arXiv:1405.7851v1 [cs.IT] 30 May 2014

Asymptotic Error Performance Analysis of Spatial
Modulation under Generalized Fading

Kostas P. PeppaSenior Member, IEEE, Martin Zamkotsian, Fotis Lazarakis and Panayotis G. €otti

Abstract—This letter presents a comprehensive framework  The above cited frameworks provide an exact performance
analyzing the asymptotic error performance of a multiple- analysis of SM systems over the entire signal-to-noise rati
input-multiple-output (MIMO) wireless system employing spatial - (gN\Ry region; however, single integrals with finite or infini
modulation (SM) with maximum likelihood detection and perfect limits h t ,b d'I, luated vi ical int o
channel state information. Generic analytical expressios for the 'm' S have (o be readily evaluated via numerical in ?m
diversity and coding gains are deduced that reveal fundameal this end. Moreover, these frameworks do not provide enough
properties of MIMO SM systems. The presented analysis can be insight into the parameters affecting system performance i
used to obtain closed-form upper bounds for the average bitreor  terms of diversity and coding gains. In an attempt to bridgg t
probability (ABEP) of MIMO SM systems under generalized gap, closed-form expressions for the asymptotic perfooaan
fading which become asymptotically tight in the high signaito- y . .
noise ratio (SNR) region. of SM_systems are prowded_ln [5] and [7]. o

) ) . Motivated by the above cited works, the objective of the

_Index Terms—asymptotic analysis, average bit error proba- cyrrent letter is twofold: a) To deduce closed-form upper
plllty, codllng gain, diversity gain, generah;ed fadlng,. nultiple- bounds for the ABEP of SM MIMO systems operating over

input-multiple-output (MIMO) systems, spatial modulation (SM), . . . ) a

space shift keying (SSK) modulation. generalized fading environments which become asymptiytica
tight in the high SNR region, and b) to provide important

considerations about the diversity and coding gains of SM in

I. INTRODUCTION the presence of generalized fading. The proposed analysis i

Spatial dulati SM) i ficient. | lexit tested and verified by numerically evaluated results accom-
patial modulation (SM) is an efficient, low-complexi ypanied with Monte Carlo simulations as well as by reducing

transm|53|_0n technique for_ muItlple-|nput-mu_lﬂple-pgt them to several special cases available in the literature.
(MIMO) wireless systems which achieves a spatial multiplex

ing gain, at the same time avoiding inter-channel interfeee

) . o ” Il. MATHEMATICAL TOOLS
without requiring synchronization between the transmit an In thi . h ical | dth
tennas [[1], [2]. A fundamental concept in SM is the three- " this section, new mathematical tools are presented that

dimensional constellation diagram [2] where each spatal c simplify the performance evaluation of SM systems. Accord-

stellation point, corresponding to the transmit antenraexn Ing t? 3], Fhe evaluation of the ABEP of SM requires the

defines an independent complex plane of signal consteilatig!ution of integrals of the form

points. When the information carrying entity is solely the w/2 L A

transmit-antenna index, SM is reduced to the space shifi(4,L) = —/ 11 |:MZ£ (m)} dg, A>0 (1)

keying (SSK) modulation, where a single transmit-antersna i 0 =1 s

activated each time to transmit a symbol. where Mz, (-) denotes the MGF of the random varialife
Several analytical frameworks assessing the error perfdefined asZ, = |22, — 21,0/* With 2,0 = a; 0 exp(3P2.)

mance of SM systems over fading channels are available in th&ing random vectors having arbitrarily distributed magphes

technical literature. For example] [3] and [4] employ a matmec«; , and phasesp; ,, Vi € {1,2}. In general, closed form

generating function (MGF) based approach to evaluate thepressions fof (A, L) are very difficult to be obtained and

average bit error probability (ABEP) of SSK in the presenaeumerical integration is used instead (see for example4B],

of Nakagamim and Rice fading. The MGF-based approacand [6]). In [4], by exploiting asymptotic analysis, closed

presented in these works is extended to the most gendmam approximations fof (A, L) are provided for high values

case of SM in[[5], where tight error performance boundsf A, assuming thaty; , are Nakagamin distributed random

are deduced. In a recent workl [6], a generic approach feariables andp; , uniformly distributed in[0, 27].

the performance of SSK was proposed, assuming generalizeth the following analysis, a generic solution 61 (1) for high

fading envelopes and uniformly distributed channel phasesvalues ofA will be deduced, assuming that , are arbitrarily

distributed random variables adg , are uniformly distributed
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The MGF of Z, is given by [6, Eqg. (9)] as (8 and employing[[12, Eq. (2.25.1.1)] along with [12, Eq.
9 (8.3.2.7)],¢, can be evaluated from
Mz, (s) = 1 /°° Re— % [HHO,R {M} dR (3) _ 4 g (A1,21)5(Az,22),(0,1),(0,1) ®)
2s 0 =1 T = ¢ 44 |:xé (0,1)7(M1,;L1)7(M2,;L2),(071)j|
where f,, ,(r) is the probability density function of; ; and where 4, = bs.1.eb1.e P

T'(m T'(m T'(mg T'(mg Q0!
Ho.r{-} denotes the zeroth order Hankel transfofm [9, EQ b1 cb. 1. (ma,e)Tma, e )T (o, 1,6 )T ma,2,0)01,

(9 11)] S|nceeilz_5 _ O(l) as s — oo the apprOX|mat|0n Qly‘gbgy@bs 211 Al = 1 — m2,ér )\1 = 2//32!1 A2 = 1 — ms,?,f!
el o s ' Ao = 2/Bsoe, My = migo—2/Big 1 = 2/Bre, My =

e~ ' /25 "X 1/25 can be employed if13) to yield Mane —2/Bs1.0 andpg = 2/, 1. The result in[(B) can be
9 fa (1) reduced further by employing 12, Eq. (8.3.2.6)] yieldif@, (
(e 7] T
HHO,R {74}
i=1 "

My, (s) X" = /OO R dR (4) on the top of the next page.
2s Jo
Changing the information variablg? to 4 and comparing{4) B. The Generalized-K case

with @), it is readily deduced that, = 1 and Under Generalized: fading conditions, an expression for
w2 ce is readily obtained from[{9) setting the fading shaping
co = 1/ HHO iy { fa (") } dy (5) factor ; » — 2 and the shadowing shaping facigy; ;, — 2.
4Jo % r Employing [12, Eq. (8.3.2.21)][19) yields

Finally, by substituting[(2) and{5) int&l(1), it is deducdzht o) — B/G22 Qo iy oM 10 |1-mae,1—ms 2 (10)
for high values ofA, Z(A, L) can be approximated by T 22 | O ymg e g Imie—Tima -1
As1 2L (L 4+ 1) [ £ whereG ;4[] is the Meijer’s G-function[[10, Eq. (9.301)] and
(4. 1) % ﬁ [Tee| 475 ®) B = romorr e o Finally, employing
(=1 the identity [15, Eq. (07.34.03.0871.01)].{10) can beHart
whereT'(-) is the gamma functiori [10, Eq. (8.310/1)]. expressed in terms of the Gauss hypergeometric function

It is noted thatc, and henceforthZ(A, L) can be eas- »Iq(-) [10, Eq. (9.14.1)] ad(11), on the top of the next page.
ily obtained in closed-form by employing Mellin trans-

form techni?u)es, provided that a closed-form expression f@. The Nakagami-m case
Far (D - : . . L .
Ho, 51— is readily available. In what follows, a For the special case of Nakagamifading, an expression

closed form expression fat; will be deduced assuming thatfor ¢, is readily obtained from[{10) setting the shadowing
a; ¢ follow the Extended Generalized-(EGK) distribution. severity factormn ; , — oo. Specifically, it can be shown that
The motivation behind the choice of this specific model ig is reduced to a known result. Letting; ;, — oo in (10)
that the EGK distribution exhibits good tail properties anednd employing the definition of the Meijer's G-functidn 12,
encompasses most of the well-known fading distributior=y. (8.2.1.1)]c, can be written as

either as special or as limiting casés|[11, Table I]. Singdifi

_1 —u
expressions for the special cases of Generalieahd the , = m1,e(2790 ¢) / <Q2,€m1,g) —
Nakagamim distributions are also deduced. L(mye)l(maye) Jo \ Q1 emay

mfqulF M 11w
. xT(myg—14wu)| lim i D(ma )
A. The Extended Generalized-XC case , o Jm o

(12)

Under EGK fading, the zeroth order Hankel transform of
fai . (r)/r is determined in closed-form as| [6, Eq. (11)] X {

) m¥ o I (ms2,0 — )
lim — d
Ms,2,6—>00 F(m&g,g)

21 [4bs,i,ebm 1), (171)} where( is the Mellin-Barnes contour. Employing the identity
f(!i,z (’f‘) o 2,2 R2Q; 0 =Y (7) . z” “T'(x4u) _ .
Ho,r = Tom T _ limy 00 =7y — =1 [10, Eq. (8.328)] along with [12, Eq.
" (ma )T (M) (8.2.1.1)], Kﬁ) is written as
where H"'7[] is the Fox's H-function [[12, Eq. (8.3.8)] My e Qo y11 ¢ |1=mas

_ 1,1
iy £ {(mi,g, %) y (ms,i7g, —ﬁsi,@)}. In @), mi.e (05 < Cy = F(m1,e)F(m2,g)Ql,z Gl,l |:Ql.,lm2.,l m17[1:| (13)

miy < oo) and B, (0 < fiy < oo) represent the _ _ T ,
fading severity and the fading shaping factor, respegtivefrinally, using the identityG:;’; {CCM =I(l—a+b)z’(z+
Mgie (0.5 < mg;p < o0) and Bsir (0 < Bese < 00) 1)¢~°~1 [15, 07.34.03.0271.01%, is given from

represent the shadowing severity and the shadowing shaping ) . 9
factor, respectively, and; , = E(a?,) with E(-) denoting (miaf) =1+ m,
' g L(mie) \ Qi ; bt

Cyp =
expectation. Moreovery; ; = T (mi7g+ %)/F(mi_’g) and

1— 2, mi,
beiv=T (msM - ﬁ)/l“(ms_jyg). By substituting[(I7) into y (i mm> i
Qi p

(14)

2Note that efficient algorithms for the numerical evaluatioh the H- =1

function are available i 13, Table 2] arid |14, Appendix A]. which is identical to[[¥, Eq. (4)].



o = bs,1,6b1,0 22 | 22,6b1 0bs 1.0 (1*“1“*%,@)’(1””8'”’ﬂ;z,z) ©)
T (m1 )T (ma )T (msq,e)D(msoe)e 22 | Q1 obasbs o (ml,z—ﬁ,ﬁ),(ms,l,e—ﬁ,ﬁ)
. (=14 maos+ms1,0)l(—=1+msor+ms10)T(—1+mar+m1e)T(—=1+ms2e+mie)
L = m m ma —1
r (—2 + Z?Zl [mie+ ms,i,l]) [H?:l F(mil)r(ms,i,f)} (#) 1)
m 2 2
MmogMmsae Oy pmo pmg o
— F|-1 i, —1 s,1,05—2 i syl 1 — 57—
x < Qa0 > 2t < + ;m ot M2t M e + ; e + i) Qo emiy Mg 10
I1l. APPLICATION TO THEPERFORMANCE ANALYSIS OF 2) Casell: The ABEP of SM can be tightly upper bounded
SPATIAL MODULATION as [5, Eq. (6)]
In this section, the results reported in Secfidn Il are aupli P< ABEPsignal + ABEPspatia+ ABEPint a7

to assess the asymptotic performance of SM systems.
ymp P y where ABERignas ABEPspatiai and ABERsiny show how the

error performance of SM is affected by the signal consielat
A. System Model diagram, the spatial constellation diagram and the intienac
_ _ _ of both signal and space constellation diagrams, respigtiv
A Ni x N, MIMO system employing SM is considered,,qer generalized fading, the term ABERy when either
equipped vvllthNt_transmlf[ andNT receive antennas, WhIChM_ary phase shift keying }(-PSK) or M-ary quadrature
can S(fnd, digital information vid/ complex symbolsy; = ampjitude modulationZ-QAM) are employed, can be readily
xjle”™, j = 1,..., M. In the following and without l0SS o) ated using |5, Egs. (7), (8)] arid [5, Table I]. High-SNR
of generality, two test cases are considergdh pure SSK 5y mnitically tight expressions for ABEfa can also be
system operating under independent and identically bised  ,pained using[8]. Assuming constant modulus modulation

.(i..i.d) fa_ding (Case 1); andii) A SM system .ope.rating underABEF,Spatial and ABER, can be obtained fromi s, Eq. (10)]
ii.d fading with constant-modulus modulation ile;| = ko, gnq 5 Eq. (11)], respectively, as

Vji=1,...,M (Case ll).

1) Case I: Under the assumption of i.i.d fading, a tight ABEPspaia = Ny logy(Ny) PEPsyi(t — t2) (18a)
upper bound for the ABEP of SSK can be obtained froim [3, 2logy (N M)
Eqg. (395)], [7], as

P<

N, ABER g — | M (We = 1) logy (M) + Ni(M = 1) log, (V)
7PEPSSK(t1 — t2) (15) 2logy (N M)
x PEPsm(t1 — t2) (18b)

where PEPggk (t1 — t2) denotes the pairwise error prob- . .
ability related to the pair of transmit antennas and t,, wherePEPgy(f1 — f2) can be readily obtained frorl {16) by
t1,ts = 1,2,..., Ny, and it is the same for any pait., ). replacingy _Wlth KO- For high values_oﬁ, the framewor_k
The PEPssi(f1 — £») can be evaluated a8l [7, Eq. (1)] presented in Sec'gg>El]II can be readily employed to Eleld

PEPgm(t1 — t2) 2 T (ko7, N,). The resulting diversity
1 (/2 N 5 gain ismin{N,, Divsigna} Where Diigna is the diversity gain

=1
(16)

where Z; = |ay, 0 exp(3bi, ) — at, .0 exp(3¢¢, 0)|%, with a;, ,  B. Numerical Results
and ¢, , being the envelopes and phases of the link definedyymerical results accompanied by computer simulations are
by the ¢;-th transmit antenna and theth receive antenna. presented to study the tightness Bf (6) under various fading
Moreover,y = E; /4N, is the SNR whereF; is the symbol conditions. In the following analysis, &< N, MIMO system
energy and\y is the single-sided power spectral density of considered. Fig]1 depicts the ABEP ®fx 2 and 8 x 3

the additive white gaussian noise. For high valueg,at can piMO SSK systems operating over EGK fading channels as

be observed thaPEPgsk (11 — t2) cg;lbe readily evaluated 3 function of E, /Ny, assumingmn, ;¢ = 2, Beie = 1, mig =
employing [6) asPEPssk(t1 — t2) ~ Z(3,N,). Finally, 1.5, ;¢ =4 and;, € {1,5}. Fig.[1 includes upper bounds

from (@), it is evident that the diversity gain depends onlfor the ABEP obtained by the numerical integration [of](16),
on the number of the receive antennas and is independenewréct ABEP results obtained from Monte-Carlo simulation as
the fading severity. This finding is in agreement with retdva o

When non-constant modulus modulation is assumed, the ¥rarkepre-

findings. repo-rted in_[4] and [7]. The resulting coding gaim cagenieq in Sectiofll can be readily applied by settindIndd) = a¢, ¢|xe|
be obtained in closed-form froml[8, Eq. (1)]. and®; o = ¢, ¢ +0¢
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Fig. 1. ABEP of SSK foB x 2 and8 x 3 MIMO EGK channels as a function
of Es/Np. Simulation Parametersn, ; ; = 2, 8s,;¢ = 1, m; ¢ = 1.5,
Bi,l =4 and Qi/ S {1,5}.

I— k=1.0931 ,I Monte Carlo
k=1.0931, Asymptotic

——— k= 38.0809, Monte Carlo 7]
k=38.0809, Asymptotic

Average Bit Error Probability

40
E/N

s 0

Fig. 2. ABEP of SM-QPSK for8 x 2 and 8 x 3 MIMO Generalized-
K channels as a function afs/No for various values ofk. Simulation
Parametersm; , = 1.5, Q; = 1.

well as asymptotic ABEP results obtained employing the hi

SNR assumption i {6) anfl(9). As it is evident, the proposi%)
analytical framework well predicts the diversity and cayglin[11]

gains of the considered system and yields tight resultsifgr h
values ofE, /Ny. Moreover, it can be observed that , affects
coding gain only and, as expected, coding gain improves
Q; ¢ increases.

i . . 13
For the same antenna configurations, Hij. 2 depicts the]

ABEP of MIMO SM-QPSK (M = 4), operating over
generalized< fading channelsas a function ofE, /Ny, as-
sumingm; ¢ = 1.5, Q; o = 1 andms ; , = k. Different values

similar conclusions to those reported in Hig. 1 are deduced.
However, in the presence of heavy shadowikhg=(1.0931)

and for N; = 3 transmit antennas, the asymptotic behavior of

the ABEP-SNR curve shows up at high SNR values, i.e. for
Es/Ny > 30dB. Furthermore, as it is expected, coding gain

improves ask increases, i.e. when the impact of shadowing

becomes less severe.

IV. CONCLUSION

In this letter, an analytical framework for the computatain
the diversity and coding gains of SM systems over genewdlize
fading channels was presented. To the best of the authors’
knowledge, the derived Egs.] (51 (9) ard](11) are novel and
can be simplified to some particular cases already reported.
The newly derived simplified ABEP expressions require much
less time for numerical evaluation compared to the exacs,one
which require numerical integration. It was shown that,emd
generalized fading, the diversity gains of spatial and tjoin
components of SM do not depend on the fading severity.
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