
Elliptic Curve Based Zero Knowledge Proofs and Their
Applicability on Resource Constrained Devices ∗

Ioannis Chatzigiannakis, Apostolos Pyrgelis, Paul G. Spirakis, Yannis C. Stamatiou
Research Academic Computer Technology Institute

and Computer Engineering and Informatics Department, University of Patras
Greece

{ichatz,pyrgelis,spirakis,stamatiou}@cti.gr

ABSTRACT
Elliptic Curve Cryptography (ECC) is an attractive alterna-
tive to conventional public key cryptography, such as RSA.
ECC is an ideal candidate for implementation on constrained
devices where the major computational resources i.e. speed,
memory are limited and low-power wireless communication
protocols are employed. That is because it attains the same
security levels with traditional cryptosystems using smaller
parameter sizes. Moreover, in several application areas such
as person identification and eVoting, it is frequently required
of entities to prove knowledge of some fact without revealing
this knowledge. Such proofs of knowledge are called Zero
Knowledge Interactive Proofs (ZKIP) and involve interac-
tions between two communicating parties, the Prover and
the Verifier. In a ZKIP, the Prover demonstrates the poss-
esion of some information (e.g. authentication information)
to the Verifier without disclosing it. In this paper, we focus
on the application of ZKIP protocols on resource constrained
devices. We study well-established ZKIP protocols based on
the discrete logarithm problem and we transform them un-
der the ECC setting. Then, we implement the proposed
protocols on Wiselib, a generic and open source algorithmic
library. Finally, we present a thorough evaluation of the
protocols on two popular hardware platforms equipped with
low end microcontrollers (Jennic JN5139, TI MSP430) and
802.15.4 RF transceivers, in terms of code size, execution
time, message size and energy requirements. To the best
of our knowledge, this is the first attempt of implementing
and evaluating ZKIP protocols with emphasis on low-end
devices. This work’s results can be used from developers
who wish to achieve certain levels of security and privacy in
their applications.

Keywords
zero-knowledge proofs; elliptic curve cryptography; resource
constrained devices; wireless communication;

∗This work has been partially supported by the European
Union under contract number ICT-2010-258885 (SPITFIRE).

1. INTRODUCTION
Recent advances in wireless communications and microelec-
tro systems have lead to the construction of tiny devices with
strong processing and communication capabilities. Mobile
phones, PDAs, sensor devices and RFID tags are becoming
a part of our daily lives and their networked interconnection
makes the vision of the Internet of Things a real situation.
Smart towns and buildings, automated hospitals, intelligent
cars and sensors embedded in clothes are concepts that are
already being developed.

However, the wireless nature of communication that these
devices provide (e.g. 802.11, 802.15.4, Bluetooth) and the
fact that there is not a fixed infrastructure in such dynamic
networks raise significant security and trust issues [13]. In
some cases, these petit computers may need to exchange
crucial information that needs to be protected. Adversaries
equipped with strong computers and antennae can eaves-
drop, analyze or alter the data exchanged. Terms like in-
formation security, data confidentiality and integrity, entity
authentication and identification need to be considered re-
garding the wireless setting [36]. The field of cryptography
offers some solutions to the above issues but they need to be
adapted suitably for their application on embedded devices.

As the model of ubiquitous computing arises, the use of
low-end devices on a daily basis increases (e.g. access to
a social network from a mobile phone). Thus, users will
need a way to preserve their privacy and not reveal informa-
tion that could be exploited by adversaries. For such issues,
cryptography offers the tool of zero-knowledge proofs. A
zero-knowledge proof can be used whenever someone needs
to prove the possession of critical data without exchanging
or revealing the actual data. Examples of today’s Internet
applications that use zero-knowledge proofs are e-commerce,
e-voting, access authorization and entity authentication.

There exist various kinds of zero-knowledge proofs that in-
volve problems like graph isomorphism and integer factoriza-
tion. In this paper, we focus on the study of well-established
zero-knowledge protocols based on the discrete logarithm
problem. Up to now, although a wide variety of zero-knowledge
protocols of this category has been proposed, (e.g. see [33]
) no actual implementations regarding resource constrained
devices have been presented. For this reason and regarding
authentication and privacy issues on the Internet of Things,
we concentrate on the application of zero-knowledge proto-
cols for the security and privacy empowerment of current

ar
X

iv
:1

10
7.

16
26

v1
 [

cs
.C

R
]

 8
 J

ul
 2

01
1

wireless networks consisting of low constrained devices.

Nevertheless, when considering low-end devices capable of
communicating wirelessly one should take into account the
resource limitations, i.e. the restricted processing power
and memory as well as the particularities imposed by the
low-power wireless communication protocols (e.g. packet
loss, channel throughput, message size). One can realize
that high computation as well as high communication over-
head leads to great energy consumption which is another
very important constraint. These limitations consist the
actual challenge, when trying to implement heavy proto-
cols in terms of computation and communication, like zero-
knowledge proofs, on constrained devices. Thus, in this
work we emphasize on the elliptic curve cryptography ap-
proach, as proposed in [4], with the implementation of zero-
knowledge protocols on constrained devices as our main ob-
jective.

1.1 Our Contributions
The contributions of this work are threefold.

Firstly, we study well-established zero-knowledge protocols
based on the discrete logarithm problem (DLP) and we show
how these protocols can be transformed and adapted under
the elliptic curve discrete logarithm problem (ECDLP) and
we state why these transformations are correct. This trans-
formation step required a careful examination of the loga-
rithmic exponential operations and the corresponding scalar
multiplication on the elliptic curves as well as the arithmetic
operations on the respective number fields. Such an adapta-
tion consists the key for implementing zero-knowledge pro-
tocols on embedded devices. That is because elliptic curve
cryptography (ECC) offers the same level of security with
other public key cryptosystems (e.g. RSA) with the use of
much smaller keys (see Appendix). This advantage ensures
that we save space on the limited memory of such tiny de-
vices, that the protocols’ compiled code can actually fit well
on them and that the protocols’ message sizes are reason-
able.

Secondly, we implement the new proposed protocols on Wiselib,
a generic and open source algorithmic library. This way
our code is generic, highly portable, publically available and
ready to be used by developers that wish to provide certain
levels of security and privacy in their applications.

Finally, we present a thorough evaluation of the new zero-
knowledge protocols on two popular hardware platforms equipped
with widely used low-end microcontrollers (Jennic JN5139,
TI MSP430) as well as 802.15.4 [2] RF transceivers in terms
of execution time, code size, messages’ size and energy con-
sumption. We experimentally prove that our protocols have
small code footprint (around 8Kb) and that their exchanged
messages fit well in the technical specifications of the 802.15.4
protocol. To the best of our knowledge, this is the first at-
tempt of implementing and evaluating zero-knowledge pro-
tocols, with emphasis on low-constrained devices. Moreover,
the resulting library can form the basis for the implementa-
tion of more complex protocols employed in various crypto-
graphic applications, like attribute based credentials [8].

1.2 Paper Outline

The remaining of our paper is structured as follows: Firstly,
in Section 2 we present an overview of zero-knowledge
proofs and in Section 3 we show how well established zero
knowledge protocols based on the discret logarithm prob-
lem can be adapted on the elliptic curve discrete logarithm
problem. In Section 4 we refer to the Wiselib platform on
which we implemented the protocols, the hardware used for
our experiments and we present an evaluation of the proto-
cols on actual constrained devices. In Section 5 we describe
three everyday Internet of Things applications where zero-
knowledge proofs can be used. In Section 6 we conclude
and propose some of our ideas for future work. Finally, for
a reader’s information in the Appendix we refer to the ba-
sic definitions of elliptic curve cryptography and the reasons
that make it suitable for constrained devices.

2. AN OVERVIEW OF ZERO KNOWLEDGE
PROTOCOLS

Generally, a zero-knowledge protocol allows a proof of the
truth of an assertion, while conveying no information what-
soever about the assertion itself other than its actual truth
[26]. Usually, such a protocol involves two entities, a prover
and a verifier. A zero-knowledge proof allows the prover to
demonstrate knowledge of a secret while revealing no infor-
mation whatsoever of use to the verifier in conveying this
demonstration of knowledge to others.

The zero-knowledge protocols to be discussed are instances
of interactive proof systems and non-interactive proof sys-
tems. In the first category, a prover and a verifier exchange
multiple messages (challenges and responses), typically de-
pendent on random numbers which they may keep secret
whereas in the second the prover sends only one message.
In both systems the prover’s objective is to convince the
verifier about the truth of an assertion, e.g. the claimed
knowledge of a secret. The verifier either accepts or rejects
the proof.

A zero-knowledge proof must obey the properties of com-
pleteness and soundness. A proof is complete, if given an
honest prover and an honest verifier, the protocol succeeds
with overwhelming probability and sound if the probability
of a dishonest prover to complete the proof successfully is
negligible [4]. Additionally, a protocol which consists a proof
of knowledge must have the zero-knowledge property:
there exists an expected polynomial-time algorithm which
can produce, upon input of the assertions to be proven - but
without interacting with the real prover, transcripts indis-
tinguishable from those resulting from interaction with the
real prover.

A typical example of zero-knowledge proof is known as Al-
ibaba’s cave problem [27]. In this story, Peggy has uncovered
the secret word used to open a magic door in a cave. The
cave is shaped like a circle, with the entrance on one side
and the magic door blocking the opposite side, as shown in
Figure 1. The left path from the entrance is labeled A and
the right B. Victor states that he will pay her for the secret,
but not until he’s assured that she really knows it. Peggy
claims that she will tell him the secret, but not until she
receives the money. Thus, they devise a scheme by which
Peggy can prove that she knows the magic word without
telling it to Victor. The scheme steps are now described:

(a) 1st Step. (b) 2nd Step. (c) 3rd Step.

Figure 1: Alibaba’s Cave Problem.

• Victor waits outside the cave as Peggy goes in

• Peggy randomly takes either path A or B inside the
cave

• Victor enters the cave and shouts the name of the path
he wants her to use to return either A or B, chosen at
random

• Peggy does that using the secret word if needed to
open the magic door

• The above steps are repeated n times until Victor is
convinced that Peggy knows the secret word

Now, suppose that Peggy does not know the secret word.
Since Victor chooses path A or B at random, Peggy has a
1/2 chance of cheating at one round. If the above steps are
repeated for many rounds, Peggy’s chance of successfully an-
ticipating all of Victor’s requests would become vanishingly
small. Thus, if Peggy reliably appears at the exit Victor
names, he can conclude that she is very likely to know the
secret word.

Other problems that involve zero-knowledge proofs are the
square root of an integer modulo n, graph isomorphism, in-
teger factorization and the discrete logarithm problem. On
this paper we focus on zero-knowledge protocols based on
the discrete logarithm problem.

3. ZERO KNOWLEDGE PROTOCOLS BASED
ON THE ECDLP

A wide variety of zero-knowledge protocols based on the Dis-
crete Logarithm Problem (DLP) has been proposed so far,
e.g. in [29], [33]. The Discrete Logarithm Problem is defined
over arbitrary cyclic groups. A common example of cyclic
group is the multiplicative group Z∗

n of order n, where n is
a prime number and the group operation is multiplication
modulo n. In such a group the Discrete Logarithm Problem
(DLP) can be defined as follows: Given a prime n, a gen-
erator g of Z∗

n and an element b ∈ Z∗
n, find the integer x,

0 ≤ x ≤ n− 2 such that gx = b(modn) [26].

Another common example of cyclic groups are elliptic curve
groups which are defined over an additive group F of order
n (note that n is no longer necessarily a prime number).
The analogous problem to DLP over elliptic curve groups is
called ECDLP (Elliptic Curve Discrete Logarithm Problem)
and can be defined as follows: Given an elliptic curve E
over a field F of order n (refered to as Fn from now on),
a generator point G ∈ E/Fn and a point B ∈ E/Fn it is
computationally hard to find x such that B = x ·G.

In this section, we show how well established zero-knowledge
protocols based on the DLP can be adapted under the El-
liptic Curve Discrete Logarithm Problem (ECDLP). This
adaptation is a key step for porting such protocols to low
constrained devices because of the Elliptic Curve Cryptog-
raphy (ECC) advantages. As one can see in the Appendix,
ECC can offer the same level of security as other public key
cryptosystems, using smaller key sizes. This fact makes it
suitable for implementations that concern constrained envi-
ronments as it saves computational time and memory space
and consequently reduces energy requirements. Such restric-
tions consist the real challenges when considering implemen-
tations on embedded devices.

3.1 Zero Knowledge Proof of Discrete Loga-
rithm with Coin Flip

One of the first zero-knowledge protocols of discrete loga-
rithm that was originally presented in [12]. Its elliptic curve
analogous is as follows: Given an elliptic curve E over a
field Fn, a generator point G ∈ E/Fn and B ∈ E/Fn Prover
wants to prove that he knows x such that B = x ·G, without
revealing x.

Protocol Steps:

• Prover generates random r ∈ Fn and computes the
point A = r ·G

• Prover sends the point A to Verifier

• Verifier flips a coin and informs the Prover about the
outcome

• In case of HEADS Prover sends r to Verifier who checks
that r ·G = A

• In case of TAILS Prover sends m = x + r(modn) to
Verifier who checks that m ·G = (x + r) ·G = x ·G +
r ·G = A + B

The above steps are repeated until Verifier is convinced that
Prover knows x with probability 1− 2−k for k iterations.

Why it works: The protocol works as expected because in
each iteration the steps to be executed depend on the out-
come of the coin that the Verifier flips and the Prover cannot
affect this. It needs to be executed for many iterations in
order for the Prover’s cheating probability to become very
small. A dishonest Prover in each iteration can be prepared
for only one of the coin outcomes and thus his cheating prob-
ability is 1/2. For example, if he prepares for TAILS he can
generate a random m, compute A = m · G − B and send
this point A to Verifier. But if HEADS come up this attack
will not work. That is because he will need to compute a
value r ∈ Fn that generates A and that is an instance of the
ECDLP. Thus, after k iterations, the Verifier is convinced
with high probability (1− 2−k) that the Prover is honest.

3.2 Schnorr’s Protocol
An improvement of the previous protocol was originally pre-
sented in [29]. The elliptic curve version of Schnorr’s proto-
col, slightly modified, is the following: Prover and Verifier

agree on an elliptic curve E over a field Fn, a generator
G ∈ E/Fn. They both know B ∈ E/Fn and Prover claims
he knows x such that B = x ·G. He wants to prove this fact
to Verifier without revealing x.

Protocol Steps:

• Prover generates random r ∈ Fn and computes the
point A = r ·G

• Prover sends the point A to Verifier

• Verifier computes random c = HASH(G,B,A) and
sends c to Prover

• Prover computes m = r + c · x(modn) and sends m to
Verifier

• Verifier checks that P = m ·G− c ·B = (r+ c ·x) ·G−
c ·B = r ·G + c · x ·G− c · x ·G = r ·G = A

Why it works: This protocol is superior to the previous
one as it needs to be executed for one round. Verifier’s
coin flips (in correspondence with the Coin Flip protocol)
are simulated using a hash function known only to him. A
dishonest Prover has a tiny chance of cheating as he would
have to fix the value of P = m · G − c · B before receiving
Verifier’s hash value c. Under the assumption that the hash
function used by the Verifier is secure, a Prover who does
not know x, the discrete logarithm of B, cannot cheat.

3.3 Transforming Schnorr’s Protocol to Digi-
tal Signature

In [18], the authors propose that with the use of a hash
function and an agreement on an initial message m one can
remove the interactivity from such protocols. The Verifier’s
random choices can be replaced with bits produced by a
secure hash function. Thus, the next protocol is proposed.

Prover and Verifier agree on an elliptic curve E over a field
Fn, a generator G ∈ E/Fn, a point P ∈ E/Fn that rep-
resents the message the Prover wants to send and a hash
function HASH (e.g. SHA-1). They both know B ∈ E/Fn.
The Prover claims that he knows x such that B = x ·G and
he wishes to prove this fact to Verifier without revealing x.

Protocol Steps:

• Prover generates random r ∈ Fn and computes the
point A = r ·G

• Prover computes c = HASH(x · P, r · P, r ·G)

• Prover computes s = r + c · x(modn)

• Prover sends to Verifier the message: “s||x ·P ||r ·P ||r ·
G”

• Verifier computes c = HASH(x · P, r · P, r ·G)

• Verifier checks that s·G = (r+c·x)·G = r·G+c·x·G =
r ·G + c ·B = A + c ·B

• Verifier checks that s ·P = (r+ c ·x) ·P = r ·P + c ·xP

Why it works: In this protocol we apply the non interac-
tiveness trick proposed in [18]. The Prover simulates both
the Prover and the Verifier with the use of a hash function
and publishes the transcript of this whole dialogue. This way
the Prover sends only one message and the Verifier either ac-
cepts or rejects. The Prover generates a random number as
in previous protocols but the Verifier’s random choices are
simulated by hashing the input along with a value calculated
from the Prover’s choice of r. Thus, the Verifier’s random
choice depends on Prover’s random choice and it is made
hard to fake the outcome. The value c is really a challenge
for the Prover as it is computed from the hash function and it
is out of his control. If the Prover does not know x, in order
to cheat he would try to find s satisfying s ·G = r ·G+c ·x ·G
which is an instance of the discrete logarithm problem. He
could not cheat by enumerating random r values, as it would
be too hard to find a matching value for c.

3.4 Zero Knowledge Test of Discrete Logarithm
Equality

Suppose that Prover knows two publically known quantities
that have the same discrete logarithm x to publicly known
respective bases G and H of the group Fn.

Prover and Verifier agree on an elliptic curve E over a field
Fn, a generator G ∈ E/Fn and H ∈ E/Fn. Prover claims he
knows x such that B = x·G and C = x·H and wants to prove
knowledge of this fact without revaling x. The procedure
was originally proposed in [7], and its ECC analogous is as
follows:

Protocol Steps:

• Prover chooses random r ∈ Fn and computes the points
K = r ·G and L = r ·H

• Prover sends the points K,L to Verifier

• Verifier chooses random c ∈ Fn and sends c to Prover

• Prover computes m = r + c · x(modn) and sends m to
Verifier

• Verifier checks that m·G = (r+c·x)·G = r·G+c·x·G =
K + c ·B

• Verifier checks that m ·H = (r + c · x) ·H = r ·H + c ·
x ·H = L + c · C

Why it works: In this protocol the Prover claims he knows
x as the discrete logarithm of two public quantities B,C.
His actions are similar with Schnorr’s protocol but for the
two public quantities. For example in the first step he
computes 2 points on the curve K,L that will be used for
the verification. It can also be made non-interactive by
the applying the Fiat-Shamir trick: the Prover simulates
the Verifier by computing c with a secure hash function as
HASH(B,G,C,H,K,L).

3.5 Zero Knowledge Proof of Single Bit
Prover and Verifier agree on an elliptic curve E over a field
Fn, a generator G ∈ E/Fn and H ∈ E/Fn. Prover knows x
and h such that B = x ·G+ h ·H where h = ±1. He wishes

to convince Verifier that he really does know x and that h
really is ±1 without revealing x nor the sign bit [33].

Protocol Steps:

• Prover generates random s, d, w ∈ Fn

• Prover computes the points A = s ·G− d · (B + h ·H)
and C = w ·G

• If h = −1 Prover swaps A↔ C

• Prover sends the points A,C to Verifier

• Verifier generates random c ∈ Fn and sends c to Prover

• Prover computes e = c − d and t = w + x · e both
(modn)

• If h = −1 Prover swaps d↔ e and s↔ t

• Prover sends to Verifier d, e, s, t

• Verifier checks that e + d = c, s ·G = A + d · (B + H)
and that t ·G = C + e · (B −H)

Why it works: It is straightforward to confirm that if B is
really given by one of the two formulas the Prover claimed
then Verifier’s verification will succeed. It is also easy to
see that the Prover does not give away any information that
would allow the Verifier to deduce x nor the sign bit h. That
is because x is hidden inside t after being multiplied with
e and added in w. The sign bit h is randomized with the
appropriate swaps in the case of −1.

4. PROTOCOLS IMPLEMENTATION AND
EVALUATION

We implemented the new proposed zero-knowledge proto-
cols based on the ECDLP using the Wiselib platform which
is a generic algorithm library. Then, we evaluated the imple-
mented protocols on two popular hardware platforms equipped
with popular low-end microcontrollers (Jennic JN5139, TI
MSP430) as well as 802.15.4 RF transceivers in terms of ex-
ecution time, code size, message size and energy consump-
tion.

4.1 Wiselib: A Generic Algorithm Library for
Sensor Networks

We decided to implement our algorithms using Wiselib
[5]: a code library, that allows implementations to be OS-
independent. It is implemented based on C++ and tem-
plates, but without virtual inheritance and exceptions. Al-
gorithm implementations can be recompiled for several plat-
forms and firmwares, without the need to change the code.
Wiselib can interface with systems implemented using C
(Contiki), C++ (iSense), and nesC (TinyOS). A future plan
for this library is to be adapted for C-based mobile phone
operating systems like Android and iPhone OS.

Furthermore, an important feature of Wiselib are the al-
ready implemented algorithms and data structures. Since
different kind of hardware uses different ways to store data
(due to memory alignment, inability to support dynamic

memory, etc.), it is important to use these safe types as
much as possible since they have been tested before on most
hardware platforms. As of mid 2010, the Wiselib includes
about 40 Open Source implementations of standard algo-
rithms, and is scheduled to grow to 150-200 algorithms by
the end of 2011.

Additionally, Wiselib runs on the simulators Shawn [22]
and Tossim [23], hereby easing the transition from simu-
lation to actual devices. Tossim is a popular tool in the
TinyOS community as it allows to simulate the exact source
code that will run on the hardware and by using Power-
Tossim [31] it can provide accurate estimates on the power
consumption of an application. Shawn allows repeatability
of simulations in an easy way by using only a single config-
uration file. It provides many options such as packet loss,
radius of communication, ways of communicating and even
mobility in an abstract way, without needing to provide spe-
cific code for every range. This Wiselib feature allows us
to validate the faithfulness of our implementation and also
get results concerning the quality of our algorithms without
time consuming deployment procedures and harsh debug-
ging environments.

Finally, an advantage of Wiselib is that with the aid of tem-
plate specializations the algorithm code can be optimized
and adapted for certain platforms. Depending on the com-
pilation process, the compiler can select the code that fits
best for the current platform (e.g. if there is a 32-bit proces-
sor) and exploit the presence of special platform hardware
(e.g. the Jennic AES hardware for speedup of crypto rou-
tines).

4.2 Hardware
As mentioned earlier we used two different low-end devices
for evaluating the implemented protocols. The first device is
the Coalesenses iSense [9], [14] and the second is the Cross-
bow TelosB [1]. These devices are quite popular for their
application in the area of wireless sensor networks.

The first device (iSense) consists of a Jennic JN5139 32-bit
RISC controller [20] running at 16MHz. The ROM of this
controller is 192Kb and its RAM is 96Kb that can be shared
among program and data. It is equipped with 2.4Ghz IEEE
802.15.4 compliant RF transceiver (CC2420 chip) that can
achieve bandwith up to 250 Kbps. Finally, this device runs
the iSense firmware.

The second device (TelosB) consists of a Texas Instruments
MSP430 [16] 16-bit microcontroller running at 8MHz. Its
RAM is 10Kb and the program flash memory is 48Kb. This
device is also equipped with 2.4GHz IEEE 802.15.4 compli-
ant RF transceiver (CC2420 chip) able to achieve data rates
up to 250Kbps. Finally, the TelosB device can run TinyOs
1.1.10 [34] (or higher) or the Contiky operating system [15].

4.3 Results
For the basic operations of Elliptic Curve Cryptography we
have ported the implementation of [25] on the Wiselib. This
implementation defines a recommended elliptic curve [30]
over binary fields with equation y2 +xy = x3 +x2 + 1 along
with the irreducible polynomial f(x) = x163 + x7 + x6 +
x3 + 1. The curve’s order (the number of points on it) is

(a) A TelosB device. (b) An iSense de-
vice.

Figure 2: The hardware used for our experiments.

r = 0x4000000000000000000020108a2e0cc0d99f8a5ef and
the base point is G(x, y) where
x = 0x2fe13c0537bbc11acaa07d793de4e6d5e5c94eee8 and
y = 0x289070fb05d38ff58321f2e800536d538ccdaa3d9. The
execution time of the basic elliptic curve operations for both
the microprocessors used can be seen on Table 1. We note
that there has been no attempt to optimize the code respon-
sible for the elliptic curve operations.

Operation Execution Time
JN5139 MSP430

Private Key Generation 0.087 sec 0.3 sec
Public Key Generation (scalar
multiplication)

11.121 sec 58.02 sec

Curve Points Addition 0.094 sec 0.29 sec

Table 1: Execution Time of Basic Elliptic Curve Op-
erations on the JN5139 and MSP430 microproces-
sors.

Table 2 summarizes the execution times of some additional
arithmetic operations used by the protocols on the JN5139
and MSP430 microcontrollers. As a hash function for the
protocols that require one we used the algorithm SHA-1 [17].

Operation Execution Time
JN5139 MSP430

Private Key Addition (21 bytes) 0.005 sec 0.012 sec
Private Key Multiplication (21 bytes) 0.014 sec 0.02 sec

SHA-1 Hash (250 bytes) 0.02 sec 0.031 sec

Table 2: Execution Time of Arithmetic Operations
Used by the Protocols on the JN5139 and MSP430
microprocessors.

From these experiments, a reader can observe that the el-
liptic curve scalar multiplication (Public Key Generation) is
the most demanding arithmetic operation. Moreover, it is
also evident that the JN5139 (16MHz) calculates much faster
all the operations examined than the MSP430 (8MHz). We
believe that a delay of 11 sec for the generation of a public
key is acceptable. On the other hand, the 58 sec that are
required from the MSP430 is probably too long.

For all the arithmetic operations previously mentioned, we
present a theoretical approach for estimating their energy

consumption. This approach is based on the current con-
sumption that the data sheet of each microprocessor pro-
vides us. For example, from the graphs presented in JN5139
data sheet we get that the current consumption of the mote
when the microprocessor works on maximum load is 12.7mA,
on input voltage 3V and temperature 25◦C. The input volt-
age 3V is a reasonable choice considering the fact that two
AA batteries provide that much voltage. Respectively, the
MSP430 microcontroller draws approximately 1.8mA cur-
rent when it operates. Thus, considering the formula

E = V · I · t (1)

where V is voltage, I is current and t is time, and the exe-
cution time of each operation, as seen on Tables 1 and 2, we
show on Table 3 our estimation for each operation’s energy
consumption.

Operation Energy Consumption
JN5139 MSP430

Private Key Generation 3.31 mJ 1.62 mJ
Public Key Generation (scalar multi-
plication)

423.6 mJ 313.3 mJ

Curve Points Addition 3.42 mJ 1.56 mJ
Private Key Addition (21 bytes) 0.19 mJ 0.06 mJ
Private Key Multiplication (21
bytes)

0.53 mJ 0.1 mJ

SHA-1 Hash (250 bytes) 0.76 mJ 0.16 mJ

Table 3: Energy Consumption of Basic Arithmetic
Operations Used by the Protocols on the JN5139
and MSP430 microprocessors.

As expected, on Table 3, we observe that the elliptic curve
scalar multiplication is the most energy consuming arith-
metic operation. Additionally, it is interesting to note that
the JN5139 processor, although it is much faster in compu-
tation than the MSP430, it is less efficient in terms of energy
consumption.

Next, we have concentrated the prover’s (PRV) and verifier’s
(VER) actions for each of the implemented protocols. Table
4 summons up these actions. Regarding to these actions we
verify the total protocol execution times that can be seen
subsequently.

On Table 5 one can see the total execution time of the above
implemented protocols. This is measured as the time space
between the prover’s beginning of the protocol until the ver-
ifier’s final response of whether he accepts or rejects the
proof. We can observe that an interactive protocol like the
first one, which requires a large number of execution rounds
for verification, is not suitable for low-constrained devices.
Thus, the usage of protocols (like the rest of them) that need
one round of execution is advised [3].

Table 6 describes the messages and their sizes, exchanged
by the prover (PRV) and verifier (VER) for the completion
of each protocol. Message size is an important parameter

Protocol
/ Opera-
tion

Random
Key
Gen-
era-
tion

Curve
Mul-
ti-
pli-
ca-
tion

Curve
Ad-
di-
tion

SHA-
1
Hash

Private
Keys
Ad-
di-
tion

Private
Keys
Mul-
ti-
pli-
ca-
tion

Msgs
Sent

ZKP of
DL with
Coin Flip
PRV

1 1 - -
1 (if
tails)

- 2

ZKP of
DL with
Coin Flip
VER

- 1
1 (if
tails)

- - - 2

Schnorr’s
Protocol
PRV

1 1 - - 1 1 2

Schnorr’s
Protocol
VER

- 2 1 2 - - 2

Schnorr’s
Signa-
ture
Protocol
PRV

1 3 - 1 1 1 1

Schnorr’s
Signa-
ture
Protocol
VER

- 4 2 1 - - 1

ZKP
of DL
Equality
PRV

1 2 - - 1 1 2

ZKP
of DL
Equality
VER

1 4 2 - - - 2

ZKP of
Single
Bit PRV

3 3 2 - 2 1 2

ZKP of
Single
Bit VER

1 4 4 - 1 - 2

Table 4: Actions Held by the Prover (PRV) and
Verifier (VER) for each protocol.

Protocol Required Rounds Total Execution Time
iSense TelosB

ZKP of DL with
Coin Flip

100 or more 2277 sec 11802 sec

Schnorr’s Proto-
col

1 33.894 sec 172.77 sec

Schnorr’s Signa-
ture Protocol

1 78.645 sec 396.57 sec

ZKP of DL
Equality

1 68.596 sec 346.2 sec

ZKP of Single
Bit

1 80.46 sec 462.74 sec

Table 5: Total Execution Time of the Protocols on
the Devices Used.

when considering low power wireless communication pro-
tocols like 802.15.4. All of our protocols messages except
Schnorr’s Non-Interactive Protocol PRV message (149 bytes
which had to be broken in two pieces), fit well on a sin-
gle 802.15.4 packet (128 bytes). This fact is advantageous
as bigger messages would result to more message exchanges
which in turn would result to greater energy consumption
and possibly to wireless medium congestion.

It is quite difficult to estimate the energy consumption of RF
messages as they depend on various factors like motes dis-
tance, obstacles presence and weather conditions. However,
we try to make a theoritical estimation about it. Under the
ideal hypothesis that the devices’ RF transceivers achieve
data rate 250 Kbps and according to Table 6 we calculate
the time required to send each message depending on its

Protocol Message Size

ZKP of DL with Coin Flip PRV
Point Message: 43 bytes
New Key Message: 22 bytes

ZKP of DL with Coin Flip VER
Coin Message: 2 bytes
Final Message: 1 byte

Schnorr’s Protocol PRV
Point Message: 43 bytes
New Key Message: 22 bytes

Schnorr’s Protocol VER
Hash Message: 22 bytes
Final Message: 1 byte

Schnorr’s Signature Protocol
PRV

Point and Key Message: 149
bytes (in two pieces)

Schnorr’s Signature Protocol
VER

Final Message: 1 byte

ZKP of DL Equality PRV
Points Message: 85 bytes
New Key Message: 22 bytes

ZKP of DL Equality VER
New Key Message: 22 bytes
Final Message: 1 byte

ZKP of Single Bit PRV
Points Message: 85 bytes
New Key Message: 85 bytes

ZKP of Single Bit VER
New Key Message: 22 bytes
Final Message: 1 byte

Table 6: Size of Messages Exchanged by the Prover
(PRV) and the Verifier (VER) for each Protocol.

size (e.g. with data rate 250 Kbps a message of size 85
bytes needs around 2.72 msec for transmission/reception).
Next, we estimate the energy consumption for sending and
receiving the messages on each device using the formula 1.
From the iSense data sheet we get that the Rx current con-
sumption on input voltage 3V and temperature 25◦C is 43.7
mA and the Tx current consumption is 39.9 mA. Respec-
tively, from the TelosB data sheet we get that Rx current
consumption is 23mA and that Tx current consumption is
21mA. Table 7 summarizes the results.

Message Size iSense TelosB
Tx Rx Tx Rx

149 bytes 0.5 mJ 0.6 mJ 0.3 mJ 0.32 mJ
85 bytes 0.32 mJ 0.36 mJ 0.17 mJ 0.18 mJ
43 bytes 0.16 mJ 0.18 mJ 0.08 mJ 0.09 mJ
22 bytes 0.08 mJ 0.09 mJ 0.045 mJ 0.048 mJ
2 bytes 0.007 mJ 0.008 mJ 0.004 mJ 0.004 mJ
1 byte 0.003 mJ 0.004 mJ 0.002 mJ 0.002 mJ

Table 7: Message Tx, Rx Energy Consumption Ac-
cording to its Size on the Devices Used.

In correspondence with the Tables 3, 4, 7 we estimate the
total energy consumption for the prover and verifier of each
protocol depending on its actions (arithmetic operations and
messages sent/received). Table 8 shows the results. Once
again, we realize why a protocol (like ZKP of DL with Coin
Flip) that requires many execution rounds, is not suitable for
applications that involve constrained devices. Moreover, we
observe that the protocols execution consumes less energy
(although more time) on the TelosB device with the slower
processor.

From tables 5 and 8, we note that Schnorr’s protocol is the
fastest one and thus consumes the least energy. We think

Protocol
Total Energy Con-
sumption
iSense TelosB

ZKP of DL with Coin
Flip PRV

42.7 J 31.5 J

ZKP of DL with Coin
Flip VER

42.5 J 31.4 J

Schnorr’s Protocol PRV 0.42 J 0.31 J
Schnorr’s Protocol VER 0.85 J 0.62 J
Schnorr’s Signature Pro-
tocol PRV

1.27 J 0.94 J

Schnorr’s Signature Pro-
tocol VER

1.7 J 1.25 J

ZKP of DL Equality
PRV

0.85 J 0.62 J

ZKP of DL Equality
VER

1.7 J 1.25 J

ZKP of Single Bit PRV 1.28 J 0.94 J
ZKP of Single Bit VER 1.71 J 1.26 J

Table 8: Total Energy Consumption for the Prover
(PRV) and the Verifier (VER) of each Protocol on
the Devices Used.

that 33 sec for the completion of a zero-knowledge proof on
a device with limited processing power is quite fair.

As a last experiment, we measured the code size of the above
protocols on the devices used. The compiled code actually
fits fairly well (approximately 8Kb) on the tiny memory of
their processors. The results can be seen on Table 9. The
difference in the protocols code size on the two devices is rea-
sonable as different compilers (ba-elf for iSense and mspgcc
for TelosB) are employed.

Protocol Total Code Size (text +
data + bss)
iSense TelosB

ZKP of DL with Coin
Flip PRV 7908 bytes 6517 bytes

ZKP of DL with Coin
Flip VER 7004 bytes 6289 bytes

Schnorr’s Protocol
PRV 7964 bytes 6759 bytes

Schnorr’s Protocol
VER 9292 bytes 9455 bytes

Schnorr’s Signature
Protocol PRV

10584
bytes

10433
bytes

Schnorr’s Signature
Protocol VER 9540 bytes 10053

bytes
ZKP of DL Equality
PRV 8568 bytes 7697 bytes

ZKP of DL Equality
VER 8964 bytes 8519 bytes

ZKP of Single Bit PRV 9604 bytes 9471 bytes
ZKP of Single Bit
VER 9032 bytes 7455 bytes

Table 9: Code Size of the Protocols for Prover the
(PRV) and the Verifier (VER) on the Devices Used.

4.4 Discussion
From the results presented in the previous subsection we
stick to the most important observations.

First of all, we state why implementing the ZKP proto-
cols under the elliptic curve cryptography setting is advan-

tageous. As presented in the Appendix, ECC offers the
same level of security as other public key cryptosystems, us-
ing smaller key sizes. An implementation of zero knowledge
protocols of discrete logarithm over multiplicative groups
would require the use of at least 1024-bit keys as proposed
by NIST (see Figure 5 in Appendix). A reader can real-
ize that using elliptic curve groups instead of multiplica-
tive groups, the arithmetic operations need less time to exe-
cute, less memory space and thus less energy consumption.
In fact, it has been proven that ECC actually outperforms
RSA on constrained environments in terms of computation
time, memory requirements and thus energy consumption
[19]. Moreover, considering the wireless nature of communi-
cation on the embedded setting ECC offers the advantage of
smaller message sizes that cost less and have better chances
of being delivered.

Concerning the protocols performance we discuss the exper-
imental results.

The first proposed protocol (ZKP of DL with Coin Flip)
requires a large number of execution rounds in order to suc-
cessfully complete. It performs a large number of arith-
metic operations and it involves many message exchanges.
Although such a protocol could be executed fairly in non-
embedded systems, when considering embedded devices ca-
pable of wireless communication it is not suitable. It is very
demanding in terms of energy consumption and the messages
exchanged can congest the wireless medium. The rest of
the protocols require only one round of execution [3], much
smaller number of messages (2-4 messages) and complete
much faster and with less energy consumption. Schnorr’s
protocol required the least time to execute - 33 sec on the
JN5139 microcontroller, which is quite fair considering the
processing power and the memory of the device used.

An additional disadvantage of the first protocol is that it
cannot be considered as secure as the rest when dealing with
wireless communication. A malicious verifier or an adver-
sary who eavesdrops the communication between the prover
and the verifier can replay the proof to another party using
the overheard data. That is because the verifier’s responses
consist of just a single bit (simulating a coin flip). In all the
other protocols the Verifier responses involve fresh random
data (e.g. using a hash function) and such an attack could
not work.

Another issue concerns the comparison between Schnorr’s
and Schnorr’s non-interactive protocol. By transforming
Schnorr’s protocol to a non-interactive protocol, the required
message exchanges are reduced (1 message required by the
prover and verifier). However, the transformed protocol is
not as efficient as Schnorr’s original protocol in terms of ex-
ecution time, energy consumption, code size and message
size (see below).

As far as the efficiency of the elliptic curve arithmetic op-
erations of our implementation is concerned, we have al-
ready mentioned that we did not make any attempts to
optimize the code. One can easily observe that the curve
point multiplication which is the basic action for each pro-
tocol, needs the most time to execute (11 sec on JN5139,
58 sec on MSP430). Subsequently, this action requires the

most energy for its execution. We believe that this is the
price you pay when you write some generic code which can
be portable. Although, Wiselib offers the chance to compile
your code exploiting some platform features (a 32-bit pro-
cessor or hardware speedups) we aimed at generality and
portability. The goal of this work was not to achieve some
faster platform specific code (e.g. by employing low-level
assembly code) as in [19], [24].

However, we think that for such low-end microprocessors
running at 16 MHz or 8MHz the total execution time of our
protocols (except of course ZKP of DL with Coin Flip) is
reasonable. For example, 33 sec on a 16MHz microcontroller
for a secure verification is not too much to wait. Having
implemented our protocols in Wiselib, with little effort we
can port our code on C-based operating systems for mobile
phones like Android and iPhone OS where the embedded
hardware is much more powerful. For instance, we note
that a current HTC mobile phone is powered by an 1 GHz
ARMv7 Snapdragon processor with 512 MB of flash and 576
MB of RAM. Of course, our code would execute much faster
on such a platform. Nevertheless, running and evaluating it
on really low-end devices was much more meaningful.

Considering memory limitations, we showed that the proto-
cols’ compiled code actually fits well on the restricted mem-
ory of the devices used. For the iSense devices the protocols
code occupied approximately 9Kb out of the total 96Kb of
memory that is offered. Respectively, the protocols code on
the TelosB devices, occupied approximately 8Kb out of the
total flash memory of 48Kb.

Moreover, as far as the protocols’ message sizes are con-
cerned, we observe that they are acceptable. Most of the
messages exchanged are 43 or 85 bytes which can fit on
a single 802.15.4 packet (max payload 128 bytes). Only,
the Prover’s message from Schnorr’s non-interactive proto-
col was large enough (149 bytes) that could not fit in a single
packet and thus had to be broken in two pieces. However,
by recompiling each device’s firmware, which is a straightfor-
ward procedure, one could increase the maximum payload
size and such a message could fit in a single packet. Such
a solution though, would be non-standard. The reasonable
message sizes are due to the ECC approach. A reader can
realize that using another cryptosystem (e.g. with 1024-bit
keys) would result in larger message sizes that would require
fragmentation. This way many messages would need to be
exchanged and more energy would be consumed. Addition-
ally, the possibility of communication faults would increase
as the wireless medium could be congested.

Finally, a point for discussion, is the fact that in our proto-
cols we preload the elliptic curve used and its parameters on
the devices memory. This way, the elliptic curve and its pa-
rameters could be compromised by physical and tampering
attacks. However, we believe that in the future, most devices
will be equipped with Trusted Platform Module (TPM), se-
cure cryptoprocessors suitable for storing cryptographic keys
and protecting private information.

5. APPLICATION SCENARIOS
We are strongly confident that zero-knowledge proofs can be
used as a privacy-preserving tool in future global networks

consisting of different kinds of devices and thus we present
some everyday’s application examples:

5.1 Course Polling at University
In most universities of the industrial world, course evalua-
tions have become standard practise but they are typically
conducted outside computers in order to protect student’s
privacy. An application that would encourage students to
anonymously state their opinion about a course is descirbed.

Imagine a concept where students can provide feedback about
a course or a lecture using tiny devices capable of communi-
cating wirelessly (e.g. clickers). For the success of this con-
cept two parameters should be considered. Firstly, only au-
thorized students (students who actually attend the course)
should be able to poll and secondly students’ anonymity
should be guaranteed. Thus, when a student enrols for a
course at the University’s Administration Office (a trusted
authority) he gets a tiny device that holds a private key
encoding some of his attributes (e.g. name, matriculation
number, course id and some fresh random value). This pri-
vate key is used to generate a public key which is stored
by the authority on a list. This list is then provided to the
professor who is responsible for the course. At the end of
a lecture the professor activates a polling application on his
laptop (equipped with RF transceiver) that presents ques-
tions to the students. The students can now answer the
poll questions using their devices. The application accepts
a student’s answer if the student’s device presents a pub-
lic key that exists on the list of valid keys (as provided by
the University’s Administration Office) and proves that it
is the actual owner of the private key that has generated
it. This way, student’s anonymity is preserved (his private
key is never revealed) and the professor gets the poll re-
sults while being assured that students who do not attend
the class or malicious entities who eavesdrop the messages
exchanged during the polling procedure are not able to poll.

For the deployment of such an application, a zero-knowledge
protocol of discrete logarithm is required. Regarding the
performance evaluation results that were presented in the
previous section we propose Schnorr’s Protocol.

5.2 Anonymous Travel Ticket plus Discount
Benefits

Nowadays, it is quite common for passenger ships that travel
over national waters to have duty free shops in them (e.g.
boats that travel on the Baltic Sea). When passengers en-
ter these shops, they are usually requested to present their
ticket in order to buy some goods. As travel tickets typically
contain a passenger’s name, privacy issues are raised. For
example, a passenger may not desire for his purchases to be
publically known e.g. for statistical purposes. However, a
passenger that has the benefit of some discount (e.g. a first
class passenger) needs a way to prove this fact without re-
vealing his private data. We present an application that can
deal with these issues (Figure 3).

First Step: A passenger visits a travel agency office in order
to buy a boat ticket. As he purchases the ticket, his mobile
phone which is able to communicate wirelessly through Near
Field Communications (NFC) stores a private key that en-

(a) 1st Step. (b) 2nd Step.

(c) 3rd Step.

Figure 3: Boat Travel Ticket plus Discount Benefits
Application.

codes his attributes (name, travel class and some random
fresh value). This private key is used to generate a public
key that is then digitally signed by the travel agency with a
secret key depending on the passenger’s travel class.

Second Step: When passengers approach the port en-
trance, they identify themeselves to the port officer as pro-
posed by international travel safety regulations. Once a pas-
senger that travels first class (and desires the right to some
discount benefits on the ship shops) is identified by the port
officer, he generates a second public key that encodes his
right to discount with the same private key using his mo-
bile phone. The second key is digitally signed by the port
officer’s device.

Third Step: From now on, a passenger is not required
to identify himself at any occasion on the boat. When a
passenger enters the ship his mobile phone communicates
with the device of the ticket control employee and proves
that he is eligible to travel at the corresponding class with-
out revealing his private data (using a zero-knowledge proof
of discrete logarithm e.g. Schnorr’s protocol). When a first
class passenger who has additionally discount benefits wants
to purchase some products he enters the duty free shop and
his mobile phone communicates through NFC with the em-
ployee’s device and proves two things: first that he is a valid
first class passenger and second that he has the right to
product discount. This proof takes place by showing that
two digitally signed by the corresponding authorities public
keys have the same discrete logarithm (use of the proto-
col Zero Knowledge Test of Discrete Logarithm Equality).
If the proof succeeds the passenger gets a discount on his
purchases. A malicious user, is not able to extract informa-
tion about passenger’s private data (e.g. his name) or to get
product discount if he does not match the necessary criteria.

5.3 Parking in Smart Cities
Finally, we show how the protocol Zero-Knowledge Proof
of Single Bit can be used in an application. This protocol
proves the possesion of a discrete logarithm without reveal-
ing it and additionally proves that a value has been added

or substracted to the corresponding public key without re-
vealing which operation took place.

As cities get more and more intelligent, the concept of smart
parking is becoming reality. Ultra low power wireless mesh
networks with web-based suites of parking management ap-
plications are deployed in order to provide real time parking
occupancy status, charging fees and other useful informa-
tion. A typical smart parking scenario is allowing citizens
to park without charge at the spaces of their neigborhood.
However, such an application could raise important privacy
issues as an attacker could extract from the network private
information about the citizens (e.g. Mr. Smith has just ar-
rived home). We propose a scenario that protects citizen’s
privacy.

In this scenario, we assume that there exists a parking space
between every two major streets inside a city. Each citizen
gets an RFID tag containing a private key that encodes his
attributes (name, vehicle registration plate and some fresh
random value) from the local goverment. The private key is
used to generate a public key that proves his validity as a
citizen. Moreover, depending on his address, a value that en-
codes the specific neighborhood parking space (which should
be free only for those who live on one of the two correspond-
ing streets) is added to or substracted from his public key.
The authority digitally signs the new public key and then
places this RFID tag on the citizen’s vehicle.

Parking spaces are equipped with RFID tag readers placed
on their entrances. Thus, when a citizen wants to park in his
neigborhood parking space, his device communicates with
the reader on the parking entrance and proves two things:
first that this vehicle belongs to a valid citizen and sec-
ond that this citizen lives on one of the two neigborhood
streets (without revealing which) and is able to park without
charge. This proof is done by presenting a public key signed
from the local goverment (the reader is aware of the trusted
authority’s public key), by proving that it actually holds the
private key that generated the citizen validity public key and
by proving that the specific parking value has been added to
or substracted from the public key. If the proof is successful
the parking entrance bar is lifted and the vehicle is allowed
to enter the parking. Another citizen’s vehicle that is not el-
igible to park in that space (the parking value has not been
added or substracted) is requested to pay the appropriate
fee in order to enter the parking space and a vehicle that is
not registered at all to the local goverment is not allowed en-
ter the parking. A malicious user who eavesdrops the proof
cannot extract any information that could be useful to him
(e.g. in order to get free parking space or monitor a citizen’s
actions).

6. CONCLUSIONS AND FUTURE WORK
In this paper, we considered the problem of implementing
zero-knowledge protocols (ZKP) in low-end devices. Con-
sidering the resource limitations of such devices as well as
the restrictions imposed by low power wireless communica-
tion protocols (e.g. IEEE 802.15.4) we applied the elliptic
curve cryptography (ECC) approach. Specifically, we have
carefully transformed well established zero-knowledge pro-
tocols based on the discrete logarithm problem (DLP) un-
der the elliptic curve discrete logarithm problem (ECDLP).

This transformation step was the key for implementing such
heavy protocols, in terms of computation and communi-
cation, on constrained environments, due to the fact that
ECC offers similar levels of security with other cryptosys-
tems (e.g. RSA) using smaller keys. For the first time,
we present an implementation of ZKP protocols in an open
source and generic programming library called Wiselib. Our
code is highly portable, freely available and ready to use
[35]. Based on our implementations, we conducted a thor-
ough and comparative evaluation of the protocols on two
popular hardware platforms equipped with widely used low-
end microcontrollers (Jennic JN5139, TI MSP430) as well
as 802.15.4 RF transceivers. We believe that our results can
be used by developers that wish to provide certain levels of
security and privacy in their applications.

Future work includes the expansion of the library presented
in this paper so as to include ZKIP protocols which prove
various relations for the encoded values without revealing
them (e.g. prove that my age is over 18 years without re-
vealing it). This way, our library can be the basis for im-
plementing attribute based credentials [10], [8] on embedded
devices.

7. REFERENCES
[1] Crossbow technology inc. http://www.xbow.com.

[2] Ieee standard 802.15.4: Wireless medium access
control (mac) and physical layer (phy) specifications
for low-rate wireless personal area networks lr-wpans,
2003.

[3] S. Almuhammadi and C. Neuman. Security and
privacy using one-round zero-knowledge proofs. In
CEC, pages 435–438, 2005.

[4] S. Almuhammadi, N. T. Sui, and D. McLeod. Better
privacy and security in e-commerce: Using elliptic
curve-based zero-knowledge proofs. In CEC, pages
299–302, 2004.

[5] T. Baumgartner, I. Chatzigiannakis, S. P. Fekete,
C. Koninis, A. Kröller, and A. Pyrgelis. Wiselib: A
generic algorithm library for heterogeneous sensor
networks. In EWSN, pages 162–177, 2010.

[6] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic
curves in cryptography. Cambridge University Press,
New York, NY, USA, 1999.

[7] J. Boyar, D. Chaum, I. Damg̊ard, and T. P. Pedersen.
Convertible undeniable signatures. In A. Menezes and
S. A. Vanstone, editors, CRYPTO, volume 537 of
Lecture Notes in Computer Science, pages 189–205.
Springer, 1990.

[8] S. A. Brands. Rethinking Public Key Infrastructures
and Digital Certificates: Building in Privacy. MIT
Press, Cambridge, MA, USA, 2000.

[9] C. Buschmann and D. Pfisterer. iSense: A modular
hardware and software platform for wireless sensor
networks. Technical report, 6. Fachgespräch Drahtlose
Sensornetze der GI/ITG-Fachgruppe Kommunikation
und Verteilte Systeme, 2007.

[10] J. Camenisch and E. V. Herreweghen. Design and
implementation of the idemix anonymous credential
system. In ACM Conference on Computer and
Communications Security, pages 21–30, 2002.

[11] Certicom. An elliptic curve cryptography (ecc) primer:

why ecc is the next generation of public key
cryptography. 2004.

[12] D. Chaum, J.-H. Evertse, and J. van de Graaf. An
improved protocol for demonstrating possession of
discrete logarithms and some generalizations. In
EUROCRYPT, pages 127–141, 1987.

[13] J. Chen and J. Wu. A survey on cryptography applied
to secure mobile ad hoc networks and wireless sensor
networks, 2010.

[14] coalsesenses GmbH. http://www.coaelesenses.com.

[15] Contiki, the operating system for connecting the next
billion devices - the internet of things.
http://www.sics.se/contiki/.

[16] J. H. Davies. MSP430 Microcontroller Basics. Newnes,
Newton, MA, USA, 2008.

[17] D. Eastlake and P. Jones. US Secure Hash Algorithm
1 (SHA1). Technical Report 3174, Sept. 2001.

[18] A. Fiat and A. Shamir. How to prove yourself:
practical solutions to identification and signature
problems. In Proceedings on Advances in
cryptology—CRYPTO ’86, pages 186–194, London,
UK, 1987. Springer-Verlag.

[19] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C.
Shantz. Comparing Elliptic Curve Cryptography and
RSA on 8-bit CPUs. pages 119–132. 2004.

[20] Jennic Ltd. Product Brief JN513x, IEEE802.15.4 and
ZigBee Wireless Microcontrollers, 2007.

[21] N. Koblitz, A. J. Menezes, Y.-H. Wu, and R. J.
Zuccherato. Algebraic aspects of cryptography.
Springer-Verlag New York, Inc., New York, NY, USA,
1998.

[22] A. Kröller, D. Pfisterer, C. Buschmann, S. P. Fekete,
and S. Fischer. Shawn: A new approach to simulating
wireless sensor networks. CoRR, abs/cs/0502003,
2005.

[23] P. Levis, N. Lee, M. Welsh, and D. E. Culler. Tossim:
accurate and scalable simulation of entire tinyos
applications. In SenSys, pages 126–137, 2003.

[24] A. Liu and P. Ning. Tinyecc: A configurable library
for elliptic curve cryptography in wireless sensor
networks. In IPSN, pages 245–256, 2008.

[25] D. J. Malan, M. Welsh, and M. D. Smith.
Implementing public-key infrastructure for sensor
networks. TOSN, 4(4), 2008.

[26] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot.
Handbook of Applied Cryptography. CRC Press, Inc.,
Boca Raton, FL, USA, 1996.

[27] J.-J. Quisquater, M. Quisquater, M. Quisquater,
M. Quisquater, L. C. Guillou, M. A. Guillou,
G. Guillou, A. Guillou, G. Guillou, S. Guillou, and
T. A. Berson. How to explain zero-knowledge protocols
to your children. In CRYPTO, pages 628–631, 1989.

[28] R. L. Rivest, A. Shamir, and L. M. Adleman. A
method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[29] C. P. Schnorr. Efficient signature generation by smart
cards. Journal of Cryptology, 4:161–174, 1991.
10.1007/BF00196725.

[30] Certicom research : Sec 2 - recommended elliptic
curve domain parameters.
http://www.secg.org/collateral/sec2_final.pdf,

http://www.xbow.com
http://www.sics.se/contiki/
http://www.secg.org/collateral/sec2_final.pdf

2010.

[31] V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen,
and M. Welsh. Simulating the power consumption of
large-scale sensor network applications. In Proceedings
of the 2nd international conference on Embedded
networked sensor systems, SenSys ’04, pages 188–200,
New York, NY, USA, 2004. ACM.

[32] J. H. Silverman. The Arithmetic of Elliptic Curves,
2nd Edition. Springer Verlag, 2009.

[33] W. Smith. Cryptography meets voting, 2005.

[34] TinyOS. http://www.tinyos.net.

[35] Wiselib : A generic algorithm library for sensor
networks. http://wisebed.eu/wiselib/.

[36] Y. Zhou, Y. Fang, and Y. Zhang. Securing wireless
sensor networks: a survey. Communications Surveys
Tutorials, IEEE, 10(3):6 –28, 2008.

APPENDIX

A. APPENDIX

A.1 Elliptic Curve Cryptography
For a reader’s information, in this section we review some
basic concepts of elliptic curves and their definition over fi-
nite fields. Moreover, we discuss about the elliptic curve
cryptography (ECC) approach and the reasons it consists
the best choice for the implementation of asymmetric cryp-
tography on constrained devices.

Elliptic curves are usually defined over real numbers (Fig-
ure 4), over a binary field F2m(m ≥ 1), or over a prime field
Fp, (p > 3). An elliptic curve E over a binary field F2m ,
where m ≥ 1 consists of the set of points (x, y) that satisfy
the equation

y2 + xy = x3 + ax2 + b (2)

The set of solutions (x, y) of Equation (2) along with a point
O, called the point at infinity and a special addition op-
eration form an elliptic curve group over F2m . The order
m of an elliptic curve is the number of points on E(F2m).
The dominant operation in ECC cryptographic schemes is
point multiplication. This operation is the key for the use
of elliptic curves for asymmetric cryptography - the criti-
cal operation which is itself fairly simple, but whose inverse
(the elliptic curve discrete logarithm problem, see below) is
computationally hard. The security of elliptic curve cryp-
tosystems is based on the difficulty of solving the discrete
logarithm problem on the elliptic curve group. The Ellip-
tic Curve Discrete Logarithm Problem (ECDLP) is about
determining the least positive integer k which satisfies the
equation Q = k · P for two given points Q and P on the el-
liptic curve group. The fastest known algorithms for solving
the ECDLP need exponential time in the worst case, while
for solving the same problem on non-elliptic curve based
groups, the fastest known algorithms need subexponential
time [21]. For more information on elliptic curves a reader
is advised to check on the definitive books for ECC, [6] and
[32].

Figure 4: An Elliptic Curve over Real Numbers.

From the previous definition, one can realize that Elliptic
Curve Cryptography (ECC), is a relative of discrete log-
arithm cryptography. What makes it the best choice for
asymmetric cryptography in comparison with other public
key cryptosystmes (e.g. RSA [28] which is based on the
problem of factoring large numbers) is that it offers higher
security at the same bits levels. This advantage exists be-
cause of the difference in the method by which a group is
defined, how the elements of the group are defined and how
the fundamental operations are held. These different defini-
tions are what gives ECC its more rapid increase in security
as key length increases.

Consequently, the reader can realize that the ECC inverse
operation (solving the ECDLP) gets harder, faster, against
increasing key length, in comparison with the inverse op-
eration in RSA (solving the integer factorization problem).
This means that as security requirements become more strin-
gent, and as processing power gets more expensive, ECC be-
comes the more practical system for use. This keeps ECC
implementations smaller and more efficient than other im-
plementations. As a result, ECC can use a considerably
shorter key and offer the same level of security, whereas other
asymmetric algorithms using much larger ones. Moreover,
the gulf between ECC and its competitors in terms of key
size required for a given level of security becomes dramati-
cally more pronounced, at higher levels of security [11]. In
Figure 5, one can see the equivalent key sizes for ECC and
RSA.

Figure 5: Equivalent Key Sizes and Key Ratio for
ECC and RSA.

Conclusively, due to the arguments stated before, ECC is
an excellent choice for doing asymmetric cryptography in
portable, necessarily constrained devices. The smaller ECC
keys mean that the cryptographic operations to be per-
formed by the communicating devices can be squeezed into

http://www.tinyos.net
http://wisebed.eu/wiselib/

considerably smaller hardware, that the software applica-
tions may complete cryptographic operations with fewer pro-
cessor cycles and that operations can be performed much
faster, while still guaranteeing equivalent security. In turn,
this means less heat and less power consumption on the de-
vices’ chips as well as software applications that run faster
with lower memory demands.

	1 Introduction
	1.1 Our Contributions
	1.2 Paper Outline

	2 An Overview of Zero Knowledge Protocols
	3 Zero Knowledge Protocols based on the ECDLP
	3.1 Zero Knowledge Proof of Discrete Logarithm with Coin Flip
	3.2 Schnorr's Protocol
	3.3 Transforming Schnorr's Protocol to Digital Signature
	3.4 Zero Knowledge Test of Discrete Logarithm Equality
	3.5 Zero Knowledge Proof of Single Bit

	4 Protocols Implementation and Evaluation
	4.1 Wiselib: A Generic Algorithm Library for Sensor Networks
	4.2 Hardware
	4.3 Results
	4.4 Discussion

	5 Application Scenarios
	5.1 Course Polling at University
	5.2 Anonymous Travel Ticket plus Discount Benefits
	5.3 Parking in Smart Cities

	6 Conclusions and Future Work
	7 References
	A Appendix
	A.1 Elliptic Curve Cryptography

