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GISR: Geometric Initialization and Silhouette-based
Refinement for Single-View Robot Pose and

Configuration Estimation
Ivan Bilić1, Filip Marić1,2, Fabio Bonsignorio1, Ivan Petrović1

Abstract—In autonomous robotics, measurement of the robot’s
internal state and perception of its environment, including
interaction with other agents such as collaborative robots, are
essential. Estimating the pose of the robot arm from a single
view has the potential to replace classical eye-to-hand calibration
approaches and is particularly attractive for online estimation
and dynamic environments. In addition to its pose, recovering the
robot configuration provides a complete spatial understanding of
the observed robot that can be used to anticipate the actions of
other agents in advanced robotics use cases. Furthermore, this
additional redundancy enables the planning and execution of
recovery protocols in case of sensor failures or external distur-
bances. We introduce GISR - a deep configuration and robot-to-
camera pose estimation method that prioritizes execution in real-
time. GISR consists of two modules: (i) a geometric initialization
module that efficiently computes an approximate robot pose and
configuration, and (ii) a deep iterative silhouette-based refinement
module that arrives at a final solution in just a few iterations.
We evaluate GISR on publicly available data and show that it
outperforms existing methods of the same class in terms of both
speed and accuracy, and can compete with approaches that rely
on ground-truth proprioception and recover only the pose. Our
code is available at https://github.com/iwhitey/GISR-robot.

Index Terms—Deep Learning for Visual Perception, Visual
Learning, AI-Enabled Robotics

I. INTRODUCTION

ROBOTICS applications in a wide array of domains
rely on accurate camera-to-robot pose and configura-

tion measurements. In applications such as robotic grasping,
finding the camera-to-robot pose is crucial, as sensor-centered
measurements of interest (e.g., object detections) need to be
transformed to the robot’s reference frame [1]. Once spatial
analysis in the context of the task is complete, the robot is
set in motion using control algorithms that rely on accurate
proprioceptive sensing from joint encoders. However, robots
that operate in hazardous environments (e.g., nuclear decom-
missioning) or perform strenuous tasks (e.g., heavy loading)
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Fig. 1: GISR takes an input RGB image of the robot (left)
and outputs an estimate of both the camera-to-robot pose and
the configuration of the robot. The corresponding skeleton is
projected onto the input image and overlaid (right).

often lack proprioceptive sensors [2]. Similarly, failure in
proprioceptive sensing may be detrimental in applications
where robots perform tasks in environments not easily ac-
cessible to humans (e.g., underwater welding [3]), incurring
high operational delay and maintenance expenses. Redundancy
offered by additional proprioceptive estimates allows for the
design of recovery protocols that could help avoid many
consequences of system failure. Moreover, the ability to jointly
estimate the robot pose and configuration using visual cues can
be of great value in scenarios with dynamic and unstructured
environments, improving collaboration between robots [4] and
enhancing safety in human-robot collaboration [5].

We consider the estimation of both the 6D camera-to-robot
pose and the robot’s joint angle values (i.e., configuration),
using a single RGB image as input, as shown in Fig. 1. The use
of off-the-shelf cameras for image-based estimation of robot
configurations is cost-effective in terms of hardware, provides
a non-invasive way to monitor robot configurations and offers
a large degree of flexibility in sensor placement. Recent works
have proposed methods for estimating either the camera-to-
robot pose or robot configuration from a single RGB image
based on keypoint detection [6]–[8], rendering-based refine-
ment [9], and geometry-aware models [10], demonstrating
favorable performance compared to classical marker-based
approaches. For example, keypoint-based methods [6]–[8],
[10] can recover the 6D pose or configuration in real-time,
but require ground-truth configuration or exhibit very limited
accuracy. Conversely, rendering-based methods [9] can recover
both, but their dense and iterative nature incurs a high com-
putational cost to do so very accurately.

In this paper, we present GISR - a method that can recover
camera-to-robot-pose and configuration estimates in real-time
using a strong geometric prior and dense silhouette-based
refinement. GISR leverages the expressive power of Deep
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Neural Networks (DNNs) and a geometric prior associated
with the robot’s kinematic model to realize two modules that
complement each other. The geometric initialization module
(GIM) produces an initial estimate of the camera-to-robot
pose and robot configuration using the distance-geometric
model introduced in [11], [12]. Using this initial estimate, the
refinement module (RM) generates a corresponding silhouette
image, which is used alongside the segmented input image
to predict an update. Assuming known camera intrinsics, we
posit that a rendered silhouette of the robot contains most
information essential for the joint estimation task. Moreover,
excluding RGB image details like background and lighting
helps avoid the fidelity gap due to rendering imperfections
and environment variations. Therefore, using silhouette images
simplifies learning by focusing only on critical information,
offering faster rendering and reduced fidelity discrepancies.

Unlike similar methods that focus on only one aspect, GISR
is able to recover both the camera-to-robot pose and joint
configuration. Our implementation of GISR exhibits a running
time in the order of 40ms, which is 20× faster than existing
dense methods and comparable to the speed of keypoint-based
methods that rely on ground-truth configuration measurements.
We provide a quantitative and qualitative analysis of our
approach on a high-DoF robot using a publicly available
dataset.

II. RELATED WORK

A. Object pose estimation

Estimating the 6D pose of rigid objects from a single
RGB image is a long-standing goal in computer vision. Most
relevant to our work are pose estimation approaches based on
keypoint detection and refinement. Within the keypoint-based
approach, state-of-the-art methods [13]–[15] train DNNs to
detect object features in an image and establish a sparse set of
2D-3D correspondences. The camera pose is then recovered
using the Perspective-n-Point (PnP) algorithm [16] acting
on the correspondences. These methods are usually fast but
less robust as they determine the pose from a sparse data.
Further, various methods use a refinement-based approach that
iteratively improves the pose prediction by directly regressing
the pose updates [17], [18]. These methods are typically more
robust, but also more computationally intensive compared to
those using the keypoint-based approach. Overall, a robot
manipulator can be seen as an object with multiple degrees
of freedom. Therefore, our refinement module is inspired by
methods that are trained to iteratively regress object pose
updates [9], [17], [18].

B. Camera-to-robot pose estimation

Camera-to-robot pose estimation is essential for many
robotic applications, e.g., collaborative robotics [4], augmented
reality [19] and robotic surgery [20], to name a few. The
classical approach to determine the camera-to-robot pose,
known as hand-eye calibration [21], is based on the use of
multiple frames and fiducial markers [22]. More recently,
single-view RGB methods, largely influenced by ideas from
object pose estimation, have started gaining traction in the

robotics research community. In [6], [19], DNNs are trained
to predict a set of 2D keypoints associated the robot’s joints,
while their 3D correspondences are found by applying forward
kinematics using the known current configuration of the robot.
At test time, the PnP algorithm is then applied to solve for
the pose using the established 2D-3D correspondences. In [7],
the PnP algorithm is integrated into the learning process to
train a keypoint detector in a self-supervised manner. However,
keypoint-based methods are less robust to viewpoint changes
[9] and can be affected by a suboptimal specification of
keypoint locations [23]. In the context of soft robotics, [24]
use a differentiable renderer to create a richer, spatially-
informed cost function for an optimization-based alignment
of geometric primitives. Similarly, the authors of [9] employ
rendering-based refinement detached from the learning process
for joint camera-to-robot pose and configuration estimation,
resulting in a model that is more robust compared to keypoint-
based methods. Inspired by these approaches, GISR uses a
deep refinement module preceded by a geometric module
based on [10], which learns to generate initial estimates by
minimizing a loss that jointly encodes the robot configuration
and kinematic structure.

C. Joint camera-to-robot pose and configuration estimation

Jointly estimating the 6D camera-to-robot pose and the
robot configuration offers a wider range of applications com-
pared to pose-only or configuration-only estimation, at the
cost of greater complexity due to a lack of ground-truth
spatial information. Learning to estimate both quantities may
also help increase overall robustness by making the model
rely on structural information such as link geometry, while
carrying a potentially higher risk of overfitting when the
data is insufficient or badly distributed. Recently, several
frameworks have been proposed that solve this or similar
problems using only a single RGB image as an input. In
[8], the authors propose to train a keypoint detector followed
by local optimization, detached from the learning process, to
directly regress the full state of a low-cost 4-DoF manipulator.
Similarly, Labbé et. al [9] propose a method inspired by
DeepIM [17], where rendered RGB images of the robot model,
at an initially random or fixed pose and configuration, are used
as inputs to a deep refinement model trained to correct the
error, repeating the process iteratively. Despite this approach
exhibiting stronger robustness than keypoint-based methods,
using such uninformed initialization strategy combined with
per-iteration RGB rendering makes it an order of magnitude
slower.

In contrast, the GISR refinement module uses a rendered sil-
houette of the robot at the previous configuration estimate and
the segmented input image to produce an update minimizing
the 3D joint location error. In this way, the refinement module
learns the distribution of initial estimates produced by the
trainable geometric module, reducing the discrepancy between
initialization applied at train and test times. The silhouette
images are generated using a fast rendering procedure that

1The subfigure showing the neighbouring joints is from our previous work
[10].
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Fig. 2: System overview. The geometric initialization module1(GIM) takes an input RGB image and produces initial estimates
of the robot pose and configuration. The refinement module (RM) uses these estimates to generate a corresponding silhouette
image, which is fed to the refiner along with the segmented input image to predict an update. This render-and-update process
can be repeated, but each iteration requires a forward pass of a deep model (including the update and rendering).

avoids rasterization and shading, which results in a total
running time almost 20 times lower than [9].

III. PROPOSED METHOD
Given an input RGB image of the robot manipulator com-

prised of a series of rigid links and revolute joints, our goal
is to recover the observed robots’ configuration q ∈ C, where
C ⊆ Rn represents the configuration space, and a 6D camera-
to-robot pose c

bT consisting of a rotation R ∈ SO(3) and
a translation t ∈ R3 with respect to the camera coordinate
frame. As shown in Fig. 2, GISR consists of a geometric
initialization module and a refinement module, which are
described in detail throughout this section.

A. Geometric initialization module

The proposed geometric initialization method enables a fast
computation of an informed initial guess of the robot pose
T and the configuration Θ observed in an image I. To
achieve this, our initialization procedure exploits insights from
recent work on distance-based inverse kinematics [10], [11],
which show that the configuration of a robot whose kinematic
model Θ = {θi}di=0 is known can be recovered from spatial
constraints arising from a set of 3D points X = {P,Q}n
defined with respect to the robot’s kinematic chain. More
specifically, these points are given by:

pi = C

i∏
j=1

j−1
j T(θj)

qi = pi +Riẑ,

(1)

where the 3D joint locations P are extracted by applying
a selection matrix C to the computed pose transformations
for the coordinate frame i ∈ {1, ..., d} of each link, while
the points Q are defined to be a unit distance away from
points P along the joints’ rotation axes ẑ using their respective
orientation Ri. Instead of recovering the points directly, the
task of the geometric module is formulated as recovering the
Euclidean Distance Matrix (EDM) that these points generate:

D∗ = argmin
D

∥D̂(K, ζ)−D(Θ∗)∥F , (2)

where ∥ · ∥F represents Frobenius norm, K denotes a set of
2D keypoints representing the coordinate frame positions of
the joints, as defined by the kinematic model of the robot, and
ζ is parametrized by a shallow feedforward neural network.
D(Θ∗) represents a target distance matrix constructed from
points defined in (1), which uniquely corresponds to the
ground-truth configuration Θ∗ and serves as a geometric
description of the robot configuration observed in the image.
Then, the Gram matrix G corresponding to the estimated D̂
is obtained by taking:

G = −1

2
JD̂J, (3)

where J = I− 1
n11

T is a geometric centering matrix formed
by using an identity matrix I and a column vector of ones 1.
Finally, since G = XTX is a real symmetric matrix, a set of
geometrically centered points X that generates D̂ is obtained
via eigendecomposition [25]. The observed configuration is
finally recovered by applying a set of kinematic transforma-
tions designed to map a set of points X to a configuration
Θ analytically, as described in [11]. Together with (2) and
(3), these differentiable transformations form an end-to-end
trainable geometric pipeline that predicts an initial estimate
for the observed configuration.

To estimate the initial 6D robot-to-camera pose c
bT, we

first use (1) to compute 3D joints’ positions based on the
previously estimated configuration. Then, assuming known
camera intrinsics and estimated 2D keypoints, we establish
2D-3D correspondences and apply the Efficient Perspective-n-
Point algorithm (EPnP) [16]. Any keypoint detector trained to
follow the specifications of the robot’s coordinate frames can
be used to determine the keypoints [6], [7]. If we assume that
the keypoints are perfectly detected, the pose and configuration
estimated in this manner are tightly coupled, i.e., the error in
the estimated pose is completely determined by the error in the
estimated configuration. To alleviate this effect, we approxi-
mate the translational component of c

bT by using the kinematic
model of the robot and the estimated keypoints, information
that we already assume is available. More specifically, we
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compute the scaling factor λ ∈ R as follows:

λ =
∥Lij∥

∥p̃i − p̃j∥
, (4)

where uncalibrated 2D keypoints p̃i, p̃j bound the chosen
link Lij of known length by representing the positions of its
child and parent coordinate frames i, j. The initial translational
component is defined by the scale factor, camera intrinsics, and
a reference keypoint pref chosen to represent the reference
frame of the robot with respect to the camera. For simplicity,
we choose the base frame of the robot pref = pbase and use it
to compute (4) together with the keypoint of the neighboring
joint.

B. Refinement module

The refinement module uses the initial estimates of robot
pose and configuration generated by GIM and estimates their
updates based on a rendered silhouette image of the robot
defined by the initial estimates. Given that robotic manipulator
consists of rigid links connected in a kinematic chain, each
rigid link is visually described by a separate mesh Mi

consisting of a set of vertices iV = {ν0, ν1, ..., νn} defined in
the local coordinate frame of the i-th link. To render an image,
the meshes must be connected to form a continuous chain by
transforming each vertex iν ∈ R3 via respective link-to-base
rigid transformation:

bν̃ = b
iT(Θ)iν̃, (5)

where b
iT(Θ) ∈ SE (3), parametrized by robot configuration,

is obtained from forward kinematics and transforms the ver-
tices into the base coordinate system of the robot. To generate
a silhouette image S representing the initial estimates of the
camera-to-robot pose c

bTinit and configuration Θinit, points
from the robot mesh M are first sampled uniformly. These
points are then transformed into the camera frame using the
estimated pose c

bT, and projected onto the image plane:

S = π(M, c
bT, K), (6)

where π(·) is the projection operator, while K represents the
camera intrinsics.

Next, an input RGB image is converted into a silhouette
image, concatenated with the rendered silhouette and fed to
a deep neural network that outputs an update ∆Θ,∆T. The
configuration is updated by summation:

Θ̂ = Θinit +∆Θ, (7)

whereas the update of the pose ∆T = {∆R,∆λ} is decom-
posed into multiplicative updates of the rotation matrix and
the scaling factor:

c
bR̂ = ∆R c

bRinit

λ̂ = ∆λλinit.
(8)

The relative pose c
bT̂ is defined by the updated rotation matrix

c
bR̂ parametrized according to [26], and the translation t̂ =
λ̂K−1pbase computed by back-projecting the 2D detection of
the robot’s reference frame pbase. Thus, the estimated rotation

is decoupled from the translation, which in turn is decomposed
into respective keypoint and distance estimates. It is known
that estimating the translation in this way is simpler than direct
regression [27].

The model is trained in a supervised manner to predict
the pose and configuration updates. Before calculating the
configuration loss, we project the predicted configuration via
basic trigonometric functions to account for angular rotation,
since the range of joint motion is in the [0, 2π] interval. We
therefore compute Â = [sin (Θ̂)⊕ cos (Θ̂)], where Â ∈ R2n

is obtained by concatenation ⊕ of sin(·) and cos(·), which act
on the configuration element-wise. The configuration loss is
then:

Lc = |Â−A|, (9)

where | · | is the L1 norm. Furthermore, we compute the
pose loss by comparing the ground-truth and estimated 3D
joint locations defined in the camera frame and obtained by
applying the estimated and ground truth pose transformations,
respectively:

Lp = |(R̂, t)P− (R, t)P|+ |(R, t̂)P− (R, t)P|, (10)

where P is computed using forward kinematics and (R, t) is
the ground-truth pose. Following [9], we use the two different
terms to separate the influence of each estimate R̂, t̂ on the
estimated pose, although we only use a sparse set of 3D joint
locations compared to a random sample of pose anchors. The
final loss is a linear combination of (9) and (10). Instead of
individual loss weighting, we normalize the gradients w.r.t.
output layers to a unit norm to encourage equal contribution
of different losses in the shared latent space.

To summarize, instead of feeding the refinement module
with random perturbations of the ground truth data as initial
estimates during training, we use a trainable geometric ini-
tialization module and employ the same setup at test time.
Consequently, the initialization of the refinement module will
be closer to a true solution, resulting in a lower running time
and more accurate estimates. Equally important, we employ a
fast rendering procedure that avoids rasterization and shading
to generate silhouette images of the robot, which are used to
train the refiner.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental results and pro-
vide ablations using both real and synthetic data. Specifically,
we investigate how the GISR’s initialization and refinement
modules contribute to the robot pose and configuration es-
timates, and we examine their impact on the training and
running time. We also analyze how the predictions of the
refinement module depend on the availability of varying infor-
mation from the geometric initialization module and different
training data sizes. Further, we examine the effectiveness of
a simple, yet important feature of our method - learning
from fast-to-generate silhouette images instead of rendering
RGB images via off-the-shelf rendering pipelines. Finally, we
compare GISR with existing state-of-the-art algorithms.
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Fig. 3: Qualitative results for pose and configuration estimation; input image (first row), segmented input image (second row),
rendered silhouette of an initial estimate (third row) and a projection of the skeleton reflecting the final estimates (last row).

A. Dataset and evaluation metrics

In all experiments, we used a publicly available Panda-
3Cam dataset presented in [6]. The dataset contains both real
and synthetic images showing a 7-DoF Franka’s Panda robotic
arm in different configurations and camera-to-robot poses. The
synthetic part of the dataset consists of 100k images, while
the real part consists of 50k images and is divided into four
parts; Azure (AK), Kinect (XK), RealSense (RS), and ORB
datasets captured using three different cameras. AK, XK, and
RS subsets of the dataset are used exclusively as test sets, i.e.,
we never fine-tune on any of them. ORB is used as a training
set for ablation experiments or the segmentation model, and
is therefore never used as a test set.

Robot pose and configuration estimates are evaluated using
the average Euclidean distance (ADD) metric:

ADD =
1

n

n∑
i=1

∥cbTpi − c
bT̂p̂i∥, (11)

where c
bT and pi denote the ground-truth camera-to-robot pose

and the 3D robot joint keypoints, respectively. The pose and
configuration estimates are evaluated together via ADD, since
p̂i is determined by the estimated configuration and computed
using forward kinematics. We also report the area-under-the-
curve (AUC) as an aggregate performance measure, using a
0.1m threshold value to be consistent with previous work [6],
[7], [9].

B. Training and implementation details

GISR consists of two trainable modules; geometric initial-
ization (GIM) and refinement (RM) modules. First, we train a

Module Running time (s)
ADD (m) ↓

AK RS XK

init only 0.034 0.159 0.227 0.238
refine only 0.049 0.061 0.107 0.073

init & refine 0.049* 0.055 0.076 0.050
init & refine† 0.049* 0.050 0.064 0.052

TABLE I: Module-wise ablation using ADD for evaluation on
Panda-3Cam datasets. The best results are obtained when the
RM is trained on outputs generated by the GIM (†). Note: the
total running time (*) assumes running the two processes in
parallel.

shallow, three-layer MLP that performs distance matrix regres-
sion as a part of the GIM. The rest of this model (i.e., cMDS
and IK layers) is differentiable and parameter-free, so that
the model comprises only 350k trainable parameters. Next,
we train the RM with initializations generated by the frozen
GIM, but whose dropout remains active, making the outputs of
the GIM non-deterministic, which improves the generalization
capability of the refiner by mimicking test time. For the RM,
we use a ConvNext-Tiny backbone initialized with ImageNet
weights [28], and train it on 100k synthetic examples to
compare it with existing state-of-the-art methods or different
sets of real data for other experiments. The input images are
downsampled from a resolution of 640 × 480 to 224 × 224
to speed up training and inference. The number of refinement
iterations is incremented during training upon reaching 25%
and 50% of the total training iterations. Both models are
trained using a batch size of 32, linear warm-up phase for the
first 5% of training iterations, and the Adam optimizer. For
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Fig. 4: AUC score as a function of training data size for
different initialization schemes; (▲) no prior information,
(•) initializing scale using 2D keypoints and known robot
DH parameters, and (⋆) initializing configuration, scale, and
rotation, which amounts to full use of the GIM.

experiments on silhouette-based refinement, input images are
segmented at runtime by a pre-trained deeplabv3 [29], which
is fine-tuned on 30k samples of the Panda-ORB by using
the silhouette images rendered as described in Section III-B
for supervision. The entire pipeline is implemented to fully
utilize GPUs and batching [30], without using for loops (e.g.,
for mesh related transformations). Since training a keypoint
detector is beyond the scope of this paper, the 2D keypoint
annotations are randomly perturbed by Gaussian noise with a
mean of zero and a variance of 30 pixels.

C. Initialization vs. refinement

In general, GIM and RM can be used individually, as both
are able to predict the camera-to-robot pose and configuration.
However, GISR uses both modules complementarily to achieve
superior results, as shown in Table I. To test this idea, we
trained GIM and RM both separately and together on 16k
real samples from Panda-ORB. The GIM predicts a geometric
description of the robot, which is used to recover the con-
figuration, while EPnP and forward kinematics are used to
compute the 6D pose estimate (init only). Although the error
in the order of 20 cm disqualifies it as a standalone solution,
its computational efficiency makes it a suitable initialization
method. On the other hand, rendering-based RM trained using
random perturbations of the pose and configuration labels
(refine only) performs better as a standalone solution, but
is also more computationally intensive due to its dense and
iterative nature. However, when used together (init & refine),
the error decreases by 24% on average. In this setup, we
trained RM as in (refine only), and used GIM for initialization
only at test time. This shows that GIM can be used out-of-the-
box to improve the performance of a pre-trained RM. The best
performance is achieved when the RM is trained based on the
results generated by the GIM and the same setting is used at
test time (init & refine†). This is due to two related reasons.
First, during training, the RM can learn to adapt to the output
distribution of the GIM and make larger corrections to the

Rendering type Θgt AK RS XK

RGB ✗ 40.12 46.05 44.07
Silhouette† ✗ 49.64 57.93 43.13
Silhouette ✗ 55.48 63.82 53.79

RGB ✓ 53.69 53.56 72.92
Silhouette ✓ 64.21 52.61 67.70

TABLE II: Comparison of RGB- and silhouette-based re-
finement models via AUC score, evaluated using both real
(†) and ideal segmentation. Lower part of the table displays
results for pose estimation on occluded samples, using known
configurations (Θgt).

Robot #DoF synth. MAE(Θ) [deg.] ↓ ADDee ↓ AUC ↑

Panda 7 ✗ 5.512 0.049 0.719
UR5 6 ✓ 5.754 0.042 0.766

TABLE III: Performance of the silhouette refinement model
on robots with different geometries. The models are trained
on 50k synthetic images and tested on 15k (synth. or real)
images.

predicted pose and configuration for samples where the GIM
produces larger errors, as opposed to training using random
ground-truth perturbations where recurrent or similar states
are perturbed by different error magnitudes. Second, the same
initialization procedure is used at test time, which serves as a
geometric prior and reduces the discrepancy that occurs in the
(refine only) and (init & refine) setups, where the initialization
strategies used at train and test times differ, simply due to the
lack of information at test time.

D. Varying initial information

In the following, we investigate how varying the initial
information about the observed robot by excluding different
components of the GIM affects the final performance and
scalability of GISR with real training data, especially for
small to medium data sets. The results are shown in Fig. 4.
Different model variants are created by incrementally adding
new information to the initial estimate, trained using different
amounts of data and evaluated using the AUC score. The first
variant (no init.) is a pure refinement model that is trained
using random perturbations of the ground truth to simulate
a scenario without prior information, and evaluated using a
fixed initialization; unit scaling factor, rotation that aligns the
camera frame to the robot base frame, and a configuration
that corresponds to the middle of the joint limits. This model
serves a baseline. In the second variant (scale init.), 2D
joint keypoints and known robot DH parameters are included,
enabling initialization of the scale factor used at both train
and test time. In the last variant (full init.), we fully utilize the
GIM by including robot configuration estimation and EPnP-
based rotation estimation, and use the same strategy at both
train and test times. All variants scale similarly, except for
small amounts of training data where (no init.) scales slower.
However, the (full init.) variant is clearly the best-performing
across all training data sizes. In addition, the model exhibits
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Method Θgt Running time (s)

Panda-3Cam-AK Panda-3Cam-XK Panda-3Cam-RS all

#test images = 6394 #test images = 4966 #test images = 5944 #test images = 17304

AUC ↑ ADD (m) ↓ AUC ↑ ADD (m) ↓ AUC ↑ ADD (m) ↓ ADD (m) ↓ MAE(Θ) ↓

DREAM-F ✓ 0.042 68.912 11.413 24.359 491.911 76.130 2.077 113.029 -
DREAM-Q ✓ 0.029 52.382 78.089 37.471 54.178 77.984 0.027 59.284 -
DREAM-H ✓ 0.033 60.520 0.056 64.005 7.382 78.825 0.024 17.477 -

DistGeo ✗ 0.002 - - - - - - - 11.494
CtRNet ✓ 0.033 89.928 0.013 79.465 0.032 90.789 0.010 0.018 -

RoboPose ✗ 1 70.374 0.033 77.617 0.024 74.315 0.027 0.028 5.129
RoboPose† ✗ 0.298 63.138 0.042 27.201 0.080 43.561 0.058 0.060 11.752

GISR ✗ 0.049 80.613 0.022 73.941 0.037 79.324 0.021 0.026 4.808

TABLE IV: Comparison with state-of-the-art methods. Evaluation protocol from existing work is followed by using an AUC
with a 0.1m threshold in addition to ADD. Additionally, mean absolute error over predicted configurations (deg.) is reported.

greater sensitivity to initial scale than to rotation. This is
reflected in a larger performance gain between (no init.) and
(scale init.) compared to that between (scale init.) and (full
init.).

E. Learning from silhouette images

Existing rendering-based methods for pose estimation of
objects [17], [18] and robots [9] typically use RGB rendering.
In contrast, our refinement model learns to predict the camera-
to-robot pose and configuration updates based on silhouette
images. These two approaches are compared. In the former,
we use the reference and rendered RGB images that reflect
the observation and the current estimate, respectively. The
latter corresponds to GISR, by taking the respective silhouette
images as input instead, where the reference RGB image is
converted into a silhouette via segmentation. The silhouette
image reflecting the current estimate is computed as described
in Section III-B, avoiding the costly steps typically involved
in rendering, i.e., rasterization and shading. As shown in
Table II, the model trained on silhouette images outperforms
its RGB counterpart. Moreover, our experiments show that
this approach achieves at least a twofold speedup compared
to an optimized off-the-shelf RGB renderer [30]. The lower
part of the table presents results on images with occlusions.
We manually selected 180 images from Panda-3Cam test
datasets, where the pose and configuration result in robot
self-occlusions. The two methods exhibit similar performance,
suggesting that the silhouette approach is as robust as its RGB
counterpart.

Assuming a model-based approach like ours, a silhouette
image of the robot is fully defined by its configuration and
the camera-to-robot pose. Thus, it contains all the necessary
information for the model to learn while omitting irrelevant
details present in RGB images. In the context of our task, only
a small subset of information in RGB images adds value for
generalization (e.g., salient color patterns on the robot). This
makes the model more susceptible to overfitting, as it must
learn to ignore most of the irrelevant details (e.g., background,
lighting conditions). Similarly, RGB-based methods are more
affected by the fidelity gap between input and rendered images
due to imperfections in the rendering process, the 3D model
of the robot, and variations in background and lighting con-

ditions. In contrast, learning from silhouette images limits the
model to focus only on the most important information, offers
faster rendering times, and reduces discrepancies in fidelity.
However, this comes at the cost of requiring an additional
model.

The last row in the upper part of Table II illustrates how
robot segmentation performance affects the estimation of the
camera-to-robot pose and configuration. To measure this, we
used our fast silhouette rendering to segment input images by
leveraging pose and configuration labels. This simulates the
scenario of having a close-to-ideal segmentation model at test
time. The results clearly show that improving the segmentation
model alone results in much more accurate pose and configura-
tion estimates. Notably, this approach does not require human
annotations at the pixel level, which are commonly used to
train segmentation models. Instead, the model is supervised
using simplified silhouette rendering, leveraging the actual
robot configuration and camera-to-robot pose, which are less
time-consuming and easier to capture.

Finally, to demonstrate the generality of our approach for
robot arm pose estimation, we tested it on a synthetic UR5
arm dataset (see Table III), obtaining results that suggest our
method does not disproportionately benefit from the specific
link geometries of individual robot arms.

F. Comparison to state-of-the-art methods

Here, we present the evaluation of our method in compari-
son to existing state-of-the-art methods. The results are shown
in Table IV. DREAM [6] and CtRNet [7] are keypoint-based
methods that recover only 6D camera-to-robot pose, for which
they require ground-truth configuration at test time (Θgt).
DistGeo [10] is a lightweight distance-geometric method that
can be applied on top of a keypoint detector to recover only the
configuration. In contrast, RoboPose [9] is an RGB rendering-
based method trained to recover both the robot pose and
configuration, similar to our refinement model. Our method is
hybrid in that it leverages sparse information for initialization,
followed by dense silhouette-based refinement to arrive at a
final solution.

As reported by authors, DREAM and RoboPose were
trained on 100k synthetic samples from [6]. To ensure a fair
comparison, we trained GISR using only this data. CtRNet was
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pre-trained on this data but also fine-tuned on the real parts of
the dataset, while DistGeo was trained on 10k samples as it is
a tiny model that does not benefit from additional data [10].
DREAM-H, the best-performing among the DREAM variants,
is outperformed by GISR on each of the individual datasets.
Although CtRNet outperforms GISR by 0.008 ADD, it still
relies on ground-truth configurations at test time.

The lower part of Table IV is dedicated to methods designed
to predict both the pose and configuration. We compare GISR
with two RoboPose variants; the best-performing variant and
the one using the same number of iterations as our method (†).
GISR achieves slightly better results than the best-performing
RoboPose model while being 20× faster. When we restrict
RoboPose to the same number of iterations (3) as GISR, GISR
significantly outperforms it while still running 6× faster. In
terms of overall performance, our method is competitive with
keypoint-based methods that use ground-truth robot configu-
ration.

V. CONCLUSION

In this paper, we present GISR, a novel approach to jointly
estimate camera-to-robot pose and configuration by utilizing
both sparse and dense information. Our architecture uses
distinct geometric initialization and refinement modules to
accurately estimate both quantities, which enables improving
the final performance by fine-tuning specific subtasks. The
proposed silhouette-based refinement can be executed with low
computation times, making it suitable for online estimation
and dynamic scenarios with mobile robots. However, the use
of multiple modules also increases the overall complexity and
memory requirements compared to end-to-end approaches. For
future work, we consider extending this approach to unknown
robots, i.e., to discover their kinematic model.
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