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Abstract— For reliable autonomous robot navigation in urban
settings, the robot must have the ability to identify semanti-
cally traversable terrains in the image based on the semantic
understanding of the scene. This reasoning ability is based
on semantic traversability, which is frequently achieved using
semantic segmentation models fine-tuned on the testing domain.
This fine-tuning process often involves manual data collection
with the target robot and annotation by human labelers which is
prohibitively expensive and unscalable. In this work, we present
an effective methodology for training a semantic traversability
estimator using egocentric videos and an automated annotation
process. Egocentric videos are collected from a camera mounted
on a pedestrian’s chest. The dataset for training the semantic
traversability estimator is then automatically generated by extract-
ing semantically traversable regions in each video frame using a
recent foundation model in image segmentation and its prompting
technique. Extensive experiments with videos taken across several
countries and cities, covering diverse urban scenarios, demonstrate
the high scalability and generalizability of the proposed annotation
method. Furthermore, performance analysis and real-world
deployment for autonomous robot navigation showcase that
the trained semantic traversability estimator is highly accurate,
able to handle diverse camera viewpoints, computationally light,
and real-world applicable. The summary video is available at
https://youtu.be/EUVoH-wA-lA.

Index Terms— Vision-based Navigation, Semantic Scene Under-
standing, Deep Learning for Visual Perception

I. INTRODUCTION

Mobile robots should possess autonomous navigation capa-
bilities as it is an essential feature for various applications,
including package delivery, factory inspection, urban security,
and search and rescue. In the realm of autonomous navigation,
various problem domains exist. Unlike the majority of prior
research, which primarily addresses autonomous off-road
navigation in field environments [1]–[5] or autonomous on-road
navigation in urban settings [6], [7], our focus lies in tackling
the challenges of autonomous off-road navigation within urban
environments.

Robot navigation frameworks are often built with several
modules, one of which is the path planner. The path planner
finds a path on the map [8] by considering the geometric and
semantic traversability of each point. Geometric traversability
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Fig. 1. Overall framework

is computed using either analytic techniques [9] or learning-
based methods [10], [11] from a map constructed with depth
cameras or lidar, which contains geometric information such
as grid occupancy and terrain height. Semantic traversability is
often evaluated using semantic segmentation predictions from
semantic segmentation models [12], [13] trained on large-scale
datasets containing RGB images and semantic class annotations.
Engineers assign a heuristic objective value to each terrain
class based on their preference [1], [14], [15]. For example, if
the engineer wants the robot to have a preference Sidewalk >
Grass > Road, the objective values for each terrain class
can be set as Sidewalk = 1, Grass = 0.5, Road = 0.25,
indicating high values for high preference.

However, directly computing semantic traversability based
on semantic segmentation predictions limits its performance
to that of the trained semantic segmentation model. Although
the deployed semantic segmentation models are trained on
large-scale datasets, they often show limited generalization
performance due to a significant domain gap between the
training and testing datasets [16]. Specifically, the models are
vulnerable to out-of-distribution (OOD) RGB images (e.g.,
a model trained on autonomous-driving datasets results in a
strong bias toward the camera viewpoint of street vehicles
and shows limited performance in non-vehicle regions such as
pedestrian areas) and OOD terrain classes (e.g., a model trained
to recognize Grass, Sand, and Rock cannot be directly used
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to predict classes such as Sidewalk, Road, and Crosswalk).
Because incorrect classifications of terrain classes can dete-

riorate navigation behavior, the trained semantic segmentation
models are usually fine-tuned before being deployed with
manually collected and annotated data from the testing domain
[15]. However, the process of manually preparing the semantic
segmentation dataset is highly expensive, labor-intensive, and
not scalable. For rapid development of the semantic traversabil-
ity estimator, a more scalable data collection method and an
automated labeling technique are necessary. Furthermore, the
model design of the semantic traversability estimator should
be adaptable enough to handle OOD terrain classes and OOD
visual features.

To this end, we present an effective methodology for training
a neural network that predicts semantic traversability using a
highly scalable data acquisition method and an automated an-
notation strategy without the need for manual labeling (Figure
1). Instead of using the target robot to gather data, we utilize
egocentric videos obtained by mounting a camera on a person’s
chest and capturing the egocentric perspective of a pedestrian
crossing an urban area. The collected egocentric videos are
then automatically labeled by prompting a segmentation model
[17] with approximate footsteps extracted using the Monocular
Visual-Inertial SLAM [18] and refining the outputs with a large
semantic segmentation model [13]. The semantic traversability
estimator is then obtained by fine-tuning a lightweight semantic
segmentation model [12] with the auto-labeled dataset and
minimal model architecture modification. We have conducted
extensive quantitative and qualitative evaluations to demonstrate
the effectiveness of our method in terms of data collection,
data annotation, and model training. Specifically, we show
that leveraging egocentric video with the proposed automated
annotation strategy possesses great potential for highly scalable
and worldwide training data collection due to its minimal
hardware requirements. Additionally, we demonstrate that fine-
tuning the pre-trained semantic segmentation model yields
a semantic traversability estimator that is highly accurate,
able to handle diverse camera viewpoints, and lightweight
(71Hz on a desktop GPU and 16Hz on an onboard embedded
GPU). The trained semantic traversability estimator is further
deployed for autonomous quadruped robot navigation in an
urban environment, showcasing the method’s capability for
real-world applications.

II. RELATED WORK

There have been several prior research on learning a semantic
traversability estimator (typically parameterized with neural
networks) in a self-supervised manner without the need for
manual labels. Wellhausen et al. [2] used the future robot
footsteps projected on the current image as traversable point
labels for training the traversability estimator. Each point label
included ground reaction scores from force-torque sensors
as well as corresponding terrain classes. Schmid et al. [19]
approached the problem as an anomaly detection problem,
training an autoencoder to reconstruct only the traversed area
of the image. The traversable region on the image was then
identified as an area with a low reconstruction error. Frey and
Mattamala et al. [4] integrated weak image segmentation masks

with automatically derived traversability values from velocity
command tracking errors, allowing the traversability estimator
to consider semantic cues. Jung et al. [20] used Segment
Anything model (i.e., SAM) [17] and contrastive learning in
self-supervised traversability learning for field environment
navigation.

Our work is closely related to several previous approaches
but greatly distinguishes itself in two points. First, we leverage
a two-step annotation method in which the labels are first
produced from the point-prompt-based segmentation model
(i.e., SAM) and then refined with the large semantic segmen-
tation model (i.e., Mask2former). The process results in large
traversable area labels instead of local point [2] or segment
[4] labels and enables larger supervision signal during training.
Furthermore, the additional refinement step allows for more
fine-grained and reliable traversability labels by incorporating
semantic information and filtering out SAM’s overestimated
predictions [20], which are frequently encountered due to a
lack of visual cues. Our extensive evaluations under a variety
of environmental conditions demonstrate the effectiveness
of the proposed two-step annotation method, as well as its
applicability for use in not only field and park-like environments
but also urban scenarios. Second, we utilize egocentric videos
captured by pedestrians as the data source and demonstrate its
capability for the usage of training mobile robots’ traversability
estimators. The suggested data acquisition method enables
effective and scalable data collection compared to prior research
[2], [4], [19], [20], which collected data directly by deploying
the target robot. To the best of our knowledge, our work
is the first to demonstrate that high-performing traversability
estimators can be trained with egocentric videos recorded by
pedestrians and further deployed for real-robot navigation in
urban scenarios.

III. METHOD

In this section, we first describe the data collection and
automatic annotation pipeline for creating a dataset to train the
semantic traversability estimator, followed by an elaboration
on its training with the created dataset. We then illustrate how
we integrate the trained semantic traversability estimator into
the hierarchical navigation framework and use it for real-world
robot autonomy in urban settings.

A. Data collection

We collect egocentric videos obtained by mounting a GoPro
camera on a person’s (i.e., volunteer) chest and capturing
the egocentric perspective of the volunteer walking around
an urban environment. This approach enables effective and
scalable data collection compared to previous works [2], [4],
[19], [21], [22] that rely on data obtained directly from the
target robot. Leveraging the target robot itself often requires
well-calibrated sensor settings and limits the data acquisition
capability based on several constraints such as the number of
available robots, the robot’s speed, and physically reachable
area. The volunteer is instructed to walk around inside the
designated area while taking into account their visual path
preference, which is consistent with urban regulations such
as pedestrians walking on the sidewalk rather than the road



and using crosswalks when crossing the road. The volunteer
is not restricted from going to specific terrains, such as steep
bumps, because our target robot for deploying the semantic
traversability estimator is a legged robot that can traverse most
regions that humans can traverse [23]. However, volunteers
may be given instructions in advance to avoid certain terrains,
taking into account the type of target robot and its controller
capability, which prevents the corresponding terrain from being
labeled as traversable. For example, if the target robot is a
wheeled robot, the volunteer may be told to avoid stairs and
vertical slopes because the robot cannot overcome them.

B. Automatic annotation

We develop an automatic annotation pipeline that extracts
visually preferred regions to walk in each frame of the collected
egocentric videos. First, ORB-SLAM3 [18] is used to estimate
the camera trajectory—a set of coordinates representing the
camera’s position and orientation with respect to a fixed global
reference frame—from each video clip. We can obtain global
camera poses on an absolute scale by running the Monocular
Visual-Inertial SLAM with the synchronized IMU sensor built
inside the GoPro camera. Because there is not much of a
visual difference between every two consecutive frames (in
our case, the camera frame rate was 24Hz), we only use
camera frames that are identified as keyframes. Let’s denote
the estimated SE(3) pose trajectory of the camera in a single
video clip as W T0:N = [W R0:N |W P0:N ], where W R and W P
are each rotation matrix and position vector, N is the number
of detected keyframes, and W is the fixed global reference
frame that corresponds to the gravity-aligned frame at the
initial camera pose. We then obtain the approximate terrain
points that the volunteer traversed, utilizing the fact that the
camera is mounted on the volunteer’s chest as

W Pf
0:N = W P0:N − [0, 0, H], (1)

where H is the measured distance from the ground to the
mounted camera when the volunteer stands still. We will refer
to these approximate terrain points that the volunteer traversed
as footsteps. The footsteps are projected into the image space
as

pf
i:i+ni

= K · Ti
CW · W Pf

i:i+ni
, (2)

where C is the camera frame, K is the intrinsic camera calibra-
tion matrix, Ti

CW = W T−1
i is the extrinsic transformation

matrix from the fixed global reference frame into the ith
camera frame, and ni is the number of considered keyframes
at the ith camera frame. The number of future keyframes ni

to be taken into account for each frame is determined by the
predefined time horizon T ′. In particular, keyframes between
t and t + T ′ time stamps are taken into consideration for
the ith camera frame that corresponds to the t time stamp.
We ignore potential occlusions of footsteps caused by vertical
geometry and dynamic obstacles, and we also note that a short
time horizon T ′ (in our case, T ′ = 3s) resulted in almost no
occlusion. In the future, occluded footsteps can be removed
using a 3D reconstruction of the environment.

The semantically traversable area in the current frame that
the volunteer intends to traverse is obtained from the projected
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Fig. 2. Automatic annotation process

footsteps. Our key insight is that the semantically preferred
region in the image will include the projected footsteps and
differ from the semantically undesirable region by visual cues
like edges, colors, and textures. These visual cues are important
for humans to distinguish between geometrically similar but
semantically distinct paths (e.g., a road and a sidewalk, a bicycle
track and a pedestrian track), and urban planning regulations
also take them into account. To this end, we leverage SAM with
its powerful prompting technique to extract the semantically
desirable area. SAM, trained on an extremely large-scale dataset
of 1 billion images, demonstrates high generalizability across
diverse images and robust performance in segmenting regions
that align well with given prompts. For each frame, we obtain
mask predictions from SAM by passing the model with the
corresponding image and projected footsteps as positive point
prompts. Although SAM can handle both RGB and gray-scale
images, we used gray-scale images since SAM’s results were
highly color-sensitive. When projecting points from 3D space
to image space, their distribution on the image becomes non-
uniform, concentrating more densely in regions far from the
observer. These non-uniform point prompts may degrade the
predicted mask from SAM, and thus np (in our case, np = 3)
points are sampled from the projected footsteps pf

i:i+ni
via

farthest point sampling and used for positive point prompts.
Additionally, we post-process the raw mask predictions from
SAM with an area and contour filter. The area filter selects a
mask from the proposals if its area exceeds a certain threshold.
The contour filter extracts contours from mask predictions and
leaves only the contour with the biggest area. This allows for
the removal of tiny, independently segmented pieces.

We use a large semantic segmentation model [13] in
conjunction with SAM to produce the semantic traversability
labels for the training dataset. This process introduces more
detailed semantic information required for urban environment
deployment (e.g., road is less preferred compared to other
traversable terrains) and filters out SAM’s overestimated
predictions. Even though a large semantic segmentation model’s
computational load makes it unsuitable for high-frequency
real-time usage (i.e., Mask2former [13] model that we used
runs at 1.66Hz on the onboard embedded GPU), this is less
important for offline data annotation. From the predictions
of Mask2former, segments labeled as crosswalk and road



are added to and removed from the SAM mask predictions,
respectively. If projected footsteps are sufficiently included
in the remaining masks, the remaining segmented areas are
annotated with a value of 1. If not, this is typically a scenario
when the volunteer walked on the road because it was the
best navigation behavior in their current field of view. In this
instance, the areas where the SAM mask intersects with areas
identified as road are given a value of 0.25, whereas the
remaining SAM mask areas and areas identified as crosswalk
are given a value of 1. The annotation process is summarized
in Figure 2.

C. Model training

We use the dataset acquired through our automatic annotation
pipeline to train a semantic traversability estimator. The
dataset is composed of tuples of RGB images and pixel-
wise traversability values ranging from 0 to 1, with higher
values indicating a stronger preference. We leverage neural
networks to parameterize the semantic traversability estimator.
However, rather than training it from scratch, we model it
with a lightweight semantic segmentation model trained on a
large-scale dataset (i.e., Segformer [12]) and fine-tune it with
the collected dataset. A single 1x1 convolution and sigmoid
activation layer is added to Segformer’s final layer to reduce
the number of channels from the number of segmentation
classes to one and restrict the output from 0 to 1. Fine-tuning a
pre-trained semantic segmentation model can be thought of as
auto-tuning class-wise traversability values and adapting OOD
representations caused by visual effects and terrain variations.
Previously, these processes, such as class-wise traversability
value tuning and semantic segmentation data labeling, were
carried out manually [1], [14], [15].

The entire model parameters are fine-tuned via gradients
derived from L2 loss for non-zero traversability labels and
L1 loss with a weighting factor of 0.05 for zero traversability
labels. Zero traversability labels are less penalized than non-
zero traversability labels because, in our annotation pipeline,
zero traversability labels may sometimes include both non-
traversable and traversable but not yet traversed areas. The
corresponding consideration in the loss function, as well as
the model’s weak inductive bias from being initialized with
the pre-trained semantic segmentation model, allow for robust
traversability estimator learning in the presence of minor data
noise. Random image augmentations (e.g., flipping, rotation,
resize-cropping, and color jittering) are performed during
training to deploy the semantic traversability estimator trained
on egocentric videos to a variety of camera viewpoints.

D. Usage for real-world robot navigation

We deploy the trained semantic traversability estimator
for autonomous quadruped robot navigation in an urban
environment. Pixel-aligned RGB-D images, obtained from a
single RGB-D camera (i.e., Intel RealSense D435) mounted on
top of the target robot Raibo 2, are used for traversability
estimation. The RGB image is first passed to the trained
semantic traversability estimator to predict per-pixel semantic
traversability values. The per-pixel semantic traversability
values and depth values are then converted from the image

space to the 3D space and accumulated in 2.5D grid maps (size:
10m x 10m, resolution: 0.025m). We instantiate two separate
grip map layers, each for storing grid-cell-wise geometric
traversability and semantic traversability. Geometric traversabil-
ity is computed using terrain heights readily obtainable from
per-pixel depth values. We use RRT* to find a path that
reaches the target waypoint from the current location. The
target waypoints are provided 4m ahead of the robot with
a given yaw angle, and the current location is known from
visual-inertial SLAM [18]. When determining the path, path
length, geometric traversability, and semantic traversability are
all considered as part of an objective function.

IV. EXPERIMENTAL RESULTS

The proposed method for semantic traversability estimation
was thoroughly evaluated, both qualitatively and quantitatively.

A. Evaluation of data collection and automatic annotation

We collected a wide range of egocentric videos and tested
whether our automatic annotation method can identify areas
that are well-aligned with humans’ visual preferences while
also demonstrating robust performance across visually diverse
video scenarios. The videos were taken in several countries
(i.e., South Korea, Japan, and Italy) and cities (i.e., Daejeon,
Seoul, Tokyo, Rome, and Venice), and included a variety of
semantically traversable regions found in both urban and field
environments, such as sidewalks with varying patterns, pedes-
trian areas, crosswalks, stairs, grassy terrains, snow regions,
dirt areas, and others that are visually appealing to traverse
but difficult to categorize. This diverse data collection could
be done effectively due to the minimal hardware requirement
of a single camera rather than the target robot itself with well-
calibrated sensor settings. The efficacy of egocentric videos
further highlights the potential for scalable dataset construction
for semantic traversability estimation.

The annotated results are shown in Figure 3. Clear traversable
area labels consistent with humans’ semantic traversability were
obtained by expanding the volunteer’s future footsteps using
SAM. These expanded area labels, as opposed to point labels
as in the previous work [2], provide rich supervision signals
when training the semantic traversability estimator, and will
be further explained in Section IV-B. Owing to the SAM’s
highly generalizable segmentation capability, our automated
annotation pipeline showed robust performance in a variety of
video scenarios in both field and urban settings. The use of a
large semantic segmentation model (i.e., Mask2former [13]) in
conjunction with SAM resulted in improved final labels that
complemented each other (Figure 4). SAM is particularly good
at segmenting areas that include all footsteps based on visual
cues, but it has limited performance in segmenting crosswalks
where footsteps are placed not only on the white patterns
but also on the road, resulting in overly large area labels.
Mask2former, on the other hand, can reliably predict category-
level semantic information, particularly for dominant categories
such as ”road,” but not for non-dominant categories. Through
the combination of these two models, we were able to obtain
final annotations for images where either solely SAM cannot
generate (e.g., crosswalk) or Mask2former cannot accurately



KR-D KR-D KR-D KR-D

KR-D KR-D KR-D KR-D

KR-D KR-D KR-S KR-S

JP-T JP-T IT-R IT-V

Fig. 3. Automatic annotation results (KR-D: Daejeon, South Korea / KR-S: Seoul, South Korea / JP-T: Tokyo, Japan / IT-R: Rome, Italy / IT-V: Venice, Italy)

RGB + Footsteps SAM Mask2former Final label

Fig. 4. Stepwise annotation results. In Mask2former predictions, only
sidewalks, crosswalks, roads, and buildings are color-segmented with pink,
brown, purple, and blue if detected. In the final labels, sky-blue and red each
indicates a value of 0.25 and 1.

predict (e.g., stairs, sidewalk, and pedestrian areas), and further
achieve labels that include semantic category-level preference
(i.e., road is less preferred than other traversed areas).

B. Evaluation of the trained semantic traversability estimator

We obtained the semantic traversability estimator by fine-
tuning a lightweight semantic segmentation model (i.e., Seg-
former [12]) with approximately 2 hours and 20 minutes
of egocentric videos. Videos were taken inside the KAIST
campus (site size approximately 1.1M m2, 16.3 times the size
of a soccer field), which is the testing region for our robot
to perform autonomous navigation. The proposed automatic
annotation pipeline produced 57K data tuples from the collected
videos, each tuple containing an RGB image and pixel-wise
traversability values, which were then randomly divided into
train and validation sets with ratios of 0.9 and 0.1. The model
was trained for 100 epochs with a batch size of 48 and a
learning rate of 1e-5.

The trained semantic traversability estimator’s performance
is compared to several prior methods demonstrated below:

• [Segformer + 1x1 conv] + Point labels: The semantic seg-
mentation model is fine-tuned with point labels obtained
by projecting footsteps as in Wellhausen et al. [2]. Each
footstep is converted to a circle with a radius of 30 pixels.

• Autoencoder: Following the work by Schmid et al. [19],
a denoising autoencoder modeled with convolution neural
networks is trained to only reconstruct the labeled areas
obtained from SAM. Areas with low reconstruction error

Segformer + Area labels (Ours) Segformer + Point labels Segformer + HeuristicAutoencoder

Fig. 5. Estimation results of semantic traversability estimators

(MSE loss smaller than 0.05) are then predicted as
traversable.

• Segformer + Heuristic: Lightweight semantic segmenta-
tion model is directly used with heuristic category-wise
traversability values 1 as in [1], [14], [15].

• Mask2former + Heuristic: Large semantic segmentation
model is directly used with heuristic category-wise
traversability values 2 as in [1], [14], [15].

We also compared the performance with variations of our
method. Specifically, the model was fine-tuned with labels
acquired without the refinement stage (i.e., only SAM is used
for annotation), the model backbone was trained from scratch,
the model backbone was frozen and only the adaptor was
trained, the adaptor architecture was converted to a two-layer
U-Net [24], and the model backbone was converted to Mobile-
SAM [25], a compressed version of SAM through knowledge
distillation. MobileSAM was chosen as an alternative model
backbone over SAM due to its low computational cost.

Using the traversability labels obtained from the proposed au-
tomatic annotation process as ground-truth labels for evaluation
is inappropriate because they may contain errors. Thus, ground-
truth labels were manually acquired from human annotators.
These labels were binary (i.e., 0 or 1), based on human walking
preferences. To test the trained traversability estimator’s camera
viewpoint generalization capability, separate evaluations were
performed for images obtained from the same and different
viewpoints as the trained ones. The same viewpoint data
came from a camera positioned approximately 1.36m from
the ground, while the different viewpoint data was gathered
between 0.4m and 0.65m from the ground (taking into account
the target robot’s viewpoint). A total of 1K images—500 for

1[Sidewalk, Path, Floor]: 1, [Grass, Sand, Hill, Dirt track, Land, Earth,
Field]: 0.5, [Road]: 0.25

2[Pedestrian Area, Sidewalk, Lane Marking - Crosswalk]: 1, [Sand, Snow,
Terrain]: 0.5, [Road, Lane Marking - General]: 0.25



TABLE I
QUANTITATIVE EVALUATION RESULTS ON THE URBAN DATASET

Computation
time [ms]

# of
parameters

Same viewpoint Different viewpoint
Precision Recall IoU RMSE Precision Recall IoU RMSE

[Segformer + 1x1 conv] + Area labels (Ours) 14 / 61 3.7M 0.951
(0.927 / 0.975)

0.956
(0.972 / 0.940) 0.903 0.178 0.965

(0.953 / 0.977)
0.963

(0.975 / 0.950) 0.930 0.161

[Segformer + 1x1 conv] + Point labels [2] 14 / 61 3.7M 0.818
(0.985 / 0.650)

0.629
(0.260 / 0.997) 0.257 0.540 0.787

(0.989 / 0.584)
0.609

(0.220 / 0.997) 0.219 0.597

Autoencoder [19] 28 / 97 0.6M 0.610
(0.534 / 0.685)

0.620
(0.529 / 0.711) 0.358 0.597 0.622

(0.579 / 0.666)
0.628

(0.632 / 0.624) 0.437 0.598

Segformer + Heuristic [1], [14], [15] 94 / 886 3.7M 0.850
(0.750 / 0.950)

0.829
(0.918 / 0.741) 0.700 0.371 0.835

(0.752 / 0.918)
0.810

(0.889 / 0.730) 0.696 0.392

Mask2former + Heuristic [1], [14], [15] 89 / 692 43.9M 0.911
(0.861 / 0.961)

0.917
(0.963 / 0.871) 0.834 0.248 0.900

(0.843 / 0.957)
0.888

(0.945 / 0.832) 0.812 0.281

[Segformer + 1x1 conv] + Area labels w/o refinement 14 / 61 3.7M 0.941
(0.915 / 0.967)

0.945
(0.968 / 0.922) 0.887 0.194 0.955

(0.938 / 0.972)
0.952

(0.971 / 0.932) 0.912 0.176

[Segformer (scratch) + 1x1 conv] + Area labels 14 / 61 3.7M 0.859
(0.745 / 0.974)

0.871
(0.975 / 0.767) 0.730 0.349 0.885

(0.793 / 0.977)
0.880

(0.982 / 0.777) 0.781 0.329

[Segformer (freeze) + 1x1 conv] + Area labels 14 / 61 3.7M 0.817
(0.656 / 0.977)

0.809
(0.985 / 0.633) 0.649 0.435 0.830

(0.687 / 0.972)
0.802

(0.989 / 0.615) 0.681 0.438

[Segformer (freeze) + U-Net] + Area labels 14 / 63 5.7M 0.918
(0.858 / 0.979)

0.933
(0.978 / 0.888) 0.843 0.237 0.942

(0.903 / 0.981)
0.942

(0.978 / 0.905) 0.885 0.213

[MobileSam] + Area labels 14 / 103 10.1M 0.927
(0.876 / 0.977)

0.934
(0.975 / 0.893) 0.858 0.222 0.947

(0.914 / 0.980)
0.941

(0.979 / 0.904) 0.897 0.198

∗ The left and right values in ”Computation time” are each measured on a standard desktop GPU (NVIDIA GeForce RTX 4090) and an onboard embedded
GPU (NVIDIA Jetson Orin). The left and right values inside the brackets in ”Precision” and ”Recall” represent traversable and non-traversable regions,
respectively. The final ”Precision” and ”Recall” values are calculated by averaging the two values.

each viewpoint—were manually labeled.

Table I and Figure 5 present the quantitative and qualitative
evaluation results, respectively. Our traversability estimator,
which was obtained by fine-tuning a lightweight semantic
segmentation model with area labels, outperformed other
methods across all metrics. It demonstrated the highest accuracy
in determining traversable areas, taking into account the
highest precision, recall, and IoU values, as well as the lowest
RMSE. Furthermore, it demonstrated the shortest computation
time, allowing for semantic traversability estimation at a
high frequency of 71Hz on a desktop GPU and 16Hz on
an onboard embedded GPU. The model trained with only
point labels, as in [2], showed low IoU values and only
local area predictions due to small supervision signals during
training. Concretely, the training signal is limited to dealing
with extremely visually diverse image data collected in urban
environments because the area indicated as traversable is
significantly smaller than the area labeled as non-traversable.
This demonstrates the significance of our automatic annotation
method, which expands point labels to area labels through
SAM, for more efficient training of image data with high visual
diversity. Reconstruction-based methods [19] showed relatively
low performance with large incorrect predictions due to the it’s
limited capability to reconstruct high-frequency information
(e.g., sidewalk patterns) and discriminate traversable regions
based on reconstruction errors. Directly obtaining traversability
values from semantic segmentation models showed lower accu-
racy due to incorrect predictions for non-dominant categories in
the large-scale dataset the models were originally trained on, as
well as high computation time due to a large number of neural
network parameters and the computationally expensive argmax
operation required for category-wise value assignments.

The traversability estimator trained using labels obtained
without the refinement step performed poorly compared to
those obtained with it. This is because the refinement step
improves the quality of labels from SAM by converting the
binary labels to fine-grained labels and removing inflated parts
based on semantic information (Figure 4, Figure 8).

Fig. 6. Estimation results for different camera viewpoints. All cameras are
mounted closer to the ground than the camera mounted on a person’s chest.
(A: GoPro camera, B: Single RGB-D camera configured horizontally, C: Two
RGB-D cameras configured vertically)

We also demonstrate the effectiveness of our training
methodology, which involves leveraging pre-trained semantic
segmentation model weights and fine-tuning them end-to-end.
As shown in Table I, models that do not use pre-trained
weights or only fine-tune the added layers showed lower
accuracy regardless of the added layers’ size and neural
network architecture. Interestingly, the model initialized with
a segmentation model (i.e., MobileSAM [25]) showed lower
accuracy than ours initialized with a semantic segmentation
model (i.e., Segformer [12]). This implies that pre-trained
representations of the semantic segmentation model are more
suitable for semantic traversability estimation than those in
the segmentation model. In our experience, representations
of segmentation models (e.g., SAM, MobileSAM) are more
focused on visual cues such as colors or edges rather than
semantic information. Our experimental results indicate that
fine-tuning the semantic segmentation model end-to-end is
critical for adapting the OOD RGB features and terrain classes.
Furthermore, leveraging the semantic segmentation model’s
pre-trained model weights allows for effective training with a
small quantity of data and acts as a weak inductive bias for
traversability estimation.

The results in the ”Different viewpoint” section of Table I
show that our semantic traversability estimator performed well



Fig. 7. Path planning with traversability estimation in real-world robot
deployments. The green lines are the planned paths.

and consistently on the test dataset containing different camera
viewpoint images. This is also shown qualitatively in Figure
6-A. The trained semantic traversability estimator was further
qualitatively evaluated using data from RGB-D cameras (Intel
RealSense D435) with different image resolutions from the
GoPro camera (Realsense: 640x360, GoPro: 1920x1080). Two
camera configurations were tested: a horizontal configuration
with a single camera facing forward and a vertical configuration
with two cameras looking diagonally. As shown in both the
image space predictions and projected 2.5D terrain maps
in Figure 6, our model’s predictions for all these camera
configurations are highly well-aligned with humans’ visual
preferences. Overall, our experimental results show that our
semantic traversability estimator can be generalized across
different camera viewpoints, even when trained with egocentric
videos, thanks to the strong data augmentation and weak
inductive bias introduced from pre-trained model weights.

C. Evaluation of real-robot navigation

We tested our semantic traversability estimator in real-
robot navigation scenarios, shown in Figure 7. The navigation
experiments were conducted in several environments including
sidewalks and narrow paths, where accurate traversability
estimation and robust path planning are important. The
quadrupedal robot Raibo2 found a path to navigate to the
given goal destination considering both geometric and semantic
traversability. Additionally, we performed obstacle avoidance
in environments containing humans and untraversable boxes.
The semantic traversability estimator identified them as un-
traversable objects and facilitated obstacle-overcoming path
generation in conjunction with the geometric traversability.

D. Evaluation of open-source dataset

To show the applicability of our method across different
domains from our custom dataset, we conducted an analysis
using the Rellis3D dataset [26]. The Rellis3D dataset is an
open-source dataset constructed by rolling out a wheel-based
mobile robot in field environments. To apply our method to the
Rellis3D setting, the time horizon T ′ is modified from 3s to
4.5s, and segments labeled as “vegetation” are removed from
the SAM mask predictions rather than “road” or “crosswalk”.

TABLE II
QUANTITATIVE EVALUATION RESULTS ON THE RELLIS3D DATASET

Precision Recall IoU RMSE
[Segformer + 1x1 conv]
+ Area labels (Ours)

0.922
(0.853 / 0.990)

0.953
(0.977 / 0.929) 0.834 0.212

[Segformer + 1x1 conv]
+ Point labels [2]

0.867
(0.975 / 0.758)

0.657
(0.316 / 0.997) 0.312 0.460

Segformer + Heuristic [1], [14], [15] 0.819
(0.652 / 0.985)

0.870
(0.967 / 0.773) 0.640 0.395

Mask2former + Heuristic [1], [14], [15] 0.919
(0.868 / 0.971)

0.935
(0.930 / 0.939) 0.807 0.232

[Segformer + 1x1 conv]
+ Area labels w/o refinement

0.871
(0.748 / 0.994)

0.912
(0.986 / 0.837) 0.737 0.308

Fig. 8. Qualitative results on Rellis3D dataset. The top two lines display the
stepwise annotation results, while the bottom two lines show the estimated
outputs from the trained traversability estimator. In Mask2former predictions,
only terrains and vegetations are color-segmented with brown and purple if
detected.

These changes are made due to the difference in vehicle speed
and application domain from urban to field settings. Other
engineering choices and hyperparameters for both the automatic
annotation and training are kept identical to those utilized for
our custom dataset. For evaluation, we employed the same
process and criteria as for our own dataset. Category-wise
heuristic traversability values for ”Segformer + Heuristic”3

and ”Mask2former + Heuristic”4 were updated to reflect the
different environment settings.

The quantitative and qualitative evaluation results on the
Rellis3D dataset are shown in Table II and Figure 8. Our
traversability estimator performed better than other approaches
on all metrics, which is consistent with the experimental
results exhibited in our custom dataset. Furthermore, our
two-step automatic annotation pipeline enables to generate
clear traversability labels on areas where either SAM or
Mask2former alone cannot accurately predict. Interestingly, the
introduction of the semantic refinement stage in the annotation
process significantly improved the traversability estimator’s
performance when compared to urban situations. This is
because, in field situations, SAM frequently generates inflated
labels due to ambiguous visual cues. The filtering process
based on the predictions from the large semantic segmentation
models enables to alleviate the overestimation problem of SAM
and produce more reliable labels.

Our experimental results and analysis on the Rellis3D dataset
show that our methodology is not limited to urban settings or
our custom dataset, but can also be easily extended to other
environment settings (e.g., field, park) or open-source datasets,

3[Path, Grass, Sand, Dirt track, Land, Field]: 1, [Hill, Earth]: 0.5
4[Terrain]: 1



Fig. 9. Limitations of the proposed semantic traversability estimator. (Left)
Occasionally, speed bumps are misidentified as crosswalks, leading to incorrect
predictions of traversability. (Right) Crosswalks located at a distance are
sometimes not recognized as traversable.

allowing for the training of highly accurate and computationally
light semantic traversability estimators.

V. CONCLUSION

We have proposed an effective methodology for training
semantic traversability estimator with a dataset constructed
with egocentric videos and an automated annotation strategy.
We show that leveraging egocentric videos for robot navigation
allows for scalable and efficient data acquisition. Extensive
quantitative and qualitative experiments demonstrate that the
yielded traversability estimator is highly accurate, camera
viewpoint and configuration generalizable, and lightweight.
Further deployment for autonomous quadruped robot navigation
in an urban environment showcases the method’s capability
for real-world applications.

As shown in Figure 9, the proposed semantic traversabil-
ity estimator sometimes encounters limitations when visual
features are not clearly identifiable, such as with similarly
appearing objects or distant objects. However, these limitations
do not significantly impact navigation scenarios, as the visual
features become clearer as the robot approaches.

Promising future directions include training a global se-
mantic traversability estimator by scaling the dataset (e.g.,
worldwide data collection, leveraging internet-scale dataset
[27]) and improving the data noise handling by incorporating
representation-based methods [4], [28].
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