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Abstract— Accurate hand gesture prediction is crucial for 
effective upper-limb prosthetic limbs control. As the high 
flexibility and multiple degrees of freedom exhibited by human 
hands, there has been a growing interest in integrating deep 
networks with high-density surface electromyography (HD-
sEMG) grids to enhance gesture recognition capabilities. 
However, many existing methods fall short in fully exploit the 
specific spatial topology and temporal dependencies present in 
HD-sEMG data. Additionally, these studies are often limited 
number of gestures and lack generality. Hence, this study 
introduces a novel gesture recognition method, named STGCN-
GR, which leverages spatio-temporal graph convolution 
networks for HD-sEMG-based human-machine interfaces. 
Firstly, we construct muscle networks based on functional 
connectivity between channels, creating a graph representation 
of HD-sEMG recordings. Subsequently, a temporal convolution 
module is applied to capture the temporal dependences in the 
HD-sEMG series and a spatial graph convolution module is 
employed to effectively learn the intrinsic spatial topology 
information among distinct HD-sEMG channels. We evaluate 
our proposed model on a public HD-sEMG dataset comprising 
a substantial number of gestures (i.e., 65). Our results 
demonstrate the remarkable capability of the STGCN-GR 
method, achieving an impressive accuracy of 91.07% in 
predicting gestures, which surpasses state-of-the-art deep 
learning methods applied to the same dataset. 

Keywords—Graph convolution networks, gesture recognition, 
Human-machine interface, high density sEMG, Muscle network.  

I. INTRODUCTION 
Prosthetic Human-Machine Interface (HMI) systems hold 

great promise in significantly improving the lives of 
individuals facing amputated limbs or neuromuscular 
disorders [1]. Particularly for upper-limb functions, human 

hands exhibit remarkable skill and precision with multiple 
degrees of freedom. Due to the hands’ high flexibility and 
diversity tasks they perform, achieving an intuitive and 
seamless control of prostheses poses considerable challenges. 
To overcome these challenges, most prosthetic HMI systems 
are designed using gesture recognition algorithms that rely on 
biological signals recorded from human body [1, 2]. 

Surface electromyography (sEMG) has been extensively 
utilized in the literature to facilitate myoelectric control of 
bionic limbs, enabling the noninvasive peripheral interfacing 
of human motor intention with robotic actions [1, 3]. The 
conventional approach involves extracting temporal and 
spectral features from sEMG signals and feeding them to 
classic machine learning models such as Support Vector 
Machines (SVMs) or Linear Discriminant Analysis (LDA) [4]. 
Decision trees have also been extensively utilized to explore 
both linear and non-linear relationships encountered in 
sEMG-based HMIs [5]. While these traditional approaches 
have shown promise, they inherently face limitations as they 
require hand-craft features, which may not fully capture the 
complexities present in sEMG data. 

With the exponential growth of data and significant strides 
in computing power, deep learning technology has rapidly 
advanced, yielding remarkable achievements in the domain of 
sEMG-based HMIs [6-8]. Convolutional Neural Networks 
(CNNs) have proven to be highly effective and scalable tools, 
capable of discerning patterns in diverse tasks without the 
need for manual feature selection. For instance, Geng et al. [7] 
contributed the high-density sEMG (HD-sEMG) dataset 
CapgMyo, comprising 168 channels. Treating the sampled 
data at each time point as a 168-pixel image, they harnessed a 
2D CNN-based model, employing majority voting to 
successfully classify gestures. Similarly, Hu et al. [8] 
proposed an attention-based CNN-RNN model for decode 
gestures from HD-sEMG images. However, while CNNs 
excel in handling grid-like inputs within Euclidean space, such 
as natural images, they may not be as suitable for processing 
data in non-Euclidean spaces, such as HD-sEMG images. 
Movement execution necessitates the coordinated activation 
of numerous muscle groups, and the muscle activation 
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between certain distant locations can exhibit high correlations. 
Consequently, the geometric distance metrics commonly used 
in Euclidean space may not adequately capture the functional 
distance between muscle groups.  

To address the challenges posed by non-Euclidean data 
types, such as graphs, several geometric deep learning 
methods have emerged, including graph convolutional 
networks (GCNs) [9] and graph attention networks (GATs) 
[10]. These approaches have shown promise in diverse 
applications [11], and in particular, GCN has been utilized in 
brain decoding, where it models the brain as a graph, with 
regions of interest (ROIs) as nodes and their functional 
connectivity as edges [12, 13]. Notably, GCNs have also been 
employed for the first time in HD-sEMG based gesture 
recognition, demonstrating an impressive 91.25% accuracy in 
classifying 65 gestures from a shuffled dataset [14]. However, 
two limitations deserve consideration. Firstly, the strategy of 
muscle graph construction, which connects only nodes within 
a heuristic distance, may not fully capture the intricacies of 
muscle coordination during movements. While GCNs provide 
valuable insights into graph-based data representation, 
adopting a heuristic distance-based approach might not 
effectively account for the functional connectivity strengths 
between muscle groups. Employing more refined 
methodologies, such as considering the underlying functional 
connectivity strengths [15, 16], holds the potential to 
significantly enhance the accuracy and generalizability of 
gesture recognition systems. Secondly, this study focuses on 
processing the spatial correlation between different nodes, 
overlooking the crucial temporal dynamics inherent in HD-
sEMG signals. Recognizing and incorporating the temporal 
dynamics into the model could lead to further improvements 
in gesture recognition performance [2, 8], enabling a more 
comprehensive understanding of how gestures unfold over 
time. In order to incorporate temporal dependencies into GCN, 
spatio-temporal graph convolution networks (STGCN) have 
been developed and applied to traffic forecasting [17]. So far, 
its application to gesture recognition has not been explored. 

In this study, we introduce a Spatio-Temporal Graph 
Convolution based Gesture Recognition (STGCN-GR) 
method to further explore the benefits of GCNs in HD-sEMG 
based gesture recognition. The main contributions of our 
research are mainly summarized as following:  

(1) STGCN-GR integrates a graph convolution module 
and temporal convolution network, allowing it to effectively 
capture both topological relations and temporal dependencies 
within muscle networks constructed from HD-sEMG signals. 

(2) Extensive experiments are conducted on a dataset of 
65 gestures recorded with HD-sEMG [18]. The results 
demonstrate that STGCN-GR surpasses state-of-the-art deep 
learning methods applied to the same dataset, highlighting its 
superior performance. 

(3) Notably, the proposed STGCN-GR successfully 
decodes the substantial number of gestures (i.e., 65) with 
sliding window sizes of 250 ms, exceeding the real-time 
implementation requirement of 300 ms. 

II. METHOS 

A. Gesture Recgnition on Muscle Graphs 
Decoding motion intentions is a typical classification 

problem, i.e. predicting the most likely motion intentions, 
such as hand gestures or gait events. In our research, we focus 
on studying the HD-sEMG-based motion-decoding problem, 
which involves classifying hand gestures using the HD-sEMG 
signals. The framework for this study is thoughtfully 
illustrated in Fig. 1, providing a clear visual representation of 
our approach and methodology. 

The recorded HD-sEMG time series data denoted as 𝒟 =
{(𝒙! , 𝑦!)}!"#$ . Each 𝒙𝒊 ∈ ℝ&×(  represents task-related HD-
sEMG time series data recorded from 𝑁  electrodes over 𝑇 
time samples. The corresponding 𝑦! represents the task label 
from label set 𝑌, and 𝑛 is the total number of gestures in the 
dataset. The objective is to acquire an optimal graph network, 
denoted as 𝑃(•), using the training dataset. This network will 
facilitate the prediction of the task label 𝑦2! for each HD-sEMG 
data 𝒙𝒊 present in the testing dataset, as indicated in equation 
(1). 

𝑦2! = arg	𝑚𝑎𝑥
)!∈+

 𝑃(𝑦! ∣ 𝒙!) (1) 

In our study, we introduce the concept of a muscle network 
represented as a graph 𝒢. The recorded HD-sEMG signals 𝒙𝒊 
exhibit interdependence and are interconnected through 
pairwise connections in a graph structure. To construct the 

 
Fig. 1. The framework of the proposed STGCN-GR method. A. Formarm HD-sEMG signals are recorded, and muscle networks are constructed based on the 
k-NN strategy. B. The spatio-temporal convolution module efficiently captures both topological relations and temporal dependencies within the muscle 
networks, producing a spatio-temporal feature as the output. C. Fully connected layers are utilized for gesture classification. 
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graph 𝒢, we utilized HD-sEMG to form muscle network graph 
𝒢, = (𝒱, , ℰ,𝑾) at the 𝑡-th time-step. The nodes 𝒱,  are the 
observations from	 𝑁  electrode in a muscle network; The 
edges ℰ  are the connectedness between nodes. 𝑨 ∈ ℝ$×$ 
denotes the weighted adjacency matrix of 𝒢,.	The	weighted	
adjacency matrix is obtained by Pearson correlation of HD-
sEMG recordings 𝒙! between 𝑁 electrodes, thus we obtain the 
fully connected muscle networks. 

Subsequently, the k-nearest neighbors (k-NN) strategy is 
employed to establish connections for each electrode with the 
top 𝑘 correlated electrodes using undirected graph edges. In 
simpler terms, we trim the weighted adjacent matrix 𝑨  to 
create a sparse adjacent matrix 𝑾 , following the process 
described in equation (2). This pruning step helps construct a 
more efficient and focused graph representation of the 
interdependences between HD-sEMG electrodes. 

𝑾!,. = J𝑨!,. , 				 if 𝑨!,. ≥ 𝑘,/-top (𝑨!), ∀𝑨!,. ∈ 𝑨!
0, 				  otherwise. 

 (2) 

B. Spatio-Temporal Graph Convolutional Network for 
Gesture Recognition 
The primary focus of our proposed method is to efficiently 

capture both topological relations and temporal dependencies 
present in muscle networks created from HD-sEMG signals. 
To achieve this, we present a novel approach called Spatio-
Temporal Graph Convolutional Network for Gesture 
Recognition (STGCN-GR), which incorporates a spatial 
graph convolution network and a temporal convolution 
network, inspired by the temporal information forecasting 
graph networks [17]. The STGCN-GR takes multi-channel 
HD-sEMG series as input and generates a spatio-temporal 
feature as output. In the following sections, we provide a 
detailed description of each module in our method. 

(1) Spatial Graph Convolution Module 

GCNs update vertices in a graph by gathering information 
from neighboring vertices (masking with same color in Fig.1) 
through spatial edges. This mechanism allows GCNs to 
effectively capture topological structure information, making 
them highly suitable for processing non-Euclidean data. 
Interestingly, HD-sEMG signals can be naturally interpreted 
as graph-structured data, where each electrode corresponds to 
a node, and functional connections serve as edges. As a result, 
employing GCNs for HD-sEMG-based gesture recognition 
can capitalize on the inherent graph-like nature of the data, 
leading to improved performance in analyzing and 
interpreting muscle activity patterns. 

The spatial graph convolution operator ∗𝒢 can be defined 
as the operation of multiplying an input vector 𝒙 with a filter 
Θ. 

Θ ∗𝒢 𝒙 = Θ(𝑳)𝒙 = Θ(𝑼𝚲𝑼()𝒙 = 𝑼Θ(𝚲)𝑼(𝒙, (3) 

where 𝑼 and 𝚲	are the eigenvector matrix and the diagonal 
matrix of eigenvalues of the normalized graph Laplacian 𝑳 ∈
ℝ&×&, respectively. We have 𝑳 = 𝑼𝚲𝑼(. 

The graph Laplacian 𝑳 is from the transformation of the 
adjacency matrix 𝑾  with 𝑳 = 𝑰& −𝑫

1"#𝑾𝑫1"#,  where 𝑫  is 

the diagonal degree matrix with	𝑫!,! = ∑ 𝑾!,.𝒋 ,	and 𝑰&	is an 
identity matrix. 

To enhance the filter localization and reduce the number 
of parameters, a widely used approach is to employ 
Chebyshev polynomials 𝑇3(•) to approximate the filter Θ. As 
a result, the spatial graph convolution can be expressed as a 
linear function of Chebyshev polynomial 𝑇3Y𝑳Z[, 

Θ ∗𝒢 𝒙 = Θ(𝑳)𝒙 ≈ ∑  4
3"5 𝜃3𝑇3(𝑳Z)𝒙, (4) 

where 𝑳Z = 6𝑳
8$%&

− 𝑰&,  and 𝜆9:;  denotes the largest 
eigenvalue of 𝑳. 

By introducing the first-order approximation, we set that 
𝜆9:; = 2  and 𝜃 = 𝜃5 = −𝜃# . Substituting 𝑾̀ = 𝑾+ 𝑰& , 
and 𝑫b !,! = ∑ 𝑾̀!,.𝒋  into (4), we can approximate the spatial 
graph convolution as 

Θ ∗𝒢 𝒙 ≈ 𝜃5𝒙 − 𝜃# c𝑫1#6𝑾𝑫1#6d𝒙

≈ 𝜃 c𝑰& +𝑫1#6𝑾𝑫1#6d𝒙

≈ 𝜃 c𝑫b1
#
6𝑾̀𝑫b1

#
6d𝒙.

 (5) 

(2) Temporal Convolution Module 

The temporal convolution module is designed to 
incorporate a 1D convolution with a width-𝐾, kernel, which is 
followed by a gated linear unit (GLU) to introduce non-
linearity. When processing each node in graph 𝒢, the temporal 
convolution explores 𝐾,  neighboring elements of input 
without padding, resulting in a reduction of sequence length 
by 𝐾, − 1 each time. The input of the temporal convolution 
for each node can be represented as a sequence of length 𝑙 
with 𝑐!  channels, denoted as 𝒖 ∈ ℝ<×=! . The convolution 
kernel, denoted as Γ ∈ ℝ4'×=!×6=( maps 𝒖 to a single output 
element [𝑷𝑸] ∈ ℝ(<14'?#)×(6=() (where [𝑷𝑸] is split equally 
into two parts with channels 𝑐A, 𝑐A denotes output channels). 
Consequently, the temporal gated convolution module can be 
represented as follows: 

Γ ∗𝒯 𝒖 = 𝑷⊙𝜎(𝑸) ∈ ℝ(<14'?#)×=( , (6) 

where ∗𝒯  denotes temporal convolution; 𝑷  and 𝑸  are the 
input of gates in GLU, respectively; ⊙	denotes the element-
wise Hadamard product; 𝜎(𝑸)  denotes the sigmoid gate 
which determines the importance of input 𝑷.  

III. EXPERIMENTS  

A. Dataset and Preprocessing 
To develop an efficient prosthetic control interface that 

can support various activities of daily living (ADLs) beyond 
basic hand functions, this study relies on a high-quality HD-
sEMG dataset, recently published in Nature's scientific data 
[18]. This database consists of 65 isometric hand gestures, 
each exhibiting different degrees of freedom (DoF). These 
movements encompass 16 1-DoF finger and wrist gestures, 41 
2-DoF compound gestures involving both fingers and the 
wrist, and eight multi-DoF gestures like grasping, pointing, 
and pinching [18]. 



The dataset was collected from 20 healthy participants (14 
males and 6 females, 25-57 years old). However, due to data 
unavailability, signals from subject 5 were not included, 
resulting in the use of data from 19 subjects. HD-sEMG 
signals were recorded using a Quattrocento (OT 
Bioelettronica) biomedical amplifier system, employing two 
8×8 electrode grids, amounting to a total of 128 channels, with 
a 10 mm inter-electrode distance. As depicted in Fig. 1, one 
grid was positioned on the dorsal (outer forearm), and the 
other on the volar (inner forearm) of the upper forearm. 

During data collection, each subject was instructed to 
perform each gesture five times consecutively, followed by a 
transition to the next one. The duration of each repetition was 
five seconds, followed by an equal-duration rest period. The 
sample rate is 2048Hz, and the Quattrocento device employed 
a hardware high-pass filter of 10Hz and a low-pass filter of 
900Hz. The recording was performed differentially, with the 
signal for channel 𝑖  representing the difference between 
electrode 𝑖 + 1  and electrode 𝑖 . The HD-sEMG data was 
segmented with a sliding time windows of 250ms with a 50% 
overlap. 

B. Experimental Setup 
Our proposed method exclusively utilizes raw HD-sEMG 

data without any hand-crafted features. The construction of 
fully-connected muscle networks is based on the HD-sEMG 
series, where the number of nodes 𝑁 is set to 128, and each 
node is associated with the number of time samples in a sliding 
window, totaling 512. The determination of edges depends on 
the k-NN strategy to retain the strongest correlations, which is 
introduced in Session II.A. In this study, we evaluate the 
decoding performance for different values of 𝑘 in the k-NN 

approach, specifically a range of [2, 6] with an interval of 1. 
Ultimately, we set 𝑘 =2 to achieve a high prediction accuracy 
while maintaining sufficient sparsity in the muscle network 
graph. 

The STGCN-GR model starts by utilizing a temporal 
convolutional network architecture to extract a lower-
dimensional embedding representation from the HD-sEMG 
time series in each node. This process involves a layer of 1D 
convolutions followed by a GLU. The temporal convolutional 
kernel size 𝐾,	 is set to 5. Next, the graph convolutional 
network is applied, using a single layer of graph convolution. 
A ReLU function is used as the activation after each spatial 
convolution. After this step, layer normalization is performed 
over the node's features. 

The model is trained for 100 epochs. The batch size is 64. 
Dropout is 0.5. The stochastic gradient descent with Adam 
optimizer is employed with an initial learning rate of 0.001 
decay the learning rate by 0.05. Learning stops early after the 
validation loss plateaued (patience = 30). During training, the 
cross-entropy loss function is utilized as the optimization 
metric. 

To evaluate the performance of our method, we adopt a 
five-fold cross-validation approach and report the mean and 
standard deviation (std) of validation accuracy as performance 
metrics. The experiments are implemented using PyTorch 
2.0.0 and trained using the NVIDIA Tesla V100-PCIE GPU 
for computational acceleration. 

 
Fig. 2. Graph presentation of full-connected muscle networks for eight gestures of one subject (#20). Thicker edges represent a stronger correlation between 
nodes. Each graph consists of 128 nodes (64 forearm extensor and 64 forearm flexor), and they are divided into eight regions according to the node locations.  
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IV. RESULT AND DISCUSSION 

A. Graphs of Muscle Networks 
Fig. 2 presents intriguing graphs showcasing full-

connected muscle networks constructed from the 128 
electrode signals, consisting of 64 forearm extensor and 64 
forearm flexor signals, for one subject. While the dataset 
comprises 65 gestures, to accommodate limited space, we 
illustrate only eight representative gestures in the graph. 
According to the electrode location, we partitioned the 128 
nodes into eight distinct regions (R1-R8) and color-coded 
them accordingly. Nodes of the same color have similar 
geographic locations. Thicker edges within the graphs indicate 
stronger correlations between nodes.  

The muscle network diagrams exhibit remarkable 
variability across the diverse gestures. For instance, gesture 
Palma grasp exhibits a conspicuous interdependence between 
nodes in regions R4 and R5, suggesting a coordinated 
relationship between these specific muscle groups during the 
execution of this gesture. In gesture Finger stretch, the 
extensor region displays a robust correlation among nodes R2, 
R3, and R4, indicating a close functional association between 
these muscles. On the other hand, the correlation within the 
flexor region appears to be relatively weaker, implying a 
different coordination pattern for this specific gesture. In 
addition, we can find that some nodes have strong 
interdependencies with each other, even though they are 
geographically distant. The observed dependencies and 
correlations provide valuable insights into the underlying 
muscle coordination during specific movements, shedding 
light on the complex interplay between muscle groups during 
hand gestures. 

B. Gesture Decoding Performance and Comparison 
To evaluate the model performance on the dataset, we 

adopt a rigorous five-fold cross-validation approach. During 
each fold, one repetition is held out for testing, and the 
remaining four repetitions are utilized for training the model. 
The average results of the cross-validation for the 19 subjects 
are visually presented in Fig. 3. Notably, the achieved 
accuracies for each fold are 91.43 ± 3.90%, 90.78 ± 4.58%, 
91.15 ± 4.28%, 91.26 ± 4.40%, 91.15 ± 4.90%, respectively. 
The overall average accuracy among subjects across all folds 
is an impressive 91.07 ± 4.13%. 

Furthermore, we conduct an in-depth comparison with 
other deep learning-based methods that utilized the same 
dataset [19-21]. These works also employed five-fold cross-
validation during their evaluations. To ensure a robust 
comparison, we directly quote the results reported in the 
literature. The experimental outcomes are thoroughly 
analyzed and presented in Table I. The findings are 
compelling as they demonstrate that the proposed STGCN-
GR method consistently outperforms other methods, 
achieving a higher classification accuracy. These results serve 
as compelling evidence of the effectiveness and superiority of 
STGCN-GR for gesture decoding tasks. 

C. Parameter Analysis 
Within this section, we perform experiments on datasets 

involving five subjects to assess the impact of the 𝑘 parameter 
in the k-NN graph. We systematically vary the value of 𝑘 over 
a range from 2 to 6 with an interval of 1. Fig. 4 displays the 
corresponding model performance for different 𝑘 . For the 

TABLE I.  COMPARISONS OF THE AVERAGE ACCURACIES (%) OF 
FIVE-FOLD CROSS CALIDATION AMONG THE VARIOUS METHOS. THE 

BEST VALUE ARE HIGHLIGHTED IN BOLD 

Work Model Window 
length(ms) 

Accuracy 
(%) 

T. Sun et. al 
[19]  

Deep Heterogeneous 
Dilation of LSTM 200 83.3 

N. Malešević  
et. al [20] ViT-HGR 31.25 84.62 

N. Malešević  
et. al [21] HGR-Macro Model 250 89.34 

Proposed 
mothod STGCN-GR 250 91.07 

 

 
Fig. 4. The corresponding model accuracy for parameter k over a range from 
2 to 6 with an interval of 1. 
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Fig. 5. The training and testing accuracy and loss of the model on different 
datasets as iterations progress. 
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Fig. 3. The average classification accuracy of five-fold cross validation 
among 19 subjects. 
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represented subjects, results demonstrate that the optimal 
accuracy is attained when 𝑘  is set to 2, resulting in a 
classification accuracy of 93.07% across five subjects. 

A noteworthy observation is that the classification 
accuracy does not exhibit significant fluctuations with 
different values of 𝑘 for each subject. This finding suggests 
that the proposed model displays minimal sensitivity to 
changes in the number of edge connections within the muscle 
network graph. Understanding and acknowledging such 
variations can be crucial in the design and optimization of 
gesture recognition systems. This insight ensures the model's 
robustness and reliability in various applications involving 
HD-sEMG data. 

D. Model Converge Analysis 
Fig. 5 presents a graphical representation of the model's 

training and testing accuracy and loss across three subjects 
during a representative run. The results reveal a notable trend 
where both training and testing accuracy show significant 
improvements during the initial epochs, followed by a gradual 
convergence to a stable level. In contrast, the corresponding 
loss experiences a rapid decrease at the onset of training, 
eventually leveling off with only marginal changes afterward. 

An important finding from this analysis is that both the 
accuracy and loss of the model have reached a state of stability 
within the first 15 epochs in a smooth manner. This robust and 
smooth convergence within a relatively short training period 
showcases the effectiveness of the model's learning process. It 
indicates that the model has effectively captured the 
underlying patterns in the data and can make reliable 
predictions without overfitting.  

V. CONCLUSIONS 
This paper presents STGCN-GR, a novel gesture 

recognition method for HD-sEMG-based HMIs. By 
combining graph convolution and temporal convolution 
modules, the proposed model effectively leverages spatial 
topological information and captures temporal dependencies 
inherent in the graph-based HD-sEMG presentation. 
Assessments are conducted on a diverse dataset of HD-sEMG 
signals from 19 able-bodied subjects performing 65 different 
gestures, demonstrating the model's adaptability to varying 
spatio-temporal features. The experimental results highlight 
the superiority of STGCN-GR over state-of-the-art deep 
learning methods for the same dataset, particularly with a 
sliding window size of 250ms, surpassing the real-time 
implementation requirement of 300ms. The STGCN-GR 
achieves a satisfactory classification accuracy and 
demonstrates notable generality, showcasing its potential for 
practical applications in real-world scenarios involving 
gesture recognition and HMI systems. 
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