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Abstract—A novel dynamic radio-cooperation strategy is pro- Core Network s
posed for Cloud Radio Access Networks (C-RANS) consistingf o 'l Backhaul links
multiple Remote Radio Heads (RRHs) connected to a central Q 5 5 5

Virtual Base Station (VBS) pool. In particular, the key capa

bilities of C-RANs in computing-resource sharing and realtime

communication among the VBSs are leveraged to design a joint

dynamic radio clustering and cooperative beamforming schee

that maximizes the downlink weighted sum-rate system utity // ((( )) \\

(WSRSU). Due to the combinatorial nature of the radio clusteing «( )>) ’—RRHA —((( )))
RRH

process and the non-convexity of the cooperative beamformg
design, the underlying optimization problem is NP-hard, arl is RRH
extremely difficult to solve for a large network. Our approach

aims for a suboptimal solution by transforming the original

problem into a Mixed-Integer Second-Order Cone Program Fio. 1. Cloud Radio A Network (C-RAN) Architect
(MI-SOCP), which can be solved efficiently using a proposed 'g- 1. Cloud Radio Access Network ( ) Architecture.

iterative algorithm. Numerical simulation results show that our

low-complexity algorithm provides close-to-optimal perbrmance . . . .

in terms of WSRSU while significantly outperforming conven- OVer a one-level higher layer in the aggregation hierarchy.
tional radio clustering and beamforming schemes. Additiomlly, ~Consequently, the latency and scarce interconnectiorcitgpa
the results also demonstrate the significant improvement in among BSs have resulted in limited deployments of COMP in
computing-resource utilization of C-RANs over traditional RANs practice and, in turn, in modest BS cooperation.

with distributed computing resources. .

I ndex Terms—CIoSd ra?:iio access networks; dynamic cluster- Re_cently, Cloud Radlq Access Network (C-RAN] [&[4]
ing; joint beamforming; computing resource sharing. architecture has been introduced as a new paradigm for
broadband wireless access that allows for dynamic reconfigu
ration of computing resources and provides a higher degree
of cooperation as well as communication among the BSs.

Overview: The proliferation of personal mobile-computingThe fundamental characteristics of C-RAN can be summa-
devices along with a plethora of data-intensive mobile iapplized as i) centralized management of computing resources,
cations has resulted in a tremendous increase in demandiiforeconfigurability of spectrum resources, iii) collalative
ubiquitous and high-data-rate wireless communicatiorer oxcommunications, and iv) real-time cloud computing on gener
the last few years. To cope with this challenge, the curreplatforms. A typical C-RAN, as shown in Figl 1, is composed
trend in cellular networks is to increase the densificatibn of three main parts: 1) Remote Radio Heads (RRHSs) plus
small cells and to leverage the cooperation among multipdatennae, which are located at the cell sites and are clautrol
antennae and base stations (BSs). In this way, higher systemotely by Virtual Base Stations (VBSs) housed in a cen-
throughput and reduced interference can be achieved tralized VBS pool, 2) the Base Band Unit (BBU) (VBS pool)
Coordinated Multi-Point (CoMP) transmission and recaptioccomposed of high-speed programmable processors and real-
techniques[]1], which have been adopted in 3GPP Long-Tetime virtualization technology to carry out digital prosewy
Evolution (LTE)-Advanced. In CoMP, a set of neighboringasks, 3) low-latency, high-bandwidth Common Public Radio
cells are grouped into clusters, each consisting of coedectnterface (CPRI), which connects the RRHs to the VBS pool.
BSs that share Channel State Information (CSI) and useinn this paper, we aim to realize the benefits offered by
signals. This scheme allows for joint processing among B&RANs to improve the cellular network performance via
that can effectively mitigate the Inter-Cell Interferen@¢€l) dynamic adaptation of radio clusters and computing ressurc
and thus improve the spectral efficiency. However, in curreRirstly, the co-location model of the VBSs allows for their
cellular-network architectures, physical links only éxige- real-time intercommunication, thus fully enabling a cderd
tween BSs and their corresponding access network gatewsed joint transmission of RRHs that is currently pradiyca
and thus, the control signaling between BSs needed to ecalionstrained. In particular, control signals to realize GoM
CoMP has to travel through costly backhaul links, and oftdrmetween the BSs that traditionally travel via back-haukdin
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can now be exchanged through the InfiniBand interconnectiolustering process and the non-convexity of the cooperativ
among the VBSs. A C-RAN-based radio-cooperation scherheamforming design, thBynamic-RCproblem is extremely
would be fully dynamic and user specific, in the sense thdifficult to solve optimally in practical (polynomial) timir a
we can form a virtual cluster of RRHs to coordinate thesystem with a large number of users and RRHs. To overcome
downlink transmissions to each of the scheduled users. this drawback and solve the problem efficiently, our appnoac
this strategy, each scheduled user is always the central odims for a suboptimal solution with reasonable complexity.
RRH cluster, making it different from the traditional CoMPIn particular, we exploittonic programmingechniques[[15]
techniques where the RRHs are grouped into fixed and n@md thel1-norm reweighting approximation methods from
overlapping clusters. Compressive Sensing which were originally proposed for
Related Works: Pioneering works on realizing the benefisparse signal recovery [16], in order to quickly identifye th
of C-RANs have focused on the overall system architectuoptimal clustering decision and beamforming design.
with emphasis on system issues, feasibility of virtualwsafe We propose an iterative algorithm to solve tBgnamic-
base station stacks, performance requirements and ahalf&L problem. In each iteration, the clustering decision is
of optical links between RRHs and their VBSS| [2].] [5]temporarily fixed and aCooperative Beamforming Design
[6]. On the other hand, considerable attention has also bg@BD) problem is solved using Second-Order Cone Program-
paid on cooperative communications techniques for C-RAMing (SOCP) technique. The optimal beamforming solution
under various different objectives. For example, [ih [7] thebtained from the CBD problem is used to adjust the clusgerin
authors propose a blind source separation strategy toatgtigdecision vial1-norm reweighting technique. As such, the joint
interference in uplink C-RAN; in[8]/]9] the authors consich  clustering and beamforming design is quickly identified and
network power minimization problem. In addition, the opdiim is adaptive to the global network condition.
tradeoff design between transmit power and backhaul cgpaci Numerical simulations are carried out extensively in vasio
is studied in[[1D], while the tradeoff between transmit ppweuser distribution scenarios and demonstrate that our gexbo
and delay performance is investigated/inl[11] via a crogetla low-complexity Dynamic-RCstrategy significantly improves
based approach. the WSRSU performance over conventional radio clustering
In this paper, we study a dynamic radio cooperatioand beamforming schemes. Furthermore, the results also sho
technique and consider Weighted Sum-Rate System Utilifiye great potential gains of C-RANs using ddynamic-RC
(WSRSU) as the performance metric under a practical costrategy over distributed RANSs in terms of computing reseur
straint on computing resources at the VBS pool. Note thahd transmit power utilization.
the BS cooperation for WSRSU maximization problem has paper Organization: The remainder of this paper is or-
been studied in traditional CoMP systems. However, due thanized as follows: in SecE]ll, we present the considered
scarce interconnection among the BSs and the lack of glogggtem model and formulate the problem under study; in
CSI available at each BS, existing clustering and coopergect.[Tll, we discuss the analysis and solution to the coop-
tive beamforming techniques are mostly heuristic-base, (i erative beamforming design problem with a fixed clustering
the clustering decision is made based on the relative sig@kision; in Secf TV, théynamic-RCstrategy via dynamic
strength and locations of the users, and the beamformipgiio clustering and beamforming design is solved via our
design is not adaptive timter-cluster interferende[12]-{14]. proposed iterative algorithm; simulation results arestitated

Our Contributions: In this paper, we propose a novein Sect[Y and, finally, Sedi_VI concludes the paper and goint
dynamic radio cooperation strategy for C-RANs that takes a@ future work.

vantage of real-time communication and computing-resourc
sharing among the VBSs. Unlike existing methods, our ap- |I. SYSTEM MODEL AND PROBLEM FORMULATION

proach makes the joint clustering and beamforming decision , i i ,
In this section, we firstly introduce the system model

based on global CSI available at the VBS pool, thus being able ) ) X
to mitigate both thentra-clusterandinter-clusterinterference of the considered downlink C-RAN system and discuss the

in order to significantly improve the system’s performancg_omputlng-resource constraint. The proposed dynamimradi

Our proposed solution dynamically groups the RRHs infgPOPeration strategy is then formulated as a joint clusgeri
user-specific (potentially overlapping) clusters and glesithe and beamforming design problem.

downlink beamformers at each RRH in order to maximiz
the WSRSU function. In particular, within each schedulin
interval, i.e., a time-frequency resource block, a group of We consider a multi-user, multi-cell C-RAN downlink
RRHs is identified to serve each scheduled user. To realize Hystem, where each cell has one RRH that connects to a
proposedynamic Radio Cooperation (Dynamic-R€§ljategy, common VBS pool via high-capacity backhaul links. Let
we formulate the associated optimization problem, whicR = {1,2,..., R} be the set of RRHs antd = {1,2,...,.U}

we also refer to as th®ynamic-RC problemthat aims to be the set of active users in the system. We assume that each
maximize the WSRSU under the transmit power constrairf®RH » has/NV,. antennae while, realistically, all the users are
at the RRHs and the total computing-resource constrainteajuipped with only a single antenna. Note that the solutions
the VBS pool. Due to the combinatorial nature of the radiproposed can be trivially extended to the multi-antenrer-us

. System Model



case. The RRHs cooperate with each other to form virtuat userfrastructure of a datacenter. Each VBS performs baseband
specific clusters, i.e., each RRH cluster is formed for a dchegprocessing for a certain set of users, and by leveragingatirt
uled user, while each RRH can be part of multiple clusterization technology, these VBSs can flexibly share the common
Hence, the number of virtual clusters is equal to the numbesmputing resource of the physical server pool. Recently,
of scheduled users in the system, which may be smaller thlwe implementation of software VBSs on General-Purpose
the number of total active users. L&t= {s” [u € U,r € R} Platform (GPP) has been realized (see, for example, [5],
be the clustering decision, in whicl|, is a binary variable [6]). Profiling results on these systems have revealed that
equal tol if RRH r is selected to serve user, and 0 the utilized computing resource at a VBS is an increasing
otherwise. Consequently, 18t, = {r € R|s, = 1} denote function of the accumulated data rates processed by that VBS
the serving cluster of usei. We consider the system in aTherefore, it is reasonable to argue that the total comgutin
single time-frequency resource block, which is consideped resource capacity of the VBS pool placescap on the
be spatially reused across all the users. As such, each RRH tdal data rates of the users in the network. In general, the
simultaneously serve at mo#f,. users; otherwise, the userscomputing-resource capacity of the VBS pool can be modeled
will suffer from intra-cluster interference. as a multi-dimentional vector representing the capaciti¢ke

We assume that each user has a single traffic flow thatG®Us, memory, and network interfaces. However, for the ease
independent of all other users’ flows. Baseband signalsder uof analysis, we only consider scalar computing capacithis t
u and the corresponding downlink beamforming informatiopaper. In particular, le€ denote the total computing capacity
after being processed at the VBS pool will be transported ito the VBS pool that can be flexibly shared among all the
all the RRHs in the serving clustér,. In each scheduling VBSs. The computing-resource constraint on the accunilate
slot, all the RRHs inV,, will jointly transmit the normalized data rate of all the users in the system can be expressed as
symbol z,, € C of unit power to usemn. It is assumed that
the signals for different users are independent from eauérot r (Z Ru> <C, 4)
and from the receiver noise. Now, let”, € CN+*! be the ueld
linear downlink beamforming vector at RRHcorresponding where R, is the data rate of user given in [3) andl'(.) is
to useru andW = {wy, [Vu € U,r € R } denote the network an increasing function specifying the relationship betwtre
beamforming design. Note th& also implies the scheduling ytilized computing resource and the accumulated user data
decision, i.e., user is not scheduled for the current time—atdl. It should be noted that for a traditional system with
frequency slot ifw;, = 0,Vr € R. In the current scheduling distributed computing resource at the RRHs, the accundlilate

slot, the received signaj, € C at useru is, data rate processed at each RRMill be subject to the per-
Yo = Z W W, + Z Z hZ,WZ//a:u/ 2 (D) RRH computing-resource constraiff < C, i.e.,
rEVy uweU,u'#ur' €V, I Z SZRU < CT, VreR. (5)
desiredsignal interference ueU

whereh” € CY*N+ is the channel coefficient vector fromB. Joint Clustering and Beamforming Problem Formulation

RRH r to useru, z, is the zero-mean circularly symmetric - Our objective is to maximize the WSRSU under the transmit
Gaussian noise denoted &s\V(0,0°). For simplicity, let power constraint at each RRH and the total computing-

Vuw = 3 hy'wr, and ¥, = ¥,, = > hiwi. With resource constraint at the VBS pool. It is assumed that the
this posi?ice)‘r?f/ the received Signal-to—Intgenygrence—fjﬂu:ése capacity of the front-haul links connecting RRHs to the VBS
Ratio (SINR) at user is, pool is sufficiently provisioned to_accommodate pegk-cﬂpac
demand. Our proposed dynamic radio cooperation strategy
_ |‘I’u|2 @) involves finding the optimal clustering decisi&# and the
T 3 |\1/u_’u/|2 +o2 optimal beamforming desighvV*, and can be formulated as,
u' €U, #u . .
Thus, under the clustering decisiéhand the beamforming (&7, W7) = {a:ggv%?xgq“}%“ (5, W) (62)
design W, the Shannon transmission rate of usercan reRucl
be calculated a%, (S, W) = nBlog, (1 + uy.), in which s.t. Z ||w2||§ <P.VremR, (6b)
B [Hz] is the channel bandwidth and i € [0, 1] account for =
the spectral and the coding efficiencies, respectivelyetmnl HWTH§ <SP, (6¢)
otherwise stated, for notation simplicity in the subseduen e o e
analysis we will assumé® = n = u = 1 and consider the > R, (S W) <Q, (6d)
normalized ratel{its/s/Hz). Hence, the rat&®, simplifies to, ueu
sy, < N, s, € {0,1}, 6e
R, (S, W) =1logs (1 + ) - 3) U.GZZ/{ 0.1y (6€)

Compu_tlng resource constrainthe VBS p00| ConS.'StS of 1The realization ofl’(.) can be obtained by carefully profiling the VBSs
a set of interconnected VBSs hosted in the physical-senaerifferent level of offered load in a practical C-RAN impientation.




whereg,, u € U, is the utility marginal function correspondingA. Relaxed-CBD Problem

to useru, which can represent the user-specific Quality of TherelaxedCBD problem is rewritten froni{7) without the

Service (QoS) or priority in the systenf;,. [W] is the per- computing-capacity constraifi{7c), and is cast as foljows
RRH transmission power constraint afdl = argT'(C).

Constraint[(Bk) indicates the coupling between the asségiim o hAX > quRu (S, W) (8a)
variable s, and the beamforming vectox”, i.e., w, = 0 YT ueu
whens], = 0. We refer to[(6) as the dynamic radio cooperation s.t. Z |wh|3 < P, Vr € R. (8b)
(Dynamic-RQ problem. In fact, this is a Mixed-Integer Non- ueld

Linear Program (MINLP), which is intractable in practicalrhis is in fact a weighed sum-rate maximization problem,

time. Specifically, even when the binary variabigsare fixed, \yhich is widely known to be NP-hard. Our approach aims for

solving forw, is still NP-hard. a local solution using a low-complexity algorithm designed
Given a large number of variables that scales linearly withy effectively exploiting the techniques of SOBm order

the number of users and RRHs in the system, finding a lote use the efficient algorithms developed for SOCP, one

complexity, suboptimal solution is highly desirable. Tdsth must reformulate the problem into the standard form that the

end, we firstly solve the Cooperative Beamforming Desigalgorithms (e.g., those proposed(in][17]) are capable dirtpa

(CBD) problem with given clustering decisia® and propose with. Firstly, from [3), objective functiof{8a) is rewsett as,

a low-complexity iterative algorithm to solve tH@ynamic- .

RC problem to a local optimum. Specifically, in SeEt] I, ZQ“R“ (S, W) = ZIOgQ(l )™ ©)

we will transform the CBD problem into a SOCP with a _”eu ) .uel/{

fixed clustering decision, and will take advantage of thloW by introducing the variables,’s, u € U, we can recast

existing efficient SOCP algorithms. Tiynamic-RQproblem  the relaxedCBD problem in [8) as,

will then be solved in Secf_IV using the iterativé-norm I H ‘, (108)

reweighting technique, which solves the CBD problem and Wi rERuEU o

updates the clustering decision in each iteration. St > L vuel, (10b)
ST wil; < Po¥reR,  (10c)
ueUd

Ill. COOPERATIVEBEAMFORMING WITH FIXED

CLUSTERING DECISION which stems from the fact that constrairts (lLOb) are active a

the optimum. We now have the following Lemma.

Lemma 1. Letw” = w"e/%u, whereg!, is the phase rotation
In this section, we consider the problem of Cooperativ&ich that the imaginary part di],w;, equals to zeroyu <
Beamforming Design (CBD) for a given radio clustering deciA/,r € R. If w’ is optimal to [10), then¥’ is also optimal.
sionS. In particular, for given{s?, } satisfying constraint§ (6e),
we need to find the optimal downlink beamformésg’ } by
solving the CBD problem below,

Proof: We can represeii’,w” ash’w’ = |h"w’ | e/%:.
By choosing¢” = —6, we haveh’ W’ = hlw’e/%u =
|h? w”|. Recallv, given in [2), it is straightforward to verify
that substitutingw? by w!, Vu € U,r € R, into (I0) will
result in the same objective function and constraints. THus

w;,fg%)fueu Z Gultu (5, W) (73) w), is optimal thenw!, is also optimal. |
ueu ) Using Lemma 1, we can restrict ourselves to the beamform-
s.t. Z [wely < PrVr € R, (70) ers in whichh” w” > 0, Vu € U, r € V,, where each product
u€U has a non-negative real part and a zero imaginary part. &otic
Z R, (S, W) < Q. (7c) that constraint[(I0b) is equivalent to
ueUd |\I/ |2
AL >t 1 vuel, (11)
> |V |” + 02
Observe that the rate functionB,’s appear inboth the u €U W Fu
constraint and objective of](7), making the problem diffiwhich can be recast as,
cult to deal with. To decouple this problem with respect to
(w.r.t.) R,’s, we remove the constrairft ([7c) and consider the W, > Byl g/ — 1,Yu e U, (12)
relaxedCBD problem with constrainf(Tb) only. The solution 5
{w"1 of the relaxedCBD problem will be verified against and Z Vo |” + 02 < fu,Vucld,  (13)
constraint[(7kc) so to finally obtain the solution of the omigji w €U, u'Fu

CBD problem by solving an addition&asibility problem. In =, A
he followi b ti thel 4 CBD first d th th Second-Order Cone Problems (SOCP) are convex-optimizgtioblems
the following subsections, axe Irst an €n e i, which a linear function is minimized over the intersentiof an affine set

feasibility problem will be addressed sequentially. and the product of second-order (quadratic) cones.



by introducing the slack variable$,’s and due to the fact Suppose thatW is the beamforming solution of prob-
that both constraint§ (12) and {13) are active at the optimuems [8). If W satisfies the computing-resource constraint
?f” probrllem [10). It can be ver(ifie<)j thaf_(10c) and1(13]7d), i.e., S R. (S, W) < Q, thenW is also the optimal
ollow the Linear Programming (LP) constraint expression . uel . o

with generalized equalities/inequalities, which can bedly solution of [I). In this case, the WSRSU is limited _by
written as Second-Order Constraints (SGCES]. To deal the per-RRH power budget only, and not by the computing-
with the non-convex constrainf_{112), we further exploit th esource capacny of the VBS pO.OI' Qn the other hand, when
sequential parametric convex-approximation approaci@) [t e cc_>mput|ng-resource constraint is V|olateq, we need to
to approximate[{12) as convex as presented in the foIIowin§E|eCt'Vely drop the rates of some users. This can be done

Firstly, (12) can be rewritten as ia a greedy algorithm that keeps dropping the users that

have the smallest marginal utility functigg) from the current

Uy, > Buv/Eu,Vu €U, (14) scheduling interval until the total data rate of all the shiled
Cut 1> Y% vy eu. (15) users satisfies the computing-resource constraint. Sinee t
- optimal bearmformer desigW is jointly calculated for all
Observe that, for a given,,, we have users, dropping the rates of some users requires recahgulat
bu o &u the beamformers adll the RRHs.
Buv/&u < 5 But 200 (16)  Let {R* >0,u €U} be the user rates obtained after the

) . ] ) ) _greedy-user-rate-dropping process is applied; the baameio
which follows the inequality of arithmetic and geometrigjesignw that achieves these rates can be obtained via solving
means ofp, 32 and &, ¢, '. The equality in[(Ib) is achieved o feasibility problem given below,

when ¢, = /£./B., and we get the equivalent form of

constraint[[IH) as, find {wi}t,ueld,reV, (20a)
'S 2
Cu _ bu s st Y [Iwill3 < P VreR, (20b)
L L ) .
V=52 5B Yu el (17) =~ 2
Furthermore, without loss of generfllity, we sc@lés in (78) [ - > i Vuel, (20c)
such thatg, > 1,Yu € U to maket./? become concave. > Wyl + 02

Thanks to the concavity of,’s, we can adopt the results U Fu

in [18] to replace the right side of {IL5) by its iterative firstwherey! = 2% — 1.

order approximation as, The feasibility problem in[{20) imot convexhowever, by
e 1 eyt exploiting its special structure, we can transform thisbhpem
ta/m <t q—tv(f) (fu - t&*)) ; (18) into a SOCP form, which can be solved efficiently. The trans-

formation is presented as follows. Firstly, let” be the IoTng
wheret, ' denotes the value of, in the previous iteration. -glumn vector such thas”™ — (w{)T, (WS)Ta ---(WB)T ,

From [33_), (1Y), and ECI_ 8), theelaxedCBD optimization Vr € R. Constraint[(20b) can be rewritten in a SOC form as
problem in [8) can be finally recast as,
W'y < VP, VreR. (21)

_ max H tu (19a) . .
Wi rERuEU oo Furthermore,[(20c) is equivalent to
r2
st. Y W< P.vrer, (19b) (1 N i) 02> Y W ot eR (22)
ueld ’Y’Z w' eU
@3, @, O8). (19¢) Sinceh],w] > 0, as we considered previously, we can take

Notice that the objective function and all the constraint§e square root of both sides in{22), which yields,

in (I9) admit SOC representation (sée|[15].1[17]). Conse- 1
V Yu

quently, the resulting problem i {1L9) is a SOCP, which caf Z Wy ? 402 = [|[ Wy, Uy, ollly-

be solved efficiently and very fast using standard solvech su €U
as CPLEX[[19] or MOSEKI[[20]. (23)
B. CBD Feasibility Problem It can be seen thaf{R3) follows the SOC form; hence,

using [21) and{23), we are now ready to recast the feagibilit

Here, the solution of theelaxedCBD problem [B) which E%roblem in [20) in the standard SOCP form as follows,

was obtained via solving the equivalent SOCP probleriiih, (1

will be verified against the computing-capacity constraint find {wl},ucl,reV, (24a)
in (Zd) to obtain finally the beamforming solution of the r
o ) st ||w'll, <P, Vr € R, 24b
original CBD problem cast if{7). w1l (24D)
1
3In a SOC representation, the hyperbolic constraint> ¢2, with a, b > 0, || [‘Pu,lv ---‘I/u.,Ua C’] HQ S Wy 1+ ) (24C)
is equivalent tof|[(a — b) 2¢)T||2 < a + b. VT



The solutionW* for (24) can be obtained using standargrovide stability and to ensure that in cdbe;”% =0, it does
SOCP techniques such as the interior-point methods [21] mot strictly prohibit a non-zero estimate in the next itenat
the SOCP solvers (e.g., CPLEX, MOSEK). In summary, the The Dynamic-RCproblem in [6) — given now!’s — can
optimal beamformer design of the CBD problem (g (7) fobe rewritten as,

a given radio clustering decisio can be obtained by the

procedures described in Algorithimh 1. w;,fré%)fuequ{q“}%“ (S, W) (27a)
Algorithm 1 Cooperative Beamformer Design (CBD). st. Y [wil3< P VreRr, (27b)
. = ueUd
e s o €0 Crowen e
~ R ue
. If ugeju R, (S,W) < Q, return W*=W. S WL < e 79)

« Otherwise Drop users’ rates using the greedy algorithm ell

— Repeat Update R,/ (57 W) = Ry (Sv W) — 7, Note that constrainf{ZTd) can be written in SOC form as,
where 7 is small decreasing step and

quw=min{q, : ¢, > 0,ucUU}. Go to the next H [WQ\/ Pl "'7WTU\/p6} H2 < VN, VreR. (28)
user wheniz, (S, W | = 0. Thus, the problem in[{27) is similar to the CBD problem
— Until: 3 R, (S,W) <0 in (@) with the additional SOC constrairii {28), which can be

solved efficiently using Algorithnl1. To clarify the idea, we
present the iterative method to solve thgnamic-RQoroblem
in Algorithm[2 below.

ueU
— Solve feasibility problem[{20), g&V*. Return

IV. JOINT DYNAMIC RADIO CLUSTERING AND
BEAMFORMING DESIGN

In the previous section, the CBD problem has been trans-
formed into an equivalent SOCP form. As a result, our con-
sideredDynamic-RCproblem in [6) can also be transformed
into a Mixed-Integer SOCP (MI-SOCP) problem with binary
variabless!,’s. In a network withU users and? RRHSs, there
are2U% possible clustering patterns. The optimal solution to
the clustering decision can be found via exhaustive search
or using standard global optimization_ solvers_. Howevmsm o= (||Wu||§ N 6)_1,Vu cUreR. 29)
approaches usually have a complexity growing exponentiall
with the problem size, which is not a practical approach. (3) Check convergenceRepeat Step (2) until convergence
Hence, in this section, we present a method to solve theor the max number of iterations is reached.
Dynamic-RCproblem given in[(B) byiteratively solving the
CBD problem using Algorithni1. In particular, we take Note that RRHr is included in the serving cluster of user
advantage of thél-norm reweighting technique to adjust theu, ie., r € V,, if the beamformer from RRH- to user
approximation of the clustering variables after each ftera u, W', is nonzero. Since’, = 0 in the first iteration in

Firstly, given the relationship of;, andwy, we can repre- algorithm 2, the constraint[{28) is automatically satisfied
sents,, by [0-norm expression otv;, as follows, Thus, initially each RRH can be selected into more tign

o — HHWTHQ (25) clusters. After that, the weightsp’,} are updated inversely

“ u2lg proportional to the beamforming power as [in](29). Therefore
The above expression allows us to leverage thevorm among the beamformers from all the RRHSs to a target user,
reweighting technique, which has been effectively appired those with highest powers are most likely to be identified
the literature to approximate th@-norm [16], i.e.,|x||, ~ @s nonzero in the next iteration. This allows for successive

S prxk, Wherey € R™ andpy, pa, ..., p, are positive weights. better estimation of the clustering decision, i.e., idgirg
k the nonzero beamformers from RRHs to users. As will be

Algorithm 2 Dynamic Radio Cooperation via Iterative SOCP

(1) Initialization: setp] =0, Vu e U,r € R

(2) lteration:

a) Solve problem[{27) with the current value gf using
Algorithm[d. In particular, Step (1) in Algorithil 1 will
solve problem[(7]9) with the additional constraintl(28).

b) Update the weightg’s using the solutionw!'s ob-
tained in the previous step as,

With n = 1, by choosingy; = [wi, I3, we gets, = shown later in our simulation results, the beamforming pswe
Py w3, in which the weightpy, is adjusted iteratively as  quickly converge within a few iterations.
. 1 Complexity analysisThe computational complexity of Al-
Pu = W,VU eU,reR, (26)  gorithm[2 mainly lies in Step (2a) where a SOCP problem

is solved. Assuming the same number of antenNaen the
with ||viffl|\§ obtained from the previous iteration. IN{26), theRRHs, the total number of variables in this SOCP problem
parametere is a very small positive number introduced tas URN,, where U and R are the numbers of users and



RRHs. Thus, the computational complexity of the interior
point method to solve such a SOCP problem is approximatel

o ((URNT)M’) [21]. This is significantly advantageous for
a large network compared to the optimal design using ex

isting solvers, which are characterized by a prohibitivelyg.. .o 1 (Uniform) Scenario 2 (Uneven)  Scenario 3 (Extremely Uneven)
exponential-time complexity.
Furthermore, in practical networks, a RRt+should not be O Light @ Medium Heavy

included in the serving cluster of userif r is very far away

from u. Assuming a network of hexagonal cells, we can pre-

select only the 7 RRHs having strongest channel coeffictentdtig- 3. Different user distribution scenarios: Scenariouiform) with all
to be th didat . lust f d ted medium(loaded) cells; Scenario 2 (unevetight andheavy(loaded) cells are

useru 1o be the candl a_e serving clus er(_) uge er_m_e a_s intermixed together; Scenario 3 (extremely unevém®avycells are grouped

C,. After the pre-selection process, Algorithm 2 will idegtif together, and the heavy cell group is surroundedidiyt cells.

the optimal serving clustey,, within the subsets of,,. This

can significantly reduce the complexity of Algorithm 2 to

o ((7UNr)3'5)- We adopt the pre-selection of serving cluster \we evaluate the four schemes above in a network of 16
candidates in the simulation and numerical results show thslls with three different user distribution scenarios lagven
this approach performs very close to the optimal solution. in Fig. [@. In particular,Scenario 1consists of allmedium
(loaded) cells where users are distributed uniformly over a
the cells; Scenarios 2and Scenarios 3consist oflight and

In this section, simulation results are presented to et@lufeavy(loaded) cells, however thieeavycells are intermixed
the performance of our propos@&ynamic-RCalgorithm. We with light cells in Scenarios 2o represent micro-tidal effect
consider a network of hexagonal cells with a RRH in thehile they are grouped together 8tenarios 3o represent the
center of each cell. The neighboring RRHs are separatedcro-tidal effect. In our simulation, we perform 500 drops
1 Km apart from each other. We assume that all the wirelesseach drop 32 users are placed randomly in the network with
channels in the system experienbtock fading such that 1 user in a light cell, 2 users in a medium cell and 3 users
the channel coefficients stay constant during each schedulin a heavy cell. The utility marginal functiong’s are chosen
interval but can vary from interval to interval, i.e., tbkannel randomly such thab < ¢, < 1,Vu € U.
coherence timés not shorter than the scheduling interval. We Fig. [7-(a), (b), (c) plot the WSRSU performance of the

assume that all the RRHs have the same number of transiir considered radio cooperation schemes in Scenario; 1, 2
antennaelN, and transmit power budgef,.. The channel 3 respectively. It can be seen that our propoSsehamic-
coefficients are calculated following the path-loss mogeen  RC scheme and th®ptimal scheme significantly outperform
as L [dB] = 148.1 + 37.6log, djm), and the log-normal the CVSINRand Greedyschemes in all three scenarios. This
shadowing variance set t® dB. In addition, it is assumed js pecause the heuristic clustering of the RRHSs in the later
that the channel bandwidth is 10 MHz, is reused across all two schemes is suboptimal, plus their beamforming design
the users, and the noise spectral density 190 dBm/Hz.  aigorithms only aim to minimize the intra-cluster integface
WSRSU performanceFirstly, we consider a system with-pyt notthe inter-cluster interference. On the other hand, our
out the computing-resource constraint and evaluate ﬂferperproposedDynamic-RCscheme takes into account the global
mance of the four radio cooperation algorithms below. network condition that is available at the VBS pool, which
o Optimal The WSRSU of the optimal scheme is obtainegrovides better clustering decision and beamforming desig
by using the solver MOSEK to solve the equivalent MICompared to theoptimal scheme, our proposeBynamic-
SOCP presentation of probleim (6). RC strategy via Algorithni2 shows a small loss in WSRSU
« Dynamic-RC Our proposed dynamic radio cooperationperformance but has a significant advantage in reducing the
where the solutions are obtained from our iterative, lovexecution time. In fact, in our simulation for the considkere
complexity Algorithm[2. system configuration({=32, R=16), MOSEK solver takes
o CVSINR A downlink cooperation scheme proposed imore than100 s to obtain the optimal solution of the MI-
[12] where the cluster for each user is formed heuriSOCP problem, while each iteration in Algorittith 2 takes less
tically based on the relative signal strength and théan a second and the algorithm overall converges within
clustered virtual SINR (CVSINR) algorithm is used tdterations.

design the beamforming vectors. Impact of Maximum Cluster SizeFig. [@-(a), (b) plot the

« Greedy A greedy clustering algorithm proposed in [14]CDF of average user rate (w.r.t. 32 users) achieved by
which solves an equivalent set covering problem toynamic-RC scheme with different choices of the maximum
select the set of non-overlapping base station clustegfyster size,V,,,.. In each case, only¥,,.. RRHs having
This scheme uses zero-forcing as the criterion to desighe strongest channel coefficients to a user are chosen to
beamformers and a greedy algorithm is used for usgé the candidates of that user's serving cluster. This pre-
scheduling. selection is done before running Algorithm 2 to finally find

V. PERFORMANCEEVALUATION




WSRSU (Mbps)

500 - T 500 500 T T
Optimal 4 Optimal Optimal
4501 - — — pynamic-RC 501" | - - - pynamic-RC 4501 — — — Dynamic-RC
400} | —=— CVSINR & 400F | —=— CVSINR % 400} | —=— CVSINR
—— Greedy ) —— Greedy s —— Greedy
350} S 350} S 350
)
300¢ @ 300} @ 300
) )
250 = 250t = 250
200 200 200
150 ; ; ; ; 150 ; ; ; ; 150 ; ; ; ;
10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20
Pr (dBm) Pr (dBm) Pr (dBm)
(a) (b) (c)

Fig. 2.  Weighted Sum-Rate System Utility (WSRSU) of a C-RAddlink system using different radio cooperation scheregaluating on three different
user distribution scenarios. (a)-Scenario 1, (b)-Scen2yri(c)-Scenario 3.

1 ‘ ‘ ‘ ‘ ‘ constraint, as expressed [0 (4), versus a conventionarayst
0.8[ 1 with a distributedcomputing-resource constraint, as expressed
W 06} 1 in @). In particular, we consider a network of 4 cells with 2
S g4l omatel | users in each cells in random locations apgs are chosen
ool - - —Vmax =5 cells | randomly. For a fair comparison, we sep I'(C') to 400 Mbps
. ‘ ‘ ‘ Vimax = 7 cells andargI'(C).) to 100 Mbps, and ran thédynamic-RCscheme
0 1 2 3 4 5 6 in Algorithm [2 on both systems. Note that, in this setting,
(&) Average User Rate (bitsisitz) = Scenarlo 2 each of the 4 RRHSs in thdistributedsystem is provisioned to
! ‘ ‘ ‘ : process maximurm00 Mbps of user baseband traffic at a time,
0.8r ’ 1 while in the centralizedsystem the VBS pool is provisioned
L 06F e Vmax = 1 cell 1 to process maximurd00 Mbps baseband traffic at a time. We
5 al —+—Vmax=3cels | | say that the computing resource is saturated in each system
ozl Viebbend I when the achieved sum-rate (SR) of all the users reaches the
N maximum provisioned processing traffic rate. As the trahsmi

0 1 2 3 4 5 6 power increases, observe in Higl. 5 that the computing cgpaci
(b) Average User Rate (bitssitz) = Scenario 3 of the VBS pool in thecentralizedsystem saturates earlier
Fig. 4. CDF of Average User Rate obtained by Dynamic-RC sehwith  than the total computing capacity of the distributed system
different numbers of the maximum cluster size. (Pr = 10 dBm) does (when the computing capacity is saturated at all the
RRHSs). In fact, the WSRSU and SR of the distributed system
saturate almost at the same time while the WSRSU of the
the best serving cluster for each user. When,, = 1, there centralized system continues to increase after the simrat
is no cooperation among the RRHs. The results in Eig. fioint (of the SR), and is significantly higher (up B50%
(@), (b) are obtained by performing 500 drops $oenario gain) than that of the distributed system. This demonstrate
2 and Scenario 3 respectively, with Pr #0dBm. The Ut”ity the great potentia] gains of C-RANSs using d]]ynamiC_RC
marginal functions are updated in each drop according to t§gneme over the conventional distributed RANSs in terms of
proportional fairness criterion, i.eq, = 1/R, where R, WSRSU, computing resource and transmit power utilization.
is the long term average data rate for user U. It can
be seen that the improvement in average user rate due t@onvergence Behavior of Algorithm 2Fig. [@ illustrates
larger cluster size in Scenario 3 (macro-tidal effect) isager the convergence behavior of Algorithmh 2 in identifying the
than that of Scenario 2 (micro-tidal effect). For examphe® t RRH cluster for a user. We choose randomly a useand
dynamic cooperation scheme with},..., = 3,5,7 provides monitor the beamforming powers from the 7 candidate RRHs
130%, 137%, and 138.60 gain, respectively, for the 60th-for it's serving cluster. The evolution of the beamforming
percentile average user rate over the non-cooperatiomeeheowers indBm/Hz from these RRHSs to user*, calculated
(Vinaz = 1), in Scenario 2; while the corresponding gains ias |w?. |3, » = 1,...,7, is shown in Fig[B. Observe that
Scenario 3 are 145, 159%, and 162, respectively. Although after the4-th iteration, only the beamformers from RRH 1
not included here due to space limitation, we observe th@td RRH 4 maintain a non-trivial power, while the rest are
whenV,,.., exceeds 7 cells, the additional gain is negligibleforced to almost zero. In this case, the optimal servingtetus
Benefits of Computing Resource Sharinfp evaluate the of useru* is identified to beV,- = {RRH 1 RRH 4} within
impact of the computing-resource constraint on the systemly a few iterations, which demonstrates the efficiency of
performance, Fid.]5 compares the WSRSU performance of @mur proposeddynamic-RCalgorithm in quickly making the
considered system with theentralized computing-resource clustering decision and beamforming design.
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VI. CONCLUSIONS ANDFUTURE WORK

(6]

(7]

(8]

(9

[10]

[11]

[12]

[13]

We proposed a novel dynamic radio cooperation strategy
for Cloud Radio Access Networks (C-RANS) that takes ad-
vantage of real-time communication and computing-rea)ur%‘l]
sharing among Virtual Base Stations (VBSs). The underlying
optimization problem was formulated as a mixed-integer-non
linear program, which is NP-hard. Our approach transforn[lls?r’]
the original problem into a Mixed-Integer Second-Order €orji6]
Program (MI-SOCP) that is efficiently solved using a novel
low-complexity, iterative algorithm. Simulation resutisowed [17]

that our low-complexity algorithm provides close-to-opail

performance in terms of weighted sum-rate system utiIit[¥8]

while significantly outperforming conventional radio dieis
ing and beamforming schemes.

Future Work: The goal of our future work is to addres

the system-related issues and evaluate the feasibility

it

performance of the proposed strategy in a practical systeo]

In fact, we are implementing a C-RAN testbed which consis
of an open-source LTE platform OpenAirinterface running o

2]

a general-purpose desktop server to realize the VBS podl, an
a number of USRP B210/X310 boards to realize the RRHSs.
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