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Abstract—Automated Guided Vehicles (AGVs) have been
widely used for material handling in flexible shop floors. Each
product requires various raw materials to complete the assembly
in production process. AGVs are used to realize the automatic
handling of raw materials in different locations. Efficient AGVs
task allocation strategy can reduce transportation costs and im-
prove distribution efficiency. However, the traditional centralized
approaches make high demands on the control center’s comput-
ing power and real-time capability. In this paper, we present
decentralized solutions to achieve flexible and self-organized
AGVs task allocation. In particular, we propose two improved
multi-agent reinforcement learning algorithms, MADDPG-IPF
(Information Potential Field) and BiCNet-IPF, to realize the
coordination among AGVs adapting to different scenarios. To
address the reward-sparsity issue, we propose a reward shaping
strategy based on information potential field, which provides
stepwise rewards and implicitly guides the AGVs to different
material targets. We conduct experiments under different settings
(3 AGVs and 6 AGVs), and the experiment results indicate
that, compared with baseline methods, our work obtains up to
47% task response improvement and 22% training iterations
reduction.

Index Terms—Multi-agent reinforcement learning, AGVs, de-
centralized task allocation, information potential field

I. INTRODUCTION

Driven by the recent advancements in industry 4.0 and

industrial artificial intelligence, the use of autonomous systems

in manufacturing enterprises has become inevitable [1], [2].

Automated Guided Vehicles (AGVs), as a type of flexible

intelligent logistics equipment, have a great degree of freedom

and play an essential role in flexibly transporting materials and

products. AGVs have been hailed as one of the most promising

technologies and have been implemented in a variety of shop

floors and warehouse logistics operations for material supply

[3], [4].

The multi-variety, small-batch, and customized production

mode results in more logistics tasks and higher real-time

demands. Using AGVs for cooperative transportation can sig-

nificantly improve efficiency and cut expenses. How to make

*Corresponding author.

multiple AGVs collaborate to perform material transportation

tasks remains a significant topic in intelligent storage systems

[5], [6]. The traditional approaches are mostly centralized

control methods (Fig.1 (a)) and consider task assignment as

a path planning problem for single or multiple robots [7],

[8]. On one hand, it places extremely high demands on the

control center’s computing power and real-time capability. On

the other hand, the complexity and dynamic obstacles of the

environment can impair the system’s stability and scalability.

In comparison to centralized solutions, agent-level decentral-

ized task allocation strategies (Fig.1 (b)) evenly distribute

computing load and make advantage of agents’ autonomous

decision-making ability.

Fig. 1. Centralized control methods and decentralized control methods of
AGVs.

With the continuous development of Multi-Agent Reinforce-

ment Learning (MARL) [9], Reinforcement Learning (RL)

has developed the capabilities of autonomous learning and

distributed computing. Agents generate their own behaviors,

modify their own state information, and accomplish the goal

efficiently through cooperation with others [10]. For example,

http://arxiv.org/abs/2108.06886v1


Lowe et al. [11] propose the Multi-Agent Deep Determinis-

tic Policy Gradient (MADDPG), which extends the DDPG

method to MARL by observing the opponent’s behavior.

Meanwhile, a global critic function is constructed to evaluate

global state action. The Alibaba team proposes the Bidirec-

tionally Coordinated Network (BiCNet) algorithm [12] in the

pysc2 multi-agent scenario [13]. Using Bidirectional Recurrent

Neural Networks (BRNN) [14] for implicit communication,

BiCNet has demonstrated superior performance in complicated

environments.

However, existing MARL approaches have a number of

drawbacks that make them unsuitable for decentralized multi-

AGV task allocation directly, such as environmental non-

stationarity and partial observability. Additionally, the reward

mechanism in multi-agent system is more sophisticated than

it is in single-agent system, and the reward-sparsity issue fre-

quently makes training progress difficult to converge. A critical

question is how to design an effective reward mechanism that

will boost performance and expedite convergence. Information

Potential Field (IPF) [15] is often utilized to tackle the

path planning problem. Using the virtual information gradient

diffusion of the target position data, the robot can advance

to the target position along a specific gradient direction. By

including IPF into reward function, the agents’ status can be

assessed more comprehensively, guiding the agents toward the

target positions.

To solve the above challenges, this paper proposes a novel

multi-agent reinforcement learning algorithm based on infor-

mation potential field rewards. We model the decentralized

multi AGV task allocation as a Partially Observable Markov

Decision Process (POMDP). To address reward-sparsity is-

sue, we propose a reward shaping mechanism based on IPF

that provides AGV collaboration with stepwise and implicit

direction. Additionally, we apply IPF to the state-of-the-art

MADDPG and BiCNet algorithms to prove the superiority

of this mechanism. Extensive experiments demonstrate that

our methodology can result in considerable performance and

convergence improvements. The main contributions of this

work are summarized as follows.

(1) The traditional centralized task allocation methods place

extraordinarily high demands on control center’s computing

power and real-time capability. We innovatively formulate

the decentralized multi-AGV task allocation problem as a

partially observable Markov decision process, and propose

two improved multi-agent reinforcement learning algorithms

to achieve coordination among AGVs adapting to different

scenarios.

(2) We introduce information potential field to address

the reward sparsity issue in decentralized multi-AGV task

allocation. It can provide implicit direction for autonomous

decision-making and improve the AGV system’s cooperation.

(3) We conduct experiments under different settings, and the

experiment results show that our strategy obtains up to 47%

task response improvement compared with baseline methods.

Additionally, we demonstrate the cooperation mechanism of

MADDPG-IPF and BiCNet-IPF. The agents establish a dif-

ferential preference for each target in MADDPG, while the

agents prefer the closest target in BiCNet.

The paper is organized as follows: In Section II, we discuss

related literature on collaborative task allocation and multi-

agent reinforcement learning. Section III formulates the task

allocation problem. In Section IV, we model the task allocation

problem as a partially observable Markov decision process,

and the proposed algorithm is demonstrated. The effectiveness

of the method is verified by experiments in section V. Section

VI gives the conclusions of this study and envisages some

future work.

II. RELATED WORKS

A. Multi-AGV Task Allocation

Multi-AGV task allocation is a critical part of AGV control,

as it seeks to determine the appropriate transit time and

equipment for each task. The traditional AGVs task allocation

approach is to apply classical optimization algorithms to

the production scheduling field, such as genetic algorithm,

particle swarm algorithm, ant colony algorithm. Wang et al.

[16] optimize the path selection problem using an improved

micro-genetic algorithm that takes into account running time,

stopping time, and turning time. Zhang et al. [17] employ

the makespan of jobs as the goal function and the machine

and AGV utilization ratios as the comprehensive evaluation

function. An improved particle swarm optimization algorithm

is developed to solve a reasonable scheduling scheme. Liu

et al. [18] develop a multi-objective mathematical model and

integrate with two adaptive genetic algorithms to optimize

the task scheduling of AGVs while taking into account the

charging task and the AGV’s variable speed. Saidi et al. [19]

address the conflict-free AGV path planning problem for job

shop scheduling and solve it using a two-stage ant colony

algorithm. These algorithms require knowledge of the global

environment in order to calculate the optimal policies, and the

decision-making capability of a single agent is insufficient in

real-world scenarios. The multi-agent system can complete not

only a single agent’s goal, but also exceed the efficiency of

the single agent, which means that many agents can increase

its strength.

B. Multi-Agent Reinforcement Learning

In multi-agent system, traditional independent Q-learning

[20] or DQN based on experience replay [21] cannot be

applied to a multi-agent environment directly. Because the

experience pool’s samples become old when the environment

changes, the method produced from outdated sample train-

ing is frequently not ideal. Therefore, Foerster et al. [22]

propose two strategies for maintaining the DQN experience

replay pool’s stability. The central idea is to augment the

experience buffer with additional information and to under-

take importance sampling in order to mitigate the influence

of unstable surroundings on multi-agent training. Lowe et

al. [11] propose MADDPG to train a centralized critic for

each agent using all agents’ policies during training in order

to reduce variance by eliminating the non-stationarity. The



actor only has local information and the experience buffer

records the experiences of all agents. Foerster et al. [23]

propose an actor-critic counterfactual multi-agent (COMA)

policy gradient method. COMA is intended for use in both the

fully centralized and multiagent credit assignment problems.

By comparing the current Q value to the counterfactual, an

advantage function can be constructed. In contrast to previous

approaches, in Bidirectionally Coordinated Network (BiCNet)

[12], communication takes place in the latent space, and it

also uses parameter sharing. Note that in BiCNet, agents do

not explicitly share a message, it might be considered a method

for learning cooperation.

Multi-agent reinforcement learning technology provides

new ideas for implementing autonomous decision-making of

multiple AGVs. Our proposed method utilizes the powerful

data representation and decision-making capabilities of deep

reinforcement learning to enable self-organizing task assign-

ment of multi-AGV systems.

C. Information Potential Field

Information Potential Field (IPF) is an effective path plan-

ning method. The robot can accomplish the global objective

by employing a greedy strategy based on the information

gradient. Liu et al. [15] propose two effective algorithms for

constructing IPF: the hierarchical skeleton-based construction

algorithm and the value estimation replacement algorithm,

both of which achieve a trade-off between energy consumption

and convergence speed. Wei et al. [24] propose efficient park-

ing navigation via a continuous information ascent method.

In the first step, a partial differential equation is used to

establish a global potential field. In the second step, a Poisson

equation is employed to construct the local potential field in

the navigation process. Lin et al. [25] propose an artificial

information gradient that is robust and has no local extrema.

They use a harmonic function to establish IPF, representing

the diffusion of a specific type of event of interest (EoI). Wei

et al. [26] offer a novel heat diffusion equation to efficiently

and quickly complete the navigation procedure. The strategy

assures that a local information field is sufficiently large to

encompass many appropriate targets, and that competition

conflicts can be addressed concurrently. The majority of cur-

rent research directly addresses the path planning problem

using the information potential field method. In this paper,

the information potential field is utilized to design the reward

function of multi-agent reinforcement learning. The reward

is evaluated in relation to the information potential value of

the AGV location to implicitly steer the AGV to the target

position.

III. PROBLEM FORMULATION AND SYSTEM OVERVIEW

A. Problem Formulation

In this section, we will formally define the multi-AGV

collaborative task allocation problem. In the manufacturing

workshop, processing products typically require various raw

materials, which are stored in different locations across the

warehouse. AGVs must travel to multiple destinations in

order to coordinate transportation tasks. We define the logistic

network using G = (T, V, L), where T , V and L denote the

set of material targets, vehicles and trajectories, respectively.

More specifically,

Target set T : Each cooperative transportation task entails the

movement of N different materials. The material targets Ti ∈
T (1 ≤ i ≤ N) are randomly dispersed in different places, and

the position of the target Ti is represented by (xT
i , y

T
i ).

Vehicle set V : we assume that all of N AGVs are modeled

as discs with the same radius D, i.e., all AGVs are homoge-

neous. At each timestep t, utilize the vector Gi = {p
t
i, v

t
i , ri}

to describe the state of the AGV i (1 ≤ i ≤ N), including

its position pti = (x, y), velocity vti = (vx, vy), and sensing

distance ri. The AGV i obtains an observation oti within the

sensing range ri, and then compute the action command ati
according to the policy πθ , where θ denotes the policy pa-

rameters. The calculated action ati is a velocity vti that directs

the AGV toward the task target while avoiding collisions with

other robots.

Trajectory set L: To wrap up the preceding formulation, we

define L = {li, i = 1, . . . , N} as the set of trajectories of all

AGVs, which are subject to the AGV’s kinematic constraints,

i.e.:

vti ∽ πθ(a
t
i | o

t
i)

‖vti‖ ≤v
max
i

pti = pt−1
i +∆t · vti

∀j ∈ [1, N ], j 6= i,
∥

∥pti − ptj
∥

∥ > 2D

(1)

To find an optimal policy, we set an objective by minimizing

the expectation of the mean arrival time of all AGVs in the

same scenario, which is defined as:

argminπθ
E

[

1

N

N
∑

i=1

ti|πθ

]

(2)

Where ti is the travel time of the trajectory li in L controlled

by policy πθ .

Decentralized multi-AGV task allocation can be viewed as

a special mobile robot moving path planning problem. AGV

decides its target and plans a collision-free course based on

its surroundings cognition.

B. System Architecture

We propose improved multi-agent reinforcement learning

algorithms to solve this problem, the architecture of which is

shown as Fig.2. In real world situations, agents make noisy

observations of the true environment state to inform their

action selection, typically modeled as a POMDP. Formally, a

POMDP can be described as a tuple: M = (N,S,A, P,R,O),
where N denotes the number of agents, S represents the

system state space, A represents the joint action space of all

agents, P is the transition probability function, R is the reward

function, and O is the observation probability distribution

given the system state (o ∽ O(s)). Specific to the problem

scenario of AGV collaborative task allocation, the state space

S and action space A are specifically designed as follows:



State space S: For the AGV task assignment problem, the

selection of the state space should not only characterize the

attributes of the agents and targets, but also not bring too much

computational burden. Therefore, we set the state space as

{v, p,DA, DB}, where {v, p} is the speed and position of the

agent itself, and {DA, DB} is the relative distance from the

targets and other agents.

Action space A: We set the AGV’s action space as a one-

dimensional vector {x, y}, the value is (−1, 1), representing

the acceleration in the left and right directions and the front

and back directions. Combined with the weight and damping

of the AGV itself, the velocity of the AGV is computed.

Reward R: Our objective is each AGV avoids collisions

and self-organizes to different targets as quickly as possible.

A reward function is designed to guide a team of AGVs

to achieve this objective. we design a target reward when

reaching the target position and a collision penalty when a

collision occurs.

When the new tasks arrive, state information is input to the

network to determine the action. Following that, the chosen

action will be used to route the AGVs to various task targets.

The reward function is used to direct model training in this

process, allowing the model to learn the ideal strategy.

Fig. 2. Architecture of AGVs task allocation approach.

IV. METHODS

A. Reward Shaping with IPF

A well-designed reward function can enhance robustness

and promote agent collaboration. In the previous section,

we discuss a general AGV task allocation framework. In

this section, we propose a reward shaping strategy based

on information potential field to address the issue of reward

sparsity.

Information Potential Field (IPF) is introduced to design

the reward function rIPF , as shown in Fig.3. We partition the

scenario into a bounded grid map, assign a positive informa-

tion potential value for the location of the target target, and

assign a negative information potential value for the location of

other AGVs, which can implicitly guide the AGVs to different

targets. The targets are set to a maximum potential value of 5,

while the other AGV’s positions are set to a minimum potential

Fig. 3. Information Potential Field.

value of -3. Additionally, we set the information value of some

other nodes to 0, often nodes on the network boundary, in order

to enforce a gradient throughout the network. The remaining

nodes compute the information potential field using Jacobi

iterations. Each non-boundary node iterates:

Φk+1(u)←
1

d(u)

∑

v∈N(u)

Φk(u) (3)

Where Φk(u) is the value of node u in the k− th iteration.

N(u) signifies the set of u’s neighbors, while d(u) denotes

the degree of u. Each position will have a corresponding

information potential value after iteration. The AGV obtains

the reward value rIPF according to the information potential

value of the position at the time step t. As illustrated in

Fig.4, the IPF value around the target location is high, and the

gravitational range grows more vast when several targets are

gathered. When another AGV is already in close proximity to

the target, the reward is reduced, essentially avoiding multiple

AGVs competing for the same target.

Fig. 4. IPF provides implicit guidance for agent’s decision-making.

Along with rIPF for implicit guidance, we design a target

reward rg and a collision penalty rc for explicit guidance. The

target reward rg and the collision penalty rc are specified as

follows:

rg = −
∑

i

minj(dij) (4)

rc =

{

−1 if‖pti − ptj‖ ≤ 2R
0 otherwise

(5)



Where dij is the distance between task target j and AGV

i. Additionally, when the AGV collides with other AGVs in

the environment, it incurs a rc penalty.

In general, we hope that when a new handling task arrives,

the AGV system can self-organize and complete it in the

shortest time possible. Based on the observed information,

AGVs must plan a collision-free path to different material

targets. We use the sum of rIPF , rg and rc to represent

the reward r acquired by AGV i at time step t, as seen in

(6), directing the AGV system to achieve self-organizing task

assignment. rg incentivizes the presence of precisely one agent

near each target. rc wishes for the fewest potential collisions.

rIPF provides an implicit shove to the AGV, guiding it to the

target place in a distributed fashion.

rti = (rIPF )
t
i + (rg)

t
i + (rc)

t
i (6)

B. The Algorithm Design

In multi-agent training, we focus on two algorithms based

on the actor-critic framework, MADDPG and BiCNet. These

two algorithms offer the following advantages over other

MADL algorithms. MADDPG does not require explicit com-

munication rules, is applicable to a wide variety of contexts,

including cooperative, competitive, and mixed environments,

and is capable of solving the non-stationary problem asso-

ciated with multi-agent environments. All agents in BiCNet

share models and parameters and build communication chan-

nels in the hidden layer, enabling any number of agents to

cooperate. These two algorithms approach issues differently,

and there are clear distinctions in the model structure, loss

function, and other factors.

1) MADDPG-IPF: MADDPG [11] adopts centralized

training with distributed execution method. Each agent trains

a critic network that requires global information and an actor

network that only requires local knowledge. The actor chooses

the best action for a given state by optimizing the neural

network parameters θ. The critic evaluates the action generated

by the actor by computing the temporal difference error. The

MADDPG algorithm network structure is shown in Fig.5.

Fig. 5. The structure of MADDPG-IPF.

The policy gradient is calculated as:

∇θiJ(µi) =Ex,a∽D[∇θiµi(ai|oi)·

∇ai
Q

µ
i (x, a1, . . . , an)|ai=µi(oi)]

(7)

Among them, oi represents the observation of the agent

i, and x = [o1, . . . , on] represents the observation vector.

Q
µ
i (x, a1, . . . , an) represents the centralized state-action func-

tion of the agent i. The experience replay buffer D contains

(x, x,, a1, . . . , an, r1, . . . , rn) these tuples, which acts as the

knowledge base of the agent, storing the experience of all

agents.

The action-value function Q
µ
i is updated based on:

y = ri(s, a) + λQ
µ′

i maxθ(x
′, a′1, . . . , a

′

n)|a′

j=µ′

j(oj)

L(θi) = Ex,a,r,x′ [(Qµ
i (x, a1, . . . , an)− y)2]

(8)

Among them, Q
µ′

i represents the target network, and µ′ =
[µ′

1, µ
′

2, . . . , µ
′

n]is the parameter θ′j of the target network that

has a lagging update.

2) BiCNet-IPF: BiCNet [12] is still based on the actor-

critic framework, and the network structure as illustrated in

Fig.6. The actor and the critic are both constructed using

a bidirectional recurrent neural network. Through implicit

communication, the actor shares observation and returns action

for each agent. Each agent has the ability to retain its own

internal state and communicate with other agents.

Fig. 6. The structure of BiCNet-IPF.

We denote the objective of a single agent i by Ji(θ), that

is to maximize its expected cumulative individual reward ri
as Ji(θ) = Es∽ρτ

aθ
[ri(s, aθ(s))]. Therefore, we can get the

objective of N agents denoted by J(θ) as follows:

J(θ) = Es∽ρτ
aθ
[

N
∑

i=1

ri(s, aθ(s))] (9)



Combined with the deterministic policy gradient, we have

the policy gradient as follows:

∇θJ(θ) = Es∽ρτ
aθ

(s)[

N
∑

i=1

N
∑

j=1

∇θaj,θ · ∇aj
Qaθ

i (s, aθ(s))]

(10)

In training the critic network, using the sum of square loss,

the gradient can be written as in (11), where ξ is the parameter

of the Q-network:

∇ξL(ξ) =Es∽ρτ
aθ

(s)[

N
∑

i=1

(ri(s, aθ(s)) + λQ
ξ
i (s

′, aθ(s
′))

−Q
ξ
i (s, aθ(s))) · ∇∂ξQ

ξ
i (s, aθ(s))]

(11)

In different agents, the parameters are shared, hence the

number of parameters is independent of the number of agents.

Parameter sharing leads to a compact model that speeds up

the learning process.

V. EVALUATION

A. Experimental Settings

In order to conduct experiments, we build an AGV task

allocation simulator based on a multi-agent environment [11],

which comprises of N AGVs and N tasks inhabiting a two-

dimensional world with continuous space and discrete time

(see Fig.7). For MARL algorithms, as the number of agents

increases, the joint state-action space increases exponentially,

which makes the task intractable. Therefore we verify the

robustness of the proposed methods under two scenarios: a

3 AGVs and 3 tasks simple scenario and a 6 AGVs and

6 tasks complex scenario, referred to as 3V3 scenario and

6V6 scenario. In each scenario, the position of the AGV

and the position of the task are randomly generated. Taking

into account the actual scenario, we define boundaries around

the simulator, within which the agent can only move. We

hope that the AGV can learn to disperse to different task

targets in the shortest time and avoid collisions as much as

feasible. Performance is measured by average task response

rate, average reward, and average time:

Average task response rate: the number of tasks completed

by N AGVs in the entire test epochs divided by the total

number of tasks generated.

Average reward: the rewards obtained by N AGVs

at each time step, calculated using the formula R =
−
∑

i minj(dij)− C.

Average time: the total time required for N AGVs to execute

all tasks (for example, in the 3V3 scenario, the three AGVs

have reached the three task targets correctly).

B. Performance Comparison

In this subsection, the performance of following methods is

extensively evaluated by the simulation.

MADDPG-MiniDist: The MiniDist is a global reward that

sums the distance between each task target and its nearest

Fig. 7. Cooperative task allocation.

TABLE I
MODEL PERFORMANCE IN 3V3 SCENARIO

Average task
response rate

Average reward Average time

MADDPG-MiniDist 88.64% -101.1 14.3

MADDPG-Greedy 88.67% -116.61 11.8

MADDPG-IPF 95.00% -85.8 11.1

BiCNet-MiniDist 93.03% -71.5 10.4

BiCNet-Greedy 73.56% -143.8 10.2

BiCNet-IPF 97.58% -65.8 9.7

agent. The shorter the distance between two targets, the larger

the reward.

MADDPG-Greedy: The Greedy is an individual reward.

When an agent approaches the task target, it receives a positive

reward, which rises as the distance between the agent and the

task target decreases.

MADDPG-IPF: The IPF as we discussed in Section 4.

Additionally, BiCNet-MiniDist, BiCNet-Greedy and

BiCNet-IPF are similar to the above. The Q-network and

policy network in MADDPG are parameterized by three

fully connected layers. The Q-network and policy network

in BiCNet are based on the bi-directional RNN structure.

Both the input and output modules are made up of four fully

connected layers.

Each model is trained for 30k epochs in the 3V3 scenario.

For the 6V6 scenario, the action space and state space dimen-

sions are greatly increased, necessitating the use of additional

rounds. As a result, each model based on MADDPG is trained

for 50k epochs, and each model based on BiCNet, a more

complicated network structure, is trained for 90k epochs.

Finally, we execute 300 epochs for testing on each model in

the two scenarios, and the results are presented in Table I and

Table II.

MADDPG-IPF achieves a task response rate of 95% in

the 3V3 scenario, an increase of approximately 6% over the

other MADDPG models. Comparing the results of MADDPG-

IPF and BiCNet-IPF, the BiCNet-IPF consistently outperforms

MADDPG-IPF, possibly because of implicit communication,

which enables better decision-making with more information.

In the more complex 6V6 scenario, BiCNet-IPF achieves a

task response rate of 91.61%, a significant advantage over all



TABLE II
MODEL PERFORMANCE IN 6V6 SCENARIO

Average task
response rate

Average reward Average time

MADDPG-MiniDist 69.22% -438.5 17.7

MADDPG-Greedy 46.06% -675.0 17.1

MADDPG-IPF 80.22% -371.5 16.2

BiCNet-MiniDist 80.44% -249.8 16.0

BiCNet-Greedy 44.56% -664.5 17.5

BiCNet-IPF 91.61% -241.1 15.6

other models. Although MADDPG-IPF is not as good as the

best approach, it still achieves an 80.22% task response rate. In

general, the global reward (MiniDist) assigns the same reward

to all agents without regard of their contributions, which may

encourage slothful agents. In comparison, the local reward

(Greedy) only provides different local rewards to each agent

based on individual behavior, leading to selfish agents. IPF

reward incorporates global and local information and gives

ongoing rewards at each step, allowing the agent to improve

its performance on various task targets.

C. The Effectiveness of IPF

Along with the performance comparisons mentioned above,

we examine the task completion of each round of three AGVs

under different reward designs in 3V3 scenario. As shown

in the Fig.8, after applying the IPF reward mechanism, the

agents can complete all tasks mostly in a distributed manner.

IPF can significantly reduce the likelihood of multiple AGVs

competing for the same target by offering implicit guidance.

Global rewards may lead to laziness, so the agents inspired

by MiniDist sometimes reach the target nearby but stagnate,

resulting in worse task response than IPF. The Greedy reward

frequently motivates agents to fight for a single task target,

resulting in suboptimal performance.

Fig. 8. Task response rate per round. For 3 response, all three tasks are
completed.

Convergence is assessed by examining the average task

completion rate of BiCNet during the training phase under the

challenging 6V6 scenario. As illustrated in Fig.9, the approach

using IPF can achieve a 40% task response rate after 40k

epochs and 60% task response rate after 60k epochs. Due to

the fact that BiCNet-Greedy is an individual reward network,

its convergence rate is slower. The agents inspired by MiniDist

are unable to acquire vital knowledge in the first 60k epochs,

but there performance improves significantly after 70k epochs.

Fig. 9. Convergence comparison. Average task response rate under different
reward mechanisms during the training phase.

D. Implicit Cooperation Mechanism Analysis

In the 6V6 scenario, by numbering each AGV and each task,

we observe an interesting phenomenon: the 2-th AGV and 6-th

AGV directed by MADDPG always arrive at the identical 3-

th task, resulting in no AGV reaching the 1-th task. However,

this will not occur in BiCNet. Thus, we count the task targets

achieved by each agent of MADDPG-IPF and BiCNet-IPF

in the 3V3 scenario and 6V6 scenario, and investigate the

cooperation mechanism of the two methods MADDPG and

BiCNet, as shown in Fig. 10.

Fig. 10. The cooperation mechanism of MADDPG and BiCNet. In (a), the
agents develop a differential preference for each task, e.g. the 1-th agent
prefers task 1. In (b), the agents tend to complete the nearest task.

We discover that what MADDPG learned is each agent’s

preference for a certain fixed task. As illustrated in Fig.11,

while training 30k epochs in the 3V3 scenario, 97% of the

epochs of 1-th AGV chooses the 1-th task. What BiCNet

learned is the choice of each agent for the closest task targets.

As shown in Fig.12, the reach rate of 1-th AGV for the three

tasks in 30k epochs is approximately 30%, and it does not

show exceptional performance for a particular task.

In terms of this phenomenon, we argue that under MAD-

DPG framework, each agent has an independent network

structure and takes decisions based on local observations.

Therefore, by continuously strengthening the rewards obtained

at a particular task target during initial training, the agent

will prefer it. While all agents in BiCNet share parameters

and communicate implicitly via the bi-directional RNN, each

agent coordinates with others and moves toward the nearest

task target.



Fig. 11. The 1-th agent’s preference in MADDPG. After fully training the
model, the 1-th agent tends to complete task 1, but rarely chooses task 2 and
task 3.

Fig. 12. The 1-th agent’s preference in BiCNet. After fully training the model,
the probabilities of the 1-th agent choosing three tasks are similar.

VI. CONCLUSION

In this paper, we first formulated the AGVs task alloca-

tion problem in logistics networks as a partially observable

Markov decision process. Given this setting, we introduced

the information potential field optimization reward mechanism

and proposed two cooperative multi-agent reinforcement learn-

ing algorithms to solve the problem. Extensive experiments

demonstrate that our new approach can stimulate cooperation

among agents and give rise to a significant improvement

in both performance and convergence. For future work, we

will create more multi-agent coordination and communications

scenarios considering complex operation situations and uncer-

tainties. Another interesting and practical direction to develop

is to use a heterogeneous agent setting with individual specific

feature to improve collaboration.
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