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Asymptotic Error Performance Analysis of Spatial
Modulation under Generalized Fading
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Abstract—This letter presents a comprehensive framework
analyzing the asymptotic error performance of a multiple-
input-multiple-output (MIMO) wireless system employing spatial
modulation (SM) with maximum likelihood detection and perfect
channel state information. Generic analytical expressions for the
diversity and coding gains are deduced that reveal fundamental
properties of MIMO SM systems. The presented analysis can be
used to obtain closed-form upper bounds for the average bit error
probability (ABEP) of MIMO SM systems under generalized
fading which become asymptotically tight in the high signal-to-
noise ratio (SNR) region.

Index Terms—asymptotic analysis, average bit error proba-
bility, coding gain, diversity gain, generalized fading, multiple-
input-multiple-output (MIMO) systems, spatial modulation (SM),
space shift keying (SSK) modulation.

I. I NTRODUCTION

Spatial modulation (SM) is an efficient, low-complexity
transmission technique for multiple-input-multiple-output
(MIMO) wireless systems which achieves a spatial multiplex-
ing gain, at the same time avoiding inter-channel interference
without requiring synchronization between the transmit an-
tennas [1], [2]. A fundamental concept in SM is the three-
dimensional constellation diagram [2] where each spatial con-
stellation point, corresponding to the transmit antenna index,
defines an independent complex plane of signal constellation
points. When the information carrying entity is solely the
transmit-antenna index, SM is reduced to the space shift
keying (SSK) modulation, where a single transmit-antenna is
activated each time to transmit a symbol.

Several analytical frameworks assessing the error perfor-
mance of SM systems over fading channels are available in the
technical literature. For example, [3] and [4] employ a moment
generating function (MGF) based approach to evaluate the
average bit error probability (ABEP) of SSK in the presence
of Nakagami-m and Rice fading. The MGF-based approach
presented in these works is extended to the most general
case of SM in [5], where tight error performance bounds
are deduced. In a recent work [6], a generic approach for
the performance of SSK was proposed, assuming generalized
fading envelopes and uniformly distributed channel phases.
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The above cited frameworks provide an exact performance
analysis of SM systems over the entire signal-to-noise ratio
(SNR) region; however, single integrals with finite or infinite
limits have to be readily evaluated via numerical integration to
this end. Moreover, these frameworks do not provide enough
insight into the parameters affecting system performance in
terms of diversity and coding gains. In an attempt to bridge this
gap, closed-form expressions for the asymptotic performance
of SM systems are provided in [5] and [7].

Motivated by the above cited works, the objective of the
current letter is twofold: a) To deduce closed-form upper
bounds for the ABEP of SM MIMO systems operating over
generalized fading environments which become asymptotically
tight in the high SNR region, and b) to provide important
considerations about the diversity and coding gains of SM in
the presence of generalized fading. The proposed analysis is
tested and verified by numerically evaluated results accom-
panied with Monte Carlo simulations as well as by reducing
them to several special cases available in the literature.

II. M ATHEMATICAL TOOLS

In this section, new mathematical tools are presented that
simplify the performance evaluation of SM systems. Accord-
ing to [5], the evaluation of the ABEP of SM requires the
solution of integrals of the form

I(A,L) = 1

π

∫ π/2

0

L
∏

ℓ=1

[

MZℓ

(

A

2 sin2 θ

)]

dθ, A > 0 (1)

whereMZℓ
(·) denotes the MGF of the random variableZℓ

defined asZℓ = |z2,ℓ − z1,ℓ|2 with zi,ℓ = αi,ℓ exp(Φ2,ℓ)
being random vectors having arbitrarily distributed magnitudes
αi,ℓ and phasesΦi,ℓ, ∀i ∈ {1, 2}. In general, closed form
expressions forI(A,L) are very difficult to be obtained and
numerical integration is used instead (see for example [3],[4]
and [6]). In [7], by exploiting asymptotic analysis, closed-
form approximations forI(A,L) are provided for high values
of A, assuming thatαi,ℓ are Nakagami-m distributed random
variables andΦi,ℓ uniformly distributed in[0, 2π].

In the following analysis, a generic solution of (1) for high
values ofA will be deduced, assuming thatαi,ℓ are arbitrarily
distributed random variables andΦi,ℓ are uniformly distributed
in [0, 2π]. In order to obtain such an expression, [8, Proposition
3] is employed to approximateMZℓ

(s) for s → ∞ as1

|MZℓ
(s)| = cℓ|s|−dℓ + o(|s|−dℓ), s → ∞ (2)

1The notationf(x) = o[g(x)] asx → x0 stands forlimx→x0

f(x)
g(x)

= 0.
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The MGF ofZℓ is given by [6, Eq. (9)] as

MZℓ
(s) =

1

2s

∫ ∞

0

Re−
R2

4s

[

2
∏

i=1

H0,R

{

fαi,ℓ
(r)

r

}

]

dR (3)

wherefai,ℓ
(r) is the probability density function ofαi,ℓ and

H0,R{·} denotes the zeroth order Hankel transform [9, Eq.

(9.11)]. Sincee−
R2

4s = o(1s ) as s → ∞, the approximation

e−
R2

4s /2s
s→∞≈ 1/2s can be employed in (3) to yield

MZℓ
(s)

s→∞≈ 1

2s

∫ ∞

0

R

[

2
∏

i=1

H0,R

{

fαi,ℓ
(r)

r

}

]

dR (4)

Changing the information variableR2 to y and comparing (4)
with (2), it is readily deduced thatdℓ = 1 and

cℓ =
1

4

∫ ∞

0

2
∏

i=1

H0,
√
y

{

fαi,ℓ
(r)

r

}

dy (5)

Finally, by substituting (2) and (5) into (1), it is deduced that
for high values ofA, I(A,L) can be approximated by

I(A,L) A≫1≈ 2L−1Γ
(

L+ 1
2

)

√
πΓ (L+ 1)

[

L
∏

ℓ=1

cℓ

]

A−L (6)

whereΓ(·) is the gamma function [10, Eq. (8.310/1)].
It is noted thatcℓ and henceforthI(A,L) can be eas-

ily obtained in closed-form by employing Mellin trans-
form techniques, provided that a closed-form expression for

H0,
√
y

{

fαi,ℓ
(r)

r

}

is readily available. In what follows, a
closed form expression forcℓ will be deduced assuming that
αi,ℓ follow the Extended Generalized-K (EGK) distribution.
The motivation behind the choice of this specific model is
that the EGK distribution exhibits good tail properties and
encompasses most of the well-known fading distributions
either as special or as limiting cases [11, Table I]. Simplified
expressions for the special cases of Generalized-K and the
Nakagami-m distributions are also deduced.

A. The Extended Generalized-K case

Under EGK fading, the zeroth order Hankel transform of
fαi,ℓ

(r)/r is determined in closed-form as [6, Eq. (11)]

H0,R

{

fαi,ℓ
(r)

r

}

=
H2,1

2,2

[

4bs,i,ℓ bi,ℓ
R2Ωi,ℓ

∣

∣

∣

(1,1), (1,1)

Ξℓ

]

Γ(mi,ℓ)Γ(ms,i,ℓ)
(7)

where H m,n
p,q [·] is the Fox’s H-function [12, Eq. (8.3.1)]2,

Ξℓ ,

{(

mi,ℓ,
2

βi,ℓ

)

,
(

ms,i,ℓ,
2

βs,i,ℓ

)}

. In (7), mi,ℓ (0.5 <

mi,ℓ < ∞) and βi,ℓ (0 < βi,ℓ < ∞) represent the
fading severity and the fading shaping factor, respectively,
ms,i,ℓ (0.5 < ms,i,ℓ < ∞) and βs,i,ℓ (0 < βs,i,ℓ < ∞)
represent the shadowing severity and the shadowing shaping
factor, respectively, andΩi,ℓ = E〈a2i,ℓ〉 with E〈·〉 denoting

expectation. Moreover,bi,ℓ = Γ
(

mi,ℓ +
2

βi,ℓ

)

/Γ(mi,ℓ) and

bs,i,ℓ = Γ
(

ms,i,ℓ +
2

βs,i,ℓ

)

/Γ(ms,i,ℓ). By substituting (7) into

2Note that efficient algorithms for the numerical evaluationof the H-
function are available in [13, Table 2] and [14, Appendix A]..

(5) and employing [12, Eq. (2.25.1.1)] along with [12, Eq.
(8.3.2.7)],cℓ can be evaluated from

cℓ = AℓH
3,3
4,4

[

xℓ

∣

∣

∣

(Λ1,λ1),(Λ2,λ2),(0,1),(0,1)

(0,1),(M1,µ1),(M2,µ2),(0,1)

]

(8)

where Aℓ =
bs,1,ℓb1,ℓ

Γ(m1,ℓ)Γ(m2,ℓ)Γ(ms,1,ℓ)Γ(ms,2,ℓ)Ω1,ℓ
, xℓ =

Ω2,ℓb1,ℓbs,1,ℓ
Ω1,ℓb2,ℓbs,2,ℓ

, Λ1 = 1 −m2,ℓ, λ1 = 2/β2,ℓ, Λ2 = 1 −ms,2,ℓ,
λ2 = 2/βs,2,ℓ, M1 = m1,ℓ − 2/β1,ℓ, µ1 = 2/β1,ℓ, M2 =
ms,1,ℓ − 2/βs,1,ℓ andµ2 = 2/βs,1,ℓ. The result in (8) can be
reduced further by employing [12, Eq. (8.3.2.6)] yielding (9),
on the top of the next page.

B. The Generalized-K case

Under Generalized-K fading conditions, an expression for
cℓ is readily obtained from (9) setting the fading shaping
factor βi,ℓ → 2 and the shadowing shaping factorβs,i,ℓ → 2.
Employing [12, Eq. (8.3.2.21)], (9) yields

cℓ = BℓG
2,2
2,2

[

Ω2,ℓm1,ℓms,1,ℓ

Ω1,ℓm2,ℓms,2,ℓ

∣

∣

∣

1−m2,ℓ,1−ms,2,ℓ

m1,ℓ−1,ms,1,ℓ−1

]

(10)

whereGm,n
p,q [·] is the Meijer’s G-function [10, Eq. (9.301)] and

Bℓ =
ms,1,ℓm1,ℓ

Γ(m1,ℓ)Γ(m2,ℓ)Γ(ms,1,ℓ)Γ(ms,2,ℓ)Ω1,ℓ
. Finally, employing

the identity [15, Eq. (07.34.03.0871.01)], (10) can be further
expressed in terms of the Gauss hypergeometric function
pFq(·) [10, Eq. (9.14.1)] as (11), on the top of the next page.

C. The Nakagami-m case

For the special case of Nakagami-m fading, an expression
for cℓ is readily obtained from (10) setting the shadowing
severity factorms,i,ℓ → ∞. Specifically, it can be shown that
cℓ is reduced to a known result. Lettingms,i,ℓ → ∞ in (10)
and employing the definition of the Meijer’s G-function [12,
Eq. (8.2.1.1)],cℓ can be written as

cℓ =
m1,ℓ(2πΩ1,ℓ)

−1

Γ(m1,ℓ)Γ(m2,ℓ)

∫

C

(

Ω2,ℓm1,ℓ

Ω1,ℓm2,ℓ

)−u

Γ(m2,ℓ − u)

× Γ(m1,ℓ − 1 + u)

[

lim
ms,1,ℓ→∞

m−u+1
s,1,ℓ Γ(ms,1,ℓ − 1 + u)

Γ(ms,1,ℓ)

]

×
[

lim
ms,2,ℓ→∞

mu
s,2,ℓΓ(ms,2,ℓ − u)

Γ(ms,2,ℓ)

]

du (12)

whereC is the Mellin-Barnes contour. Employing the identity
limx→∞

x−uΓ(x+u)
Γ(x) = 1 [10, Eq. (8.328)] along with [12, Eq.

(8.2.1.1)], (12) is written as

cℓ =
m1,ℓ

Γ(m1,ℓ)Γ(m2,ℓ)Ω1,ℓ
G1,1

1,1

[

Ω2,ℓm1,ℓ

Ω1,ℓm2,ℓ

∣

∣

∣

1−m2,ℓ

m1,ℓ−1

]

(13)

Finally, using the identityG1,1
1,1

[

x
∣

∣

∣

a

b

]

= Γ(1 − a+ b)xb(x +

1)a−b−1 [15, 07.34.03.0271.01],cℓ is given from

cℓ =

[

2
∏

i=1

1

Γ(mi,ℓ)

(

mi,ℓ

Ωi,ℓ

)mi,ℓ

]

Γ

(

−1 +

2
∑

i=1

mi,ℓ

)

×
(

2
∑

i=1

mi,ℓ

Ωi,ℓ

)1−
∑

2

i=1
mi,ℓ

(14)

which is identical to [7, Eq. (4)].
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cℓ =
bs,1,ℓb1,ℓ

Γ(m1,ℓ)Γ(m2,ℓ)Γ(ms,1,ℓ)Γ(ms,2,ℓ)Ω1,ℓ
H2,2

2,2

[

Ω2,ℓb1,ℓbs,1,ℓ
Ω1,ℓb2,ℓbs,2,ℓ

∣

∣

∣

∣

∣

(

1−m2,ℓ,
2

β
2,ℓ

)

,
(

1−ms,2,ℓ,
2

βs,2,ℓ

)

(

m1,ℓ− 2

β
1,ℓ

, 2

β
1,ℓ

)

,
(

ms,1,ℓ− 2

βs,1,ℓ
, 2

βs,1,ℓ

)

]

(9)

cℓ =
Γ(−1 +m2,ℓ +ms,1,ℓ)Γ(−1 +ms,2,ℓ +ms,1,ℓ)Γ(−1 +m2,ℓ +m1,ℓ)Γ(−1 +ms,2,ℓ +m1,ℓ)

Γ
(

−2 +
∑2

i=1 [mi,ℓ +ms,i,ℓ]
) [

∏2
i=1 Γ(mi,ℓ)Γ(ms,i,ℓ)

] (

ms,1,ℓm1,ℓ

Ω1,ℓ

)m2,ℓ−1

×
(

m2,ℓms,2,ℓ

Ω2,ℓ

)m2,ℓ

2F1

(

−1 +
2
∑

i=1

mi,ℓ,−1 +m2,ℓ +ms,1,ℓ;−2 +
2
∑

i=1

[mi,ℓ +ms,i,ℓ] , 1−
Ω1,ℓm2,ℓms,2,ℓ

Ω2,ℓm1,ℓms,1,ℓ

)
(11)

III. A PPLICATION TO THEPERFORMANCE ANALYSIS OF

SPATIAL MODULATION

In this section, the results reported in Section II are applied
to assess the asymptotic performance of SM systems.

A. System Model

A Nt × Nr MIMO system employing SM is considered,
equipped withNt transmit andNr receive antennas, which
can send digital information viaM complex symbols,χj =
|χj |eθj , j = 1, . . . ,M . In the following and without loss
of generality, two test cases are considered:i) A pure SSK
system operating under independent and identically distributed
(i.i.d) fading (Case I); and ii) A SM system operating under
i.i.d fading with constant-modulus modulation i.e.|χj | = κ0,
∀j = 1, . . . ,M (Case II).

1) Case I: Under the assumption of i.i.d fading, a tight
upper bound for the ABEP of SSK can be obtained from [3,
Eq. (35)], [7], as

P ≤ Nt

2
PEPSSK(t1 → t2) (15)

wherePEPSSK(t1 → t2) denotes the pairwise error prob-
ability related to the pair of transmit antennast1 and t2,
t1, t2 = 1, 2, . . . , Nt, and it is the same for any pair(t1, t2).
ThePEPSSK(t1 → t2) can be evaluated as [7, Eq. (1)]

PEPSSK(t1 → t2) =
1

π

∫ π/2

0

Nr
∏

ℓ=1

[

MZℓ

(

γ

2 sin2 θ

)]

dθ

(16)
whereZℓ = |at2,ℓ exp(φt2,ℓ)− at1,ℓ exp(φt1,ℓ)|2, with ati,ℓ
andφti,ℓ being the envelopes and phases of the link defined
by the ti-th transmit antenna and theℓ-th receive antenna.
Moreover,γ = Es/4N0 is the SNR whereEs is the symbol
energy andN0 is the single-sided power spectral density of
the additive white gaussian noise. For high values ofγ, it can
be observed thatPEPSSK(t1 → t2) can be readily evaluated

employing (6) asPEPSSK(t1 → t2)
γ≫1≈ I (γ,Nr). Finally,

from (6), it is evident that the diversity gain depends only
on the number of the receive antennas and is independent of
the fading severity. This finding is in agreement with relevant
findings reported in [4] and [7]. The resulting coding gain can
be obtained in closed-form from [8, Eq. (1)].

2) Case II: The ABEP of SM can be tightly upper bounded
as [5, Eq. (6)]

P ≤ ABEPsignal+ ABEPspatial+ ABEPjoint (17)

where ABEPsignal, ABEPspatial and ABEPjoint show how the
error performance of SM is affected by the signal constellation
diagram, the spatial constellation diagram and the interaction
of both signal and space constellation diagrams, respectively.
Under generalized fading, the term ABEPsignal when either
M -ary phase shift keying (M -PSK) or M -ary quadrature
amplitude modulation (M -QAM) are employed, can be readily
evaluated using [5, Eqs. (7), (8)] and [5, Table I]. High-SNR
asymptotically tight expressions for ABEPsignal can also be
obtained using [8]. Assuming constant modulus modulation
ABEPspatial and ABEPjoint can be obtained from [5, Eq. (10)]
and [5, Eq. (11)], respectively, as

ABEPspatial=
Nt log2(Nt)

2 log2(NtM)
PEPSM(t1 → t2) (18a)

ABEPjoint =

[

M(Nt − 1) log2(M) +Nt(M − 1) log2(Nt)

2 log2(NtM)

]

× PEPSM(t1 → t2) (18b)

wherePEPSM(t1 → t2) can be readily obtained from (16) by
replacingγ with κ0γ. For high values ofγ, the framework
presented in Section II can be readily employed to yield3

PEPSM(t1 → t2)
γ≫1≈ I (κ0γ,Nr). The resulting diversity

gain ismin{Nr,Divsignal} where Divsignal is the diversity gain
of ABEPsignal [5].

B. Numerical Results

Numerical results accompanied by computer simulations are
presented to study the tightness of (6) under various fading
conditions. In the following analysis, an8×Nr MIMO system
is considered. Fig. 1 depicts the ABEP of8 × 2 and 8 × 3
MIMO SSK systems operating over EGK fading channels as
a function ofEs/N0, assumingms,i,ℓ = 2, βs,i,ℓ = 1, mi,ℓ =
1.5, βi,ℓ = 4 andΩi,ℓ ∈ {1, 5}. Fig. 1 includes upper bounds
for the ABEP obtained by the numerical integration of (16),
exact ABEP results obtained from Monte-Carlo simulation as

3When non-constant modulus modulation is assumed, the framework pre-
sented in Section II can be readily applied by setting in (1)αi,ℓ = ati,ℓ|χℓ|
andΦi,ℓ = φti,ℓ

+ θℓ
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Fig. 1. ABEP of SSK for8×2 and8×3 MIMO EGK channels as a function
of Es/N0. Simulation Parameters:ms,i,ℓ = 2, βs,i,ℓ = 1, mi,ℓ = 1.5,
βi,ℓ = 4 andΩi,ℓ ∈ {1, 5}.
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Fig. 2. ABEP of SM-QPSK for8 × 2 and 8 × 3 MIMO Generalized-
K channels as a function ofEs/N0 for various values ofk. Simulation
Parameters:mi,ℓ = 1.5, Ωi,ℓ = 1.

well as asymptotic ABEP results obtained employing the high
SNR assumption in (6) and (9). As it is evident, the proposed
analytical framework well predicts the diversity and coding
gains of the considered system and yields tight results for high
values ofEs/N0. Moreover, it can be observed thatΩi,ℓ affects
coding gain only and, as expected, coding gain improves as
Ωi,ℓ increases.

For the same antenna configurations, Fig. 2 depicts the
ABEP of MIMO SM-QPSK (M = 4), operating over
generalized-K fading channels4 as a function ofEs/N0, as-
sumingmi,ℓ = 1.5, Ωi,ℓ = 1 andms,i,ℓ = k. Different values
of k are considered to account for two shadowing scenarios,
that is frequent heavy shadowing (k = 1.0931) and average
shadowing (k = 38.0809) [16]. As for the tightness of (6),

4Using [8], the diversity gain Divsignal is deduced asmin{ms,i,ℓ,mi,ℓ}

similar conclusions to those reported in Fig. 1 are deduced.
However, in the presence of heavy shadowing (k = 1.0931)
and forNt = 3 transmit antennas, the asymptotic behavior of
the ABEP-SNR curve shows up at high SNR values, i.e. for
Es/N0 > 30dB. Furthermore, as it is expected, coding gain
improves ask increases, i.e. when the impact of shadowing
becomes less severe.

IV. CONCLUSION

In this letter, an analytical framework for the computationof
the diversity and coding gains of SM systems over generalized
fading channels was presented. To the best of the authors’
knowledge, the derived Eqs. (5), (9) and (11) are novel and
can be simplified to some particular cases already reported.
The newly derived simplified ABEP expressions require much
less time for numerical evaluation compared to the exact ones,
which require numerical integration. It was shown that, under
generalized fading, the diversity gains of spatial and joint
components of SM do not depend on the fading severity.
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