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Abstract

In this letter, a weighted minimum mean square error (WMMSE) empowered integrated sensing and

communication (ISAC) method is investigated. One transmitting base station and one receiving wireless

access point are considered to serve multiple users and a sensing target. Inspired by mutual information

(MI), a unified framework to link sensing and communication is constructed, and communication MI and

sensing MI rates are utilized as the performance metrics under the presence of clutters. In particular, we

propose a novel MI-based WMMSE-ISAC method to maximize the weighted sensing and communication

sum rate of this system. Such a maximization process is achieved by utilizing the classical method—

WMMSE, aiming to better manage the effect of sensing clutters and the interference among users.

Numerical results show the effectiveness of our proposed method, and the performance trade-off between

sensing and communication is also validated.
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I. INTRODUCTION

Recently, research towards the construction of next-generation wireless networks(such as B5G

and 6G) has increased dramatically. With the progression of innovative implementations such as

vehicle to everything (V2X) and the Internet of Things (IoT), it is anticipated that the forthcoming

wireless systems will play a crucial role in delivering various sensing services, encompassing a

wide range of functionalities, e.g., target tracking and environmental monitoring. To achieve this,

integrated sensing and communication (ISAC) provides a promising framework to seamlessly

incorporate sensing functionalities within communication systems [1].

Under the ISAC framework, some very solid works have been made, such as [2]-[4], and most

of the existing works utilize achievable rates or signal-to-interference-plus-noise-ratio (SINR)

as the communication metric [4]-[6]. Conversely, performance metrics for sensing vary. For

instance, [5] and [6] employ the probability of false alarm (PFA) to quantify sensing performance,

while [7] applies signal-to-clutter-and-noise-ratio (SCNR), and [8]-[10] utilize the Cramer-Rao

bound (CRB) to measure sensing performance. These miscellaneous metrics do not establish

consistency with those for communication, often leading to complex optimization processes.

Moreover, when building scenarios, most current works only focus on single-antenna users and

ignore the influences of clutters, which fundamentally affect sensing performances in reality.

These issues therefore motivate us to seek a novel ISAC framework with an easy, common, and

reasonable sensing and communication (S&C) measurement to address intricate scenarios when

designing beamformers, such as multi-antenna users and sensing clutters. The concept of mutual

information (MI) thus raises our attention. However, to our surprise, many current works about

MI-based ISAC still apply inconsistent S&C metrics and focus on simple scenarios [11] [12],

encouraging us to research further.

According to [13], communication MI (CMI) has the well-known operational meaning of

maximum achievable channel coding rate (i.e. CMI rate), which is directly related to SINR

or SNR, while sensing MI (SMI) is similar to CMI both physically and mathematically. This

feature motivates us to find a sensing metric consistent with CMI based on SMI. Inspired by [7],

which utilizes SCNR to measure its sensing performance, we thus set the SMI-based sensing rate

(related to SCNR) as the sensing metric. It is hence possible for us to leverage some classical

methods of communication-only frameworks in such ISAC cases to optimize its certain utility.
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In this letter, we propose a unified WMMSE-ISAC algorithm based on the MI framework1.

We consider a complex scenario with several multi-antenna users and a sensing target (ST), with

sensing clutters presented to better simulate real-life situations2. A beamforming design problem

is then formulated to maximize the weighted S&C sum rate for sensing and communication,

subject to a maximum power constraint. By utilizing the well-known weighted minimum mean

square error (WMMSE) method, the non-convex problem is then transformed into a convex

and derivable one. Therefore, the problem is solved through a simple iterative process. The

effectiveness of this algorithm was finally verified by our numerical results.

Notations: Bold lower-case and upper-case letters denote column vectors and matrices respec-

tively. Standard lower-case letters represent constants or variables. (·)H represents the Hermitian

operation, while (·)−1 and Tr(·) stand for inversion and trace operation correspondingly. Cn×m

denotes the n×m complex space, and E[·] is the expectation of a random variable.

Fig. 1. Illustration of MI-based WMMSE-ISAC system.

II. SYSTEM MODEL

We consider a bi-static ISAC system, which consists of one transmitting base station (BSt)

and one receiving wireless access point (APr) with K communication user equipment (UEs) and

one ST. APr and BSt are connected through high-capacity links and form the sensing network. In

1The code of the simulation of our proposed algorithm is available at https://github.com/ROCASSO/MI-based-WMMSE-ISAC-

algorithm
2The objective of this letter is to probe whether the target exists in a known direction. For larger areas, an option is to design

the transceiver to monitor over a range of directions
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our proposed system, the main focus is on interference management and utility maximization for

S&C through transceiver design. In addition, sensing clutters that affect the sensing performance

are considered. The transmitting and receiving BSs are equipped with Nt and Nr antennas

respectively, and each UE is equipped with R antennas. Without the loss of generality, one data

stream is allocated for each antenna of a UE, and S data streams are assumed for the ST. The

set for all UEs is thus written as I = {i|i ∈ 1, · · · , K}. Moreover, the channel matrix H for

UEs is given by:

H = [H1, · · · ,HK ] ∈ CR×KNt , (1)

and we name the ST as sensing target τ. Gτ ∈ CNr×Nt stands for the channel matrix for the
ST. The transmitting beamformer matrix for both sensing and communication is given as:

V =

V1, · · · ,VK︸ ︷︷ ︸
Communication

, Vτ︸︷︷︸
Sensing

 ∈ CNt×(KR+S). (2)

Let Vτ denotes the beamformer for sensing target τ and Vk for user k, and the corresponding

signal is sτ ∈ CS×1 and sk ∈ CR×1, where E[sksHk ] = E[sτsHτ ] = 1.

A. Communication Model

In this letter, the well-known Saleh-Valenza (SV) model is utilized for channel construction
[14]. The signal transmitted to user k can be written as:

yk = HkVksk︸ ︷︷ ︸
expected signal

+

K∑
i=1,i̸=k

HkVisi︸ ︷︷ ︸
multi-user interference

+ HkVτsτ︸ ︷︷ ︸
sensing interference

+nc, (3)

where nc ∈ CR×1 is the additive white Gaussian noise with the distribution N (0, σ2
c ). The

channel Hk here is given by

Hk = γ
P∑

p=1

βk,paR(ϕk,p)a
H
t (φk,p), (4)

where γ =
√

NtR
P

. at(ϕk,p) and aR(φk,p) are the steering vectors in BSt—UE channels with

||at(ϕk,p)||2 = ||aR(φk,p)||2 = 1. It is assumed that P paths exist in the environment. ϕk,p and

φk,p denote the AOA and AOD at the pth path between the BSt and the kth UE respectively,

and βk,p ∼ N (0, σ2
k,p) is the path gain.
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B. Sensing Model

The effective received signal to detect the sensing target at APr is:

yτ = GτVτsτ︸ ︷︷ ︸
self

+

K∑
i=1

GτVisi︸ ︷︷ ︸
user interference

+

L∑
l=1

GlVτsτ +

L∑
l=1

K∑
j=1

GlVjsj︸ ︷︷ ︸
sensing clutter

+ns,
(5)

where ns is similar to nk, following the distribution N (0, σ2
s). The BSt−ST−APr channel Gτ

and the BSt − clutter patch− APr channel Gl are given by:

Gτ = βτaR(ϕτ )a
H
t (φτ ), (6a)

Gl = βlaR(ϕl)a
H
t (φl). (6b)

Here, ϕτ and φτ represent the AOA and AOD of the BSt−ST−APr channel for the ST, and ϕl

and φl stand for the AOA and AOD at the lth BSt−clutter patch−APr channel respectively, with

||at(ϕ)||2 = ||aR(φ)||2 = 1. Their channel gains are denoted as βτ ∼ N (0, σ2
τ ) and βl ∼ N (0, σ2

l )

respectively. L clutter patches are assumed to exist under such a scenario.

III. PROBLEM FORMULATION

We utilize SMI and CMI rates as the metrics for the entire ISAC system. The CMI rate is the

maximum achievable channel coding rate, while the meaning of SMI varies [13]. However, SMI

is similar to CMI both physically and mathematically [13]. According to [7], it is well known that

detection probability is an increasing function of SCNR. To resemble the CMI rate, we exploit

the SMI-based sensing rate, namely the SMI rate, as our metric, which is log det(I + SCNR).

We consider receive beamforming strategy as follows:

s̃k = BH
k sk, s̃τ = BH

τ sτ . (7)

With the similarity between S&C metrics, the problem is formulated as a classical weighted

sum-rate maximization one. The key of the problem is then set to optimize the beamformers to

maximize the weighted S&C sum-rate of this system while ensuring the power budget, which

is
∑K

k=1 Tr(VkV
H
k ) + Tr(VτV

H
τ ) ≤ P0.

The weighted S&C sum-rate maximization problem is:

max
V

K∑
k=1

αkRk + ατRτ

s.t.

K∑
k=1

Tr(VkV
H
k ) + Tr(VτV

H
τ ) ≤ P0,

(8)



6

where αk, ατ > 0 represent the weighting coefficients, while

Rk ≜ log det
(
I+HkVkV

H
k H

H
k (

K∑
i=1,i̸=k

HkViV
H
i H

H
k +HkVτV

H
τ H

H
k + σ2

kI)
−1

)
,∀k ∈ I (9a)

Rτ ≜ log det
(
I+GτVτV

H
τ G

H
τ (

K∑
j=1

GτVjV
H
j G

H
τ +

L∑
l=1

(

K∑
n=1

GlVnV
H
nG

H
l +GlVτV

H
τ G

H
l ) + σ2

τI)
−1). (9b)

Rk and Rτ denote the CMI rate for the kth UE and the SMI rate for the ST respectively.

When calculating Rτ , the clutter is strong enough to ignore other communication signals (i.e.,∑K
j=1 GτVjV

H
j G

H
τ ) at the path Gτ . The SMI rate Rτ can thus be interpreted as the log det(I+

SCNR) form, which is directly related to SCNR.

Following [15], the receiving beamformer Bk and Bτ can be easily determined as:

Bk = A−1
k HkVk , Bτ = A−1

τ GτVτ . (10)

the corresponding MSE matrices are thus written as:

Ek =I−VH
k H

H
k A

−1
k HkVk , (11a)

Eτ =I−VH
τ G

H
τ A

−1
τ GτVτ , (11b)

where

Ak =

K∑
i=1

HkViV
H
i H

H
k +HkVτV

H
τ H

H
k + σ2

kI, (12a)

Aτ =GτVτV
H
τ G

H
τ +

K∑
j=1

GτVjV
H
j G

H
τ +

L∑
l=1

( K∑
n=1

GlVnV
H
nG

H
l +GlVτV

H
τ G

H
l

)
+ σ2

τI (12b)

respectively denote the covariance matrix of all signals received at the receivers of UE k and

the ST.

IV. PROPOSED SOLUTION

To handle the non-convex weighted S&C sum-rate maximization problem, we utilize the
classical WMMSE method [15] to transform it into a convex one, which is given by:

min
V,B,W

[ K∑
k=1

αk

(
Tr(WkEk)− log det(Wk)

)
+ ατ

(
Tr(WτEτ )− log det(Wτ )

)]

s.t.

K∑
k=1

Tr(VkV
H
k ) + Tr(VτV

H
τ ) ≤ P0.

(13)

The problem can then be fixed in the space of {B,V,W}. Updating one variable with others
remaining fixed makes this problem easy to solve. By applying the Lagrangian multiplier method,
the problem can be rewritten as an unconstrained one, which is given by:

min
V,B,W

K∑
k=1

αk(Tr(WkEk)− log det(Wk)) + ατ (Tr(WτEτ )− log det(Wτ ))

+ λ(

K∑
k=1

Tr(VkV
H
k ) + Tr(VτV

H
τ )− P0).

(14)
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We name its objective function as f . Due to its convex feature for each of the optimization

variables [15], the block coordinate descent method is applied. Sequentially, after fixing two of

the optimization variables, the left one can be solved and updated simultaneously for all users

and sensing targets. Inspired by [15], the update of the weight matrix Wk or Wτ is in closed

form, which is the inverse of the corresponding MSE matrix, making it easy to update. The

solution of receiving beamformer Bi comes from (11), and the updating processes for all Vi are

independent from each other. In this case, we first consider the kth beamformer which belongs

to one UE. Following the methods provided by [16], fundamental components of ∇Vk
f can be

derived as:

∇VkTr(WkEk) = 2αkH
H
k BkWkB

H
k HkVk − 2αkH

H
k BkWk, (15)

∇VkTr(WiEi) =
2αiH

H
i BiWiB

H
i HiVk, ∀i = 1, · · · ,K, i ̸= k,

2αiG
H
i,sBiWiB

H
i Gi,sVk + 2αi

L∑
l=1

GH
l BiWiB

H
i GlVk, i = τ.

(16)

(15) is the key component relevant to the UE itself, while (16) is the key component about

other users and the sensing target. With regard to the ST, the key components are fairly similar.

Through combining these components altogether properly, the derivatives of f with respect to

the beamformer for the kth UE and the ST τ can be directly obtained. Via setting the derivatives

to zero, the optimized beamformers Vopt
k (∀k ∈ I) and Vopt

τ are given by:

Vopt
k =

( K∑
i=1

αiH
H
i BiWiB

H
i Hi + ατG

H
τ BτWτB

H
τ Gτ + ατ

L∑
l=1

GH
l BτWτB

H
τ Gl + λI

)−1

αkH
H
k BkWk, (17a)

Vopt
τ =

( K∑
i=1

αiH
H
i BiWiB

H
i Hi + ατG

H
τ BτWτB

H
τ Gτ + ατ

L∑
l=1

GH
l BτWτB

H
τ Gl + λI

)−1

ατG
H
τ BτWτ , (17b)

Notably, λ ≥ 0 is the parameter that ensures the power constraint. Since it can be shown

that
∑K

k=1 Tr(V
opt
k (Vopt

k )) + Tr(Vopt
τ (Vopt

τ )) is a decreasing function with respect to λ [15], its

value can be easily determined through the bisection approach. It turns out that the optimized

beamformers for sensing and communication are actually identical. This results from the mutual-

information framework and the S&C metrics we follow, bridging communication and sensing

altogether to make the system more integrative. The WMMSE-ISAC algorithm is provided as

Algorithm 1, and [15, Theorem 2] guarantees the algorithm to converge to a stationary point

of (13). Let ι = K + 1 denote the total number of UEs and the ST. The complexity of each

iteration is O(ιN3
t +KR3 +N3

r ) for one user’s or the ST’s beamformer.
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Algorithm 1 Proposed WMMSE-ISAC algorithm to solve problem (13)
Input Initialize V to meet the power constraint of (13)

Repeat

1) Compute all Bk,Bτ based on (10)

2) Calculate all Ek,Eτ based on (11)

3) Apply Wk ← E−1
k , Wτ ← E−1

τ ,∀k ∈ I

4) Update Vk and Vτ according to (17), ∀k ∈ I

Until Convergence criterion is met.

Output: The optimal solution Vk and Vτ , , ∀k ∈ I

To see the optimization effects the weighting coefficients posing to the system, we set
∑K

k=1 αk =

ωc and ατ = ωτ with ωτ ∈ [0, 1) and ωc = 1−ωτ . When ωτ varies, the optimization performance

of the WMMSE-ISAC system also needs to change to have a better response towards particular

requirements.

V. SIMULATION RESULTS

In this section, numerical results are presented under a sub-6G system operating at 3.3GHz to

verify the effectiveness of our WMMSE-ISAC algorithm. All the array elements spacing is half

of the wavelength. We assume that both BSt and APr are equipped with ULAs, and Nt = 16

while Nr = 4, serving K = 3 users. Only S = 1 data stream is allocated to sensing as it is

theoretically sufficient for one sensing target. The direction of all UEs and the ST is randomly

generated within the range of [−π
2
, π
2
]. Each UE is assumed to have a ULA with R = 4. L = 3

sensing clutter patches are set, while P = 10 paths are assumed in the environment. For clarity

and simplicity of controlling the signal-to-noise-ratio (SNR) of the overall system, σ2
c = σ2

s are

set to be 30 dBm. We also set σ2
k,p = 30 dBm for the line-of-sight (LOS) path and σ2

k,p = 20

dBm for the non-line-of-sight (NLOS) paths. As for the sensing channel, σ2
τ is set to be 30

dBm. 1
L

∑L
l=1 σ

2
l is set to be equal to σ2

τ to better justify the effectiveness of our algorithm under

evident clutter interference. Additionally, the transmitting power limit is set based on different

transmitting SNRs (i.e., P0 = 10
SNR
10 ).

For our proposed WMMSE-ISAC algorithm, the tolerance for the weighted S&C sum rate

between two iterations is 1e−3, and the maximum number of each iteration process is 50.
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A. System performance and S&C trade-off

Most existing conventional ISAC works only focus on single antenna users without receiving

beamforming, making it hard for us to find a proper method to compare with. However, under

our unified framework, classical methods for communication problems can be utilized in ISAC

cases. We thus consider the classical Adaptively Weighted MSE (AW-MSE) transceiver design

method [17] as our baseline. With the weighting coefficient ωτ ranging from 0.00 to 0.99, the

average S&C MI rate per UE/ST at SNR = 25 dB is illustrated in Fig. 2. For each curve, 500

Monte-Carlo experiments are performed.

According to Fig. 2, as ωτ alters, both the CMI and SMI rates of the WMMSE-ISAC algorithm

depict more apparent variations than those of the AW-MSE algorithm, indicating better sensitivity

and flexibility towards the changes of the expected optimization preference. Such a feature results

in a scarcely lower SMI rate and a much higher CMI rate when the optimization process is

extremely communication-centric, and it also causes a lower CMI rate and a significantly better

sensing performance when expecting a highly sensing-centric optimization (ωτ > 0.87).

As illustrated in Fig. 2, the peak values of sensing and communication of our WMMSE-ISAC

algorithm are also significantly higher than those of the AW-MSE method. With most of the

curve of the SMI rate of our algorithm staying significantly higher than that of the baseline, we

can conclude that our WMMSE-ISAC algorithm generally performs better at sensing than the

AW-MSE algorithm. With regard to communication performance, Fig. 2 clearly illustrates the

superiority of our proposed algorithm when communication-centric optimization processes are

expected (ωτ < 0.5). However, the CMI rate of our algorithm is slightly lower than that of our

baseline when highly sensing-centric optimization is needed (0.87 < ωτ < 0.99). In this case,

the metric that much more matters is the SMI rate, which is significantly higher than that of our

baseline. These phenomena above also show the sensitivity and successful S&C performance

trade-off of our algorithm towards the variation of the expected optimization preference, which

are further justified in Fig. 3 and Fig. 4.

Fig. 3 illustrates the average achievable rate per user plus the SMI rate of the ST (i.e., S&C

rate) under 4 situations with different expected optimization preferences. It is clear that the

S&C rate of our proposed WMMSE-ISAC algorithm outperforms those of the baseline in most

cases. However, the S&C rates of our algorithm when ωτ = 0.99 are slightly lower than that

of the AW-MSE method at some SNRs. Such a phenomenon is also due to the sensitivity and
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flexibility of our algorithm concluded from Fig.2. When ωτ = 0.99, the CMI rate of our algorithm

is lower than that of the AW-MSE method, while its SMI rate, the only metric that matters

under such an extreme sensing-centric optimization scenario, is significantly higher, making the

system better concentrated on sensing targets. However, with the AW-MSE algorithm, the S&C

rate performances at the given ωτ s are quite close, indicating a not successful trade-off for the

baseline algorithm. The overall performance trade-off will be further verified in Fig. 4.

B. Overall Performance Trade-off

Fig. 4 shows the S&C rate variation with the value of ωτ at different SNRs. With our

proposed WMMSE-ISAC algorithm, the peak values of the S&C rate are significantly higher
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than the baseline. Moreover, it is also demonstrated that the system achieves a successful

overall performance trade-off with our WMMSE-ISAC algorithm. For instance, the S&C rate

when ωτ = 0.25, 0.5, and 0.75 are substantially larger than those under extreme optimization

preferences (ωτ = 0 or 0.99), indicating a much better performance when being utilized in

general ISAC cases than extreme sensing-centric/communication-centric cases. Conversely, with

the baseline algorithm, the S&C rate is so insensitive to the variation of ωτ that it only shows

slight elevation with ωτ increasing. Additionally, Fig. 2 shows even when the optimization focus

is extreme, our algorithm still performs much better than the AW-MSE algorithm in terms of

the corresponding sensing or communication metric.
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Fig. 4. illustration of the S&C rate variation with ωτ under different SNRs

VI. CONCLUSIONS

In this letter, a unified WMMSE-ISAC framework has been proposed. Under the scenario of

several multi-antenna users, one sensing target with sensing clutters, a joint S&C beamforming

design problem was formulated to maximize the weighted S&C sum rate, which was tackled by

the proposed algorithm. It turned out that our proposed algorithm was competent to effectively

optimize the overall performance of the ISAC system under different optimization requirements.

Generally speaking, our algorithm has the potential to provide high-quality sensing and commu-

nication services in complex scenarios.

REFERENCES

[1] F. Liu et al., “Integrated Sensing and Communications: Toward Dual-Functional Wireless Networks for 6G and Beyond,”

IEEE J. on Sel. Areas in Commun., vol. 40, no. 6, pp. 1728-1767, June 2022.



12

[2] K. Meng, Q. Wu, S. Ma, W. Chen, K. Wang and J. Li, “Throughput Maximization for UAV-Enabled Integrated Periodic

Sensing and Communication,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 671-687, Jan. 2023.

[3] J. Zhao, F. Gao, W. Jia, W. Yuan and W. Jin, “Integrated Sensing and Communications for UAV Communications With

Jittering Effect,” IEEE Wireless Commun. Lett., vol. 12, no. 4, pp. 758-762, April 2023.

[4] W. Lyu et al., “Hybrid NOMA assisted Integrated Sensing and Communication via RIS,” IEEE Trans. Veh. Technol., Early

Access, Jan. 12, 2024, doi: 10.1109/TVT.2023.3343379.

[5] N. Cao, Y. Chen, X. Gu and W. Feng, “Joint Bi-Static Radar and Communications Designs for Intelligent Transportation,”

IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13060-13071, Nov. 2020.

[6] Y. Chen and X. Gu, “Time Allocation for Integrated Bi-Static Radar and Communication Systems,” IEEE Commun. Lett.,

vol. 25, no. 3, pp. 1033-1036, March 2021.

[7] M. Ashraf, B. Tan, D. Moltchanov, J. S. Thompson and M. Valkama, “Joint Optimization of Radar and Communications

Performance in 6G Cellular Systems,” IEEE Trans. Green Commun. Networking, vol. 7, no. 1, pp. 522-536, March 2023.

[8] W. Lyu, S. Yang, Y. Xiu, Y. Li, H. He, C. Yuen, and Z. Zhang, “CRB Minimization for RIS-aided mmWave Integrated

Sensing and Communications”. arXiv e-prints, p. arXiv:2401.01113, Jan. 2024.

[9] Y. Xiong, F. Liu, Y. Cui, W. Yuan, T. X. Han and G. Caire, “On the Fundamental Tradeoff of Integrated Sensing and

Communications Under Gaussian Channels,” IEEE Trans. Inf. Theory, vol. 69, no. 9, pp. 5723-5751, Sept. 2023.

[10] H. Hua, T. X. Han and J. Xu, “MIMO Integrated Sensing and Communication: CRB-Rate Tradeoff,” IEEE Trans. Wireless

Commun., Early access, Aug. 14, 2023, doi: 10.1109/TWC.2023.3303326.

[11] H. Zhang, “Joint Waveform and Phase Shift Design for RIS-Assisted Integrated Sensing and Communication Based on

Mutual Information,” IEEE Commun. Lett., vol. 26, no. 10, pp. 2317-2321, Oct. 2022.

[12] J. Li and N. Liu, “Integrated Sensing and Communication Beamforming Design Based on Mutual Information,”Proc.

IEEE/CIC Int. Conf. Commun. China (ICCC), 2022, pp. 383-388.

[13] C. Ouyang, Y. Liu, H. Yang and N. Al-Dhahir, “Integrated Sensing and Communications: A Mutual Information-Based

Framework,” IEEE Commun. Mag., vol. 61, no. 5, pp. 26-32, 2023.

[14] A. A. M. Saleh and R. Valenzuela, “A Statistical Model for Indoor Multipath Propagation,” IEEE J. on Sel. Areas in

Commun., vol. 5, no. 2, pp. 128-137, Feb. 1987.

[15] Q. Shi, et al., “An Iteratively Weighted MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Interfering

Broadcast Channel,” IEEE Trans. Signal Proc., vol. 59, no. 9, pp. 4331-4340, Sept. 2011.

[16] S. S. Christensen, R. Agarwal, E. d. Carvalho, and John M.Cioffi,“Weighted Sum–Rate Maximization Using Weighted

MMSE for MIMO–BC Beamforming Design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 1–7, Dec. 2008.

[17] D. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utschick, “Minimum Mean Squared Error Interference Alignment,”

Proc. Conf. Rec. 43rd Asilomar Conf. Signals Syst. Comput., Nov. 2009, pp. 1106–1110.

[18] J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, “An overview of signal processing

techniques for joint communication and radar sensing,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 6, pp. 1295–1315,

2021.

http://arxiv.org/abs/2401.01113

	Introduction
	System Model
	Communication Model
	Sensing Model

	Problem Formulation
	Proposed Solution
	Simulation Results
	System performance and S&C trade-off
	Overall Performance Trade-off

	conclusions
	References

