
on the manifold of the multivariate and multidimensional
power spectral densities connecting Φ0(e jϑϑϑ ) and Φ1(e jϑϑϑ ) is

Φτ(e jϑϑϑ ) = [(1− τ)Φ0(e jϑϑϑ )1/2 + τΦ1(e jϑϑϑ )1/2UΩ(e jϑϑϑ )]

× [(1− τ)Φ0(e jϑϑϑ )1/2 + τΦ1(e jϑϑϑ )1/2UΩ(e jϑϑϑ )]∗ (23)

with τ ∈ [0,1]. In the special case that Ω(e jϑϑϑ ) = I, i.e.
when we consider the Hellinger distance in (7), the all-pass
function used to form the geodesic becomes

UI(e jϑϑϑ ) =Φ
−1/2
1 (e jϑϑϑ )Φ

−1/2
0 (e jϑϑϑ )

× (Φ
1/2
0 (e jϑϑϑ )Φ1(e jϑϑϑ )Φ

1/2
0 (e jϑϑϑ ))1/2 (24)

which is the one considered in [32]. It is also worth noting
that in the case that m = 1, i.e. we consider the manifold
of the univariate and multidimensional spectral densities,
then UΩ(e jϑϑϑ ) =UI(e jϑϑϑ ) that is (12) and (7) define the same
geodesic.

In the periodic case, the weighted Hellinger distance in
(20) defines the following geodesic on the manifold of the
multivariate multidimensional power spectral densities:

Φτ(ζζζ `̀̀) = [(1− τ)Φ0(ζζζ `̀̀)
1/2 + τΦ1(ζζζ `̀̀)

1/2UΩ(ζζζ `̀̀)]

× [(1− τ)Φ0(ζζζ `̀̀)
1/2 + τΦ1(ζζζ `̀̀)

1/2UΩ(ζζζ `̀̀)]
∗ (25)

with τ ∈ [0,1] and UΩ(ζζζ `̀̀) is an all-pass function, i.e.
UΩ(ζζζ `̀̀)UΩ(ζζζ `̀̀)

∗ = I for any `̀̀ ∈ Zd
N, defined as follows:

UΩ(ζζζ `̀̀) = Φ
−1/2
1 (ζζζ `̀̀)Ω

−1(ζζζ `̀̀)Φ
−1/2
0 (ζζζ `̀̀)

× (Φ
1/2
0 (ζζζ `̀̀)Ω(e jϑϑϑ )Φ1(ζζζ `̀̀)Ω(ζζζ `̀̀)Φ

1/2
0 (ζζζ `̀̀))

1/2. (26)

V. EXAMPLE

We consider two zero mean Gaussian random fields
with d = 2 and m = 2 having spectral density Φ0(e jϑϑϑ ) =
W1(e jϑϑϑ )W1(e jϑϑϑ )∗ and Φ1(e jϑϑϑ ) = W2(e jϑϑϑ )W2(e jϑϑϑ )∗, respec-
tively. More precisely,

W0(z) =

[ 1
1−〈ααα0,z−1〉

1
1−〈βββ 0,z−1〉

0 1
1−〈γγγ0,z−1〉

]

W1(z) =

[ 1
1−〈ααα1,z−1〉

1
1−〈βββ 1,z−1〉

0 1
1−〈γγγ1,z−1〉

]
(27)

where ρ = 0.475,

ααα0 = ρ[e jpi/2 e jπ/2 ]T , ααα1 = ρ[e j3π/4 e jπ/2 ]T ,

βββ 0 = ρ[e jπ/3 e j3π/4 ]T , βββ 1 = ρ[e jπ/2 e j3π/4 ]T ,

γγγ0 = ρ[e j3π/4 e jπ/3 ]T , γγγ1 = ρ[e j3π/4 e jπ ]T (28)

and, with some abuse of notation, 〈ᾱαα,z−1〉 := ᾱ1z−1
1 + ᾱ1z−1

2
with ᾱαα = [ ᾱ1 ᾱ2 ]

T and z = [z1 z2 ]
T .

Figure 1 shows the corresponding geodesic defined in (23)
with the constant weight function

Ω(e jϑϑϑ ) =

[
1 −0.99

−0.99 1

]
(29)

for τ = 0 (first row), τ = 0.33 (third row), τ = 0.67 (fifth
row) and τ = 1 (sixth row). Moreover, we also compare it
with the geodesic obtained with Ω(e jϑϑϑ ) = I for τ = 0 (first
row), τ = 0.33 (second row), τ = 0.67 (fourth row) and τ = 1
(sixth row). We can notice that the two geodesics are visibly
different in regard to the real part of the entry in position
(1,2). Accordingly, we can design Ω in such a way to induce
specific properties on the corresponding geodesic.

VI. THE GENERAL CASE

The OTP’s analyzed before consider P as the set of Gaus-
sian joint probability densities. This hypothesis, however, can
be weakened. Notice that a Gaussian process is a particular
elliptical process. More precisely, we can take P as the set
of the joint probability densities such that [xT yT ]T is an
elliptical stationary process having zero mean and with joint
power spectral density bounded and coercive. Accordingly, x
and y are elliptical processes with zero mean. We conclude
that the same reasoning and thus same results hold also in
this case.

VII. CONCLUSION

In this paper we have introduced the optimal trans-
port problem between Gaussian aperiodic/periodic Gaus-
sian random fields. The solution to these problems leads
to a weighted Hellinger distance between multivariate and
multidimensional power spectral densities. Such a distance



Fig. 1: The path Φτ(e jϑϑϑ ) between Φ0(e jϑϑϑ ) and Φ1(e jϑϑϑ ) for τ ∈ {0,0.33,0.67,1} using Ω defined in (29) – rows one, three,
five and six – and Ω(e jϑϑϑ ) = I – rows one, two, four and six. The first and the last column show the entry of the spectral
densities in position (1,1) and (2,2), respectively. The second and the third column show the real and the imaginary part
of the entry of the spectral densities in position (1,2).



can be characterized in terms of spectral factors. In the
unidimensional case, the Hellinger distance can be defined in
such a way to have the freedom in choosing one of these two
spectral factors, see [8]; in particular, it is always possible to
choose a rational spectral factor if the corresponding spectral
density is rational. It is worth stressing that this last fact in the
multidimensional case, however, is no longer true in general,
[33], [34].

Finally, we have shown that the weighted Hellinger dis-
tance defines a geodesic, depending on the weight function,
on the manifold of the multivariate and multidimensional
spectral densities.
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