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Exploring Recurrent Long-term Temporal Fusion
for Multi-view 3D Perception
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Abstract—Long-term temporal fusion is a crucial but often
overlooked technique in camera-based Bird’s-Eye-View (BEV)
3D perception. Existing methods are mostly in a parallel manner.
While parallel fusion can benefit from long-term information, it
suffers from increasing computational and memory overheads
as the fusion window size grows. Alternatively, BEVFormer
adopts a recurrent fusion pipeline so that history information
can be efficiently integrated, yet it fails to benefit from longer
temporal frames. In this paper, we explore an embarrassingly
simple long-term recurrent fusion strategy built upon the LSS-
based methods and find it already able to enjoy the merits from
both sides, i.e., rich long-term information and efficient fusion
pipeline. A temporal embedding module is further proposed
to improve the model’s robustness against occasionally missed
frames in practical scenarios. We name this simple but effective
fusing pipeline VideoBEV. Experimental results on the nuScenes
benchmark show that VideoBEV obtains strong performance
on various camera-based 3D perception tasks, including object
detection (55.4% mAP and 62.9% NDS), segmentation (48.6%
vehicle mIoU), tracking (54.8% AMOTA), and motion prediction
(0.80m minADE and 0.463 EPA).

Index Terms—Multi-view 3D object detection, recurrent net-
work and long-term temporal fusion

I. INTRODUCTION

TEMPORAL fusion technique is crucial to autonomous
driving systems and it has drawn growing attention in

recent years. Many approaches for temporal feature fusion
have been developed, and the existing research in camera-
based Bird’s-Eye-View (BEV) 3D perception can be divided
into two categories, i.e., parallel fusion and recurrent fusion.

Parallel fusion, popularized by [1], [2], [3], first aligns all
history features within a fixed-length window to the current
frame and then fuses them, see Fig. 1(a). This paradigm is
conceptually simple but effective. A recent work [4] further
showcases that parallel fusion benefits from increasing the his-
tory frame number up to 16. This covers around 8 seconds of
temporal information on the nuScenes [5] benchmark, making
parallel fusion the dominant method in this field. However,
these advantages come at the cost of several issues. Firstly,
parallel fusion typically requires a fixed window size [6],
which impedes the utilization of longer history frames, but
real-world driving usually involves long distances. Secondly,
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Fig. 1. Conceptual comparison of two mainstream temporal feature
fusion mechanisms. (a) Parallel temporal propagation within fixed temporal
segments of each time stamp [6], [7], [8], [2], [4], [9], [10]; (b) Recurrent
temporal fusion with an iteratively updated long-term memory within the
video sequence of any length [11], [12], [13], [14]. (c) Efficiency comparison
between our recurrent style VideoBEV and parallel style SOLOFusion [4]. (d)
Comparison of benefits (∆mAP↑ and ∆NDS↑) from long-term fusion between
earlier recurrent style BEVFormer [14] and our VideoBEV, the numbers of
BEVFormer are taken from [14].

this paradigm usually leads to a larger computation budget
compared to the recurent manner. As shown in Fig. 1(c),
SOLOFusion [4] suffers from the growing latency when
increasing the number of history frames. These issues hinder
the application of the parallel temporal fusion technique.

Compared to parallel fusion, recurrent fusion is more
feasible for longer history frames since it encodes all history
information into a single memory feature (i.e., Fused Frame in
Fig. 1(b)). However, the pioneering method BEVFormer [14]
shows that recurrent feature fusion cannot benefit from longer
history frames. See Fig. 1(d), both mAP and NDS stop
improving when the number of history frames is more than
3. The reasons could be two-fold: (i) the temporal fusion is
intertwined with the view transformation process of the current
frame, making it more difficult to fuse temporal information,
(ii) the spatial-temporal fusion network in BEVFormer is a
Transformer [15] architecture that is deep and cumbersome,
which may consequently lead to the typical gradient vanishing
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issue in RNN when the sequence length is long [11], [16].
They [10] consequently turn back into the parallel manner.
As a result, in the multi-view 3D perception field, none of the
existing methods can simultaneously enjoy an efficient fusing
pipeline and the benefits carried by long-term information.

Is it not feasible to apply efficient long-term temporal
fusion to multi-view 3D perception tasks? The answer is no.
By leveraging a decoupled view transformation and temporal
fusion procedures on LSS-based detectors [17], [1], [18],
we find an embarrassing fact that a simple temporal fusion
strategy can facilitate our goal. During training, we sample
BEV features within a sufficiently long window (e.g., 16
frames) and fuse them sequentially. During inference, the
sequential fusion mechanism is retained throughout the entire
driving process with the sampling window strategy discarded.
This methodology is similar to BEVFormer [14], despite that
we sample more frames during training and use a framework
with decoupled spatiotemporal fusion. As a result, we obtain
a simple but effective multi-frame BEV framework, dubbed
VideoBEV, which can be applied to diverse perception tasks
in autonomous driving. To ensure stable and robust 3D motion
perception when facing occasionally missed frames in real-
world scenarios, we propose a temporal embedding module to
encode timestamps, with which the dynamic temporal interval
information can be effectively modeled.

Extensive experiments are conducted on four 3D perception
tasks, including 3D object detection, map segmentation, object
tracking, and object motion prediction. For example, on the
nuScenes benchmark, VideoBEV achieves 55.4% mAP and
62.9% NDS on the 3D detection task, which improves +2.9%
mAP and +1.9% NDS over the single-frame baseline. On
the 3D object tracking benchmark that models object mo-
tion states, VideoBEV achieves 54.8% AMOTA, significantly
outperforming the single-frame baseline by +6.8%. While
obtaining strong performance on various tasks, VideoBEV is
still far more efficient than its long-term counterpart SOLO-
Fusion [4]. Although extremely simple, our VideoBEV is the
first method that demonstrates the benefit of continuously in-
creasing the number of history frames. Besides, our VideoBEV
has provided an in-depth understanding of the significance of
efficient long-term temporal fusion while also establishing a
new baseline for spatiotemporal multi-view 3D perception.

II. RELATED WORKS

A. Camera-Based Single-Frame 3D Perception

The majority of camera-based single-frame 3D prediction
techniques in the beginning simply predicted 3D boxes from
images. By creating a 3D box with the anticipated properties of
a 3D object using a 2D box, Mousavian et al. [19] pioneered
this direction. FCOS3D [20] simply extends the 2D object
detector [21] to a 3D object detector by decoupling the
defined 7-DoF 3D targets as 2D and 3D attributes. PETR [22]
encodes the position information of 3D coordinates into image
features, producing the 3D position-aware feature. Inspired
by LiDAR-based methods [23], [24], recent advances employ
view transformation to transform the feature from perspective
view to the Bird’s-Eye-View (BEV) for unified 3D detection.

LSS [17] proposes the LSS-based view transformation method,
which first “lift”s each image individually into a frustum
of feature for each camera, then “splat”s all frustums into
a rasterized BEV grid. BEVDet [25] utilizes the LSS-based
view transformation to extract BEV features and conducts 3D
detection thereon. To achieve more trustworthy depth for LSS-
based view transformation, BEVDepth [1] uses the depth from
LiDAR as the supervision for precise depth estimation.

B. Camera-Based Multi-Frame 3D Perception

Multi-frame fusion for LiDAR-based 3D detectors is a
widely used technology [26], [27], [28]. However, 3D percep-
tion from a single vision frame without LiDAR is an ill-posed
problem due to the lack of accurate depth information. Recent
works make efforts to multi-frame 3D perception since dif-
ferent frames generally offer different views of objects. Saha
et al. [29] formulate BEV map construction from an image
as a set of 1D sequence-to-sequence translations and propose
a dynamic module incorporating temporal information from
past estimation to build a spatiotemporal BEV representation.
BEVDet4D [2] extends BEVDet [25] and fuses the history
frame’s features with the current frame after removing ego-
motion impact. PETRv2 [3] directly achieves the temporal
alignment by simply aligning the 3D coordinates of the history
and current frames. BEVFormer [14] designs a temporal self-
attention to recurrently fuse the history BEV information
for obtaining precise BEV features. BEVStereo [18] employs
the temporal multi-view stereo (MVS) [30] to tackle the ill-
posed issue of depth perception in camera-based 3D tasks.
STS [31] leverages the geometry correspondence between
frames across time to facilitate accurate depth learning. The
above methods employ only limited history frames for tempo-
ral fusion. Differently, SOLOFusion [4] aligns the BEV feature
from the previous timesteps of a long history to the current
timestep and concatenates them for long-term temporal fusion.
However, it suffers from high inference latency, memory, and
module parameter bottleneck. Our proposed recurrent temporal
fusion module can avoid these issues. Besides, for the first
time, our VideoBEV successfully demonstrates the benefit of
continuously increasing the number of history frames.

III. METHODOLOGY
VideoBEV employs a recurrent long-term fusion module

that fuses a video stream sequentially. A temporal embedding
module is further introduced to tackle the instability of percep-
tion caused by missed frames in real-world circumstances. The
overall architecture is shown in Fig. 2. Sec. III-A first gives
a brief overview of VideoBEV, then Sec. III-B introduces the
recurrent style BEV fusion in detail. In the end, Sec. III-C
introduces the temporal embedding modeling.

A. Overview of VideoBEV

The overall pipeline of VideoBEV is similar to that of
existing LSS-based [17] 3D BEV detection, e.g., BEVDet [25],
BEVDepth [1] and BEVStereo [18], etc, except the recurrent
style temporal fusion and temporal embedding. Generally, it
can be separated into three modules:
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Fig. 2. Overview of VideoBEV. The backbone first extracts image features of different views of a frame, which are transformed to BEV from the image
view to obtain the BEV feature. Then, the recurrent fusion module fuses the new BEV feature with the one of long-term memory, based on which the memory
is updated and the 3D perception tasks are conducted.

1) BEV feature extraction module: a backbone network
extracts the per-frame image feature of different camera
views, which is further translated from perspective view
to BEV for obtaining the BEV feature.

2) Temporal fusion module: the recurrent style temporal
fusion module fuses the BEV feature of the input frame
with the stored long-term memory. Besides, a recurrent
style temporal embedding module is employed to embed
the sequence of time intervals between adjacent frames
in the video sequence.

3) 3D perception module: a 3D perception head is applied
to the fused BEV feature and temporal embedding to
conduct 3D perception for the input frame.

In the BEV feature extraction module, the backbone can
be any network, e.g., ResNet-50 [32], ConvNeXt-B [33]; the
view transformation (VT) can be generally LSS-based VT such
as BEVDet [25], BEVDepth [1], and MatrixVT [34], etc, or
query-based VT such as BEVFormer [14]. We utilize the LSS-
based VT due to its effectiveness. In the 3D perception mod-
ule, the head can be any BEV-based task, e.g., 3D objection
detection, map segmentation, and tracking, etc. The temporal
fusion module is newly proposed in this paper and will be
introduced in the following subsections.

B. Recurrent Temporal BEV Feature Fusion

The BEV feature of a single frame generally describes
objects from a single view (time step), which is inadequate
for precise 3D perception. To obtain abundant features of
objects, recent works, e.g., SOLOFusion [4], explore the
temporal context information as the substitute for multi-
views since different frames often offer different views of
subjects. However, as pointed out by BEVFormer [14] and
BEVFormer V2 [10], existing recurrent style fusion fails to
bring further performance gains with long-term sequence. In

contrast, the parallel temporal fusion is able to fuse long-term
video sequences effectively. Hence, we motivate our long-term
recurrent style temporal fusion model from that of the sliding-
window methods, introduced next.

To better understand the recurrent style fusion, we first
revisit the parallel fusion with a temporal window size k
in SOLOFusion [4]. Suppose the BEV feature of a video
sequence as {Bi}T

i=1, and Bi is the BEV feature of the frame
at time step ti. The parallel fusion for the i-th frame in
SOLOFusion [4] can be written as:

Ĥi =
[

fsample(Bi−k+1,Pi,i−k+1); . . . ; fsample(Bi−1,Pi,i−1);Bi

]
∗U, (1)

where Ĥi is the fused BEV feature for i-th frame, Pj,i is the
view transformation matrix from the ego coordinate of j-th
frame to that of i-th frame considering the ego-motion, fsample
refers to the grid sampling operation proposed by Jaderberg
et al. [35], U is the convolution kernel, [x;y] represents the
concatenation of x and y along the channel dimension, and
∗ denotes the convolution operator. As can be seen, in the
parallel temporal fusion, a concatenation operator is applied
first to concatenate the aligned BEV feature in the window,
on which the convolution operator is employed to fuse BEV
features of different frames. The above formulation can be
further expanded by splitting the kernel U along the channel
dimension, i.e.,

Ĥi=
[

fsample(Bi−k+1,Pi,i−k+1); . . . ; fsample(Bi−1,Pi−1,i);Bi

]
∗[

U1; . . . ;Uk−1;Uk

]
=

k

∑
j=1

fsample(Bi−k+ j,Pi,i−k+ j)∗U j, (2)

where U j is the j−th chunk by equally splitting U along the
channel dimension.

The formulation of recurrent fusion is similar to that of
parallel fusion. The difference is that instead of storing all the
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history BEV features in the temporal window and concatenat-
ing them, we store only the long-term memory of BEV feature
and concatenate it with that of the current frame. Taking H i
as long-term memory of BEV feature at time step ti, the
formulation of recurrent style fusion is:

H i =
[

fsample(H i−1,Pi,i−1);Bi

]
∗V, (3)

where V is the convolution kernels. Considering the long-
term BEV feature memory H i−1 is obtained by fusing the
H i−2 to the BEV feature of (i − 1)-th frame, the above
formulation can be further expanded by splitting the kernel V
into two chunks Vmem and Vcur along the channel dimension,
respectively convolving the long-term memory and the current
BEV features:

H i =
[

fsample(H i−1,Pi,i−1);Bi

]
∗
[
Vmem;Vcur

]
(4)

= fsample(H i−1,Pi,i−1)∗Vmem +Bi ∗Vcur

= fsample(H i−2,Pi,i−2)∗Vmem ∗Vmem+

fsample(Bi−1,Pi,i−1)∗Vcur ∗Vmem +Bi ∗Vcur

≜ fsample(H i−2,Pi,i−2)∗V2
mem+ fsample(Bi−1,Pi,i−1)∗

Vcur ∗Vmem +Bi ∗Vcur

=
i

∑
j=1

fsample(B j,Pi, j)∗Vcur ∗Vi− j
mem. (5)

Here, B∗Vn denotes convolution of B with convolution kernel
V repeating n times.

Comparing Eq. 4 to Eq. 2, it is seen that the two fusion
styles have similar formulations of summing the convolved
BEV feature of history frames. This may be the reason both
the recurrent paradigm VideoBEV and the parallel paradigm
SOLOFusion [4] can benefit from the long-term temporal
information. However, from the final derivation, we can see
that the convolution kernel Vmem for the i-th frame in recurrent
style fusion is computed repeatedly i− j times (i.e., the fusion
time interval) when fusing with the j-th history frame. Thus,
the recurrent style fusion is aware of the time interval for every
history frame. In contrast, the sliding window fusion kernel
U j for fusing the j-th history frame is computed once for all
j ∈ {1, . . . , i}. As a result, it treats every history frame equally
without the recurrent syle explicit time interval modeling.
Besides, the sliding window style fusion only fuses the history
k−1 frames to current frames, while the recurrent style fusion
fuses all the history frames, facilitating better 3D perception.

C. Temporal Embedding

Generally, the time interval between two adjacent frames
in a video sequence is fixed, e.g., 0.5s between two key-
frames on nuScenes. However, this can not be guaranteed
in the complex real scenes. We empirically find that the
missed frames can dreadfully hurt motion estimation. As
shown in Fig. 3, the average error of predicted velocity (AVE)
becomes dramatically high when the frame missing rate is
high. Thus, besides the BEV feature fusion, we propose a
temporal embedding module to fuse the time interval between
two adjacent frames for stable 3D perception. The temporal
embedding module is also designed in a recurrent fashion.
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Fig. 3. Average velocity error (AVE↓) versus frame missing rate (FMR).
Without the proposed temporal embedding, the AVE is dramatically high when
frames are missed, and this issue is substantially mitigated when using the
proposed temporal embedding.

Taking ∆ti = ti−ti−1 as the time interval between the i-th frame
and i−1-th frame, the formulation of temporal embedding Ei
for i-th frame is as follows:

Ei = e(∆ti ·1), (6)

E i =
[

E i−1;Ei
]
∗K. (7)

Here, 1 is the all-one matrix with the same spatial size as H i,
e(·) is the temporal embedding function, which consists of
two convolutional layers. K is the convolution kernel for the
recurrent fusion. The fused temporal embedding is fed into
the velocity head for robust velocity prediction.

D. Video Inference

During inference, each frame in the video sequence is eval-
uated chronologically. The long-term BEV memory feature
is initialized with zero. When a new frame comes, the BEV
feature is first fused with the memory, based on which the
memory is updated and the 3D perceptron is conducted. As
a result, the overhead of VideoBEV is consistently low with
longer video inputs (see Fig. 5).

IV. EXPERIMENTS

A. Experimental Setting

a) Dataset: We use nuScenes dataset [5] for experimen-
tal evaluations. It contains 1,000 autonomous driving scenes
with around 20 seconds per scene, which is split into 850
scenes for training (train) or validation (val) and 150 for
testing (test). Six camera images from different perspectives
are provided in each frame of the camera data.

b) Evaluation Metric: We use four commonly used tasks
for autonomous driving systems, as stated below. We use
the typical evaluation criteria for 3D objection detection
and report the mean Average Precision (mAP) and nuScenes
detection score (NDS). The 3D attributes of translation, scale,
orientation, velocity, and attribute are evaluated using the
mean Average Translation Error (mATE), mean Average Scale
Error (mASE), mean Average Orientation Error (mAOE),
mean Average Velocity Error (mAVE), and mean Average
Attribute Error (mAAE), respectively. The Mean Intersection
over Union (mIoU) of the drivable area, the lane, and the
vehicle is reported following LSS [17] for the purpose of map
segmentation evaluation. For object tracking evaluation, we
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TABLE I
COMPARISON RESULTS ON 3D DETECTION ON THE NUSCENES VAL SET. ALL METHODS IN THE TABLE ARE TRAINED WITH CBGS. #FRAMES

DENOTES THE NUMBER OF FRAMES USED DURING TRAINING.

Method Backbone Image Size #Frames mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
BEVDet [25] ResNet50 256 × 704 1 0.298 0.379 0.725 0.279 0.589 0.860 0.245
PETR [22] ResNet50 384 × 1056 1 0.313 0.381 0.768 0.278 0.564 0.923 0.225
BEVDet4D [2] ResNet50 256 × 704 2 0.322 0.457 0.703 0.278 0.495 0.354 0.206
BEVDepth [1] ResNet50 256 × 704 2 0.351 0.475 0.639 0.267 0.479 0.428 0.198
STS [31] ResNet50 256 × 704 2 0.377 0.489 0.601 0.275 0.450 0.446 0.212
BEVStereo [18] ResNet50 256 × 704 2 0.372 0.500 0.598 0.270 0.438 0.367 0.190
AeDet [36] ResNet50 256 × 704 2 0.387 0.501 0.598 0.276 0.461 0.392 0.196
SOLOFusion [4] ResNet50 256 × 704 17 0.427 0.534 0.567 0.274 0.511 0.252 0.188
VideoBEV ResNet50 256 × 704 8 0.422 0.535 0.564 0.276 0.440 0.286 0.198

TABLE II
COMPARISON RESULTS ON 3D DETECTION ON THE NUSCENES TEST SET. TTA DENOTES TEST TIME AUGMENTATION STRATEGY. † DENOTES RESULTS

USING FUTURE FRAMES DURING TRAINING AND INFERENCE, AND ‡ DENOTES RESULTS FROM THE OFFICIAL NUSCENES LEADERBOARD.

Method Backbone Image Size TTA mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

FCOS3D [37] R101-DCN 900 × 1600 " 0.358 0.428 0.690 0.249 0.452 1.434 0.124
DETR3D [38] V2-99 900 × 1600 " 0.412 0.479 0.641 0.255 0.394 0.845 0.133
UVTR [39] V2-99 900 × 1600 % 0.472 0.551 0.577 0.253 0.391 0.508 0.123
BEVFormer [14] V2-99 900 × 1600 % 0.481 0.569 0.582 0.256 0.375 0.378 0.126
BEVDet4D [2] Swin-B 900 × 1600 " 0.451 0.569 0.511 0.241 0.386 0.301 0.121
PolarFormer [40] V2-99 900 × 1600 % 0.493 0.572 0.556 0.256 0.364 0.439 0.127
PETRv2 [3] RevCol 640 × 1600 % 0.512 0.592 0.547 0.242 0.360 0.367 0.126
HoP-BEVFormer [26] V2-99 640 × 1600 % 0.517 0.603 0.501 0.245 0.346 0.362 0.105
BEVDepth [1] ConvNeXt-B 640 × 1600 % 0.520 0.609 0.445 0.243 0.352 0.347 0.127
BEVStereo [18] V2-99 640 × 1600 % 0.525 0.610 0.431 0.246 0.358 0.357 0.138
AeDet [36] ConvNeXt-B 640 × 1600 " 0.531 0.620 0.439 0.247 0.344 0.292 0.130
SOLOFusion [4] ConvNeXt-B 640 × 1600 % 0.540 0.619 0.453 0.257 0.376 0.276 0.148
VideoBEV ConvNeXt-B 640 × 1600 % 0.554 0.629 0.457 0.249 0.381 0.266 0.132

BEVFormer V2† [10] InternImage-B 640 × 1600 % 0.540 0.620 0.488 0.251 0.335 0.302 0.122
BEVFormer V2† [10] InternImage-XL 640 × 1600 % 0.556 0.634 0.456 0.248 0.317 0.293 0.123
BEVFormer V2 Opt†‡ InternImage-XL 640 × 1600 % 0.580 0.648 0.448 0.262 0.342 0.238 0.128
BEVDet-Gamma†‡ Swin-B 640 × 1600 " 0.586 0.664 0.375 0.243 0.377 0.174 0.123
HoP-BEVDet4D† [26] ViT-L 640 × 1600 % 0.624 textbf0.685 0.367 0.249 0.354 0.171 0.131
VideoBEV† ConvNeXt-B 640 × 1600 % 0.592 0.670 0.385 0.246 0.323 0.174 0.137

report the average multi-object tracking accuracy (AMOTA),
the average multi-object tracking precision (AMOTP), the
recall (RECALL), and the multi-object tracking accuracy
(MOTA) following the standard assessment metrics. For object
motion prediction evaluation, we report the minimum Aver-
age Displacement Error (minADE), minimum Final Displace-
ment Error (minFDE), Miss Rate (MR), and the End-to-end
Prediction Accuracy (EPA) following ViP3D [41].

c) Implementation Details: We conduct our experi-
ments based on the BEVDepth [1] and BEVStereo [18].
The learning rate, optimizer, and data augmentation are the
same as BEVDepth [1]. Unless otherwise specified, we use
ResNet50 [32] pre-trained on ImageNet [42] as the image
backbone and SECOND FPN [43] as the image neck. The
size of the BEV feature in all of our experiments is 128 ×
128. The perception ranges are [-51.2m, 51.2m] for the X and
Y axis, and the resolution of each BEV grid is 0.8m.

B. Comparison to Prior Arts

3D Detection To fairly compare with existing SOTAs, we use
the ResNet-50, ResNet-101, and ConvNext-Base as backbone
respectively. The main results on Nuscenes val and test
sets are shown in Tab. I and Tab. II. On val set, with
the ResNet-50 backbone, the VideoBEV achieves comparable
results to SOLOFusion [4] with fewer frames for training. On

TABLE III
COMPARISON RESULTS ON MAP SEGMENTATION ON THE NUSCENES

VAL SET. † DENOTES OUR BASELINE METHOD.
Method mIoU-Drivable↑ mIoU-Lane↑ mIoU-Vehicle↑
LSS [17] 0.729 0.200 0.321
FIERY [45] - - 0.382
M2BEV [46] 0.759 0.380 -
BEVFormer [14] 0.775 0.239 0.467
UniAD [47] 0.691 0.313 -
BEVDepth† [1] 0.816 0.453 0.460
VideoBEV 0.827 0.461 0.486

the test set, our VideoBEV achieves 55.4% mAP and 62.9%
NDS without bells and whistles, outperforming all previous
methods without the utilization of future frames. Furthermore,
our VideoBEV can extend to future frames fusion in the
offboard mode, where our method still surpasses most existing
methods, including BEVFormer V2 which uses a heavier
backbone network (i.e., InternImage-XL [44]). These strong
results clearly demonstrate the effectiveness of VideoBEV for
fusing long-term temporal information.
Map Segmentation We evaluate VideoBEV on map seg-
mentation task by simply adding a U-Net-like [62] network
for the segmentation of the drivable area, the lane, and the
vehicle in BEV. As shown in Tab. III, compared to our baseline
(single-frame), VideoBEV improves the mIoUs of the three
classes by +1.1%, +0.8%, and +2.6%, respectively. VideoBEV
surpasses all existing SOTAs, including the BEVFormer [14]
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TABLE IV
COMPARISON RESULTS ON 3D OBJECT TRACKING ON THE NUSCENES

TEST SET. † DENOTES OUR BASELINE METHOD.
Method AMOTA↑ AMOTP↓ RECALL↑ MOTA↑
CenterTrack [48] 0.046 1.543 23.3% 0.043
DEFT [49] 0.177 1.564 33.8% 0.156
Time3D [50] 0.210 1.360 - 0.173
QD3DT [51] 0.217 1.550 37.5% 0.198
TripletTrack [52] 0.268 1.504 40.0% 0.245
MUTR3D [53] 0.270 1.494 41.1% 0.245
PolarDETR [54] 0.273 1.185 40.4% 0.238
UniAD [47] 0.359 1.320 46.7% -
SRCN3D [55] 0.398 1.317 53.8% 0.359
CC-3DT [56] 0.410 1.274 53.8% 0.357
PF-Track [57] 0.434 1.252 53.8% 0.378
QTrack† [58] 0.480 1.107 56.9% 0.431
UVTR [39] 0.519 1.125 59.9% 0.447
Sparse4D [59] 0.519 1.078 63.3% 0.459
VideoBEV 0.548 0.983 63.1% 0.475

TABLE V
COMPARISON TO EXISTING WORK ON PREDICTION ON THE NUSCENES

VAL SET. † DENOTES OUR BASELINE METHOD.
Method minADE (m)↓ minFDE (m)↓ MR↓ EPA ↑
PnPNet-vision [60] 2.22 3.17 0.272 0.193
ViP3D [41] 2.05 2.84 0.246 0.226
PIP [61] 1.23 1.75 0.195 0.258
UniAD [47] 0.71 1.02 0.151 0.456
BEVDepth†[1] 1.19 1.62 0.133 0.386
VideoBEV 0.80 0.99 0.067 0.463

and UniAD [47]. This indicates the temporal information fused
by our recurrent fusion module can improve the quality of
BEV features for tasks that require dense spatial reasoning.
Object Tracking For 3D multi-object tracking (MOT) task,
we employ QTrack [58] as our baseline method to generate
the trajectories of all predicted 3D objects. As shown in
Tab. IV, VideoBEV achieves the best performance on the
nuScenes test set, which outperforms Sparse4D [59] and
UVTR [39] by a clear margin of +2.9% AMOTA. Compared
to our baseline method QTrack [58], a significant improve-
ment of +6.8% is observed, demonstrating the superiority and
consistent ability to identify objects moving over time.
Object Motion Prediction We also evaluate VideoBEV on
the motion prediction task. Inspired by FutureDet [63], we
first conduct future detection for all target agents in a finite
future period (i.e., 6 key-frames in 3s). Then, we simply
utilize the velocity and ti me lag to associate the locations
among current and future detection results. Finally, we take
the detection confidence score from the last frame as the
score of the corresponding associated motion trajectory. As
shown in Tab. V, the single-frame BEVDepth baseline using
the aforementioned strategy already yields a promising result,
outperforming PIP [61] on all metrics. Further, by utilizing
our efficient temporal fusion strategy of VideoBEV, the SOTA
performance is achieved with only a ResNet-50 backbone
and 256×704 input resolution. This demonstrates that our
sequential modeling successfully captures the object motion
states, which is conducive to future detection for further
accurate object motion forecasting.

C. Ablation Study and Analysis

a) Effectiveness of Recurrent Temporal Fusion: To verify
the effectiveness of recurrent temporal fusion, we use different
numbers of history frames with ResNet-50 backbone for

TABLE VI
ABLATION STUDY ON HISTORY FRAMES NUMBER. #FRAMES DENOTES

USED HISTORY FRAMES NUMBER FOR TRAINING.

#Frames mAP↑ NDS↑ mATE↓ mAOE↓ mAVE↓
0 0.323 0.382 0.701 0.598 0.936
1 0.340 0.450 0.678 0.550 0.473
2 0.348 0.462 0.688 0.533 0.397
4 0.359 0.471 0.659 0.556 0.382
8 0.375 0.483 0.663 0.524 0.360

16 0.379 0.489 0.641 0.524 0.343
all 0.379 0.492 0.636 0.519 0.331

TABLE VII
ABLATION STUDY ON COMBINING SHALLOWER-LAYER FUSION.

VIDEOBEV-D AND VIDEOBEV-S REPRESENT VIDEOBEV BASED ON
BEVDEPTH [1] AND BEVSTEREO [18], RESPECTIVELY.

Method mAP↑ NDS↑ mATE↓ mAOE↓ mAVE↓
BEVDepth [1] 0.323 0.382 0.701 0.598 0.936
VideoBEV-D 0.379 0.492 0.636 0.519 0.331

BEVStereo [18] 0.340 0.450 0.683 0.533 0.478
VideoBEV-S 0.395 0.502 0.606 0.511 0.344

training and testing. As shown in Fig. 1(d) and Tab. VI,
with the increase of used history frames, the mAP and NDS
are significantly improved. Specifically, the improvement of
VideoBEV with 16 history frames is +5.6% mAP, +10.7%
NDS over that without temporal fusion. When using video
inference with all history frames, the performance is further
improved compared to the 16 history frames counterpart. This
demonstrates that though the frames sampled beyond 16-th
history stamp are far from the current frame, they still contain
temporal information useful to the current frame.

b) Efficiency of Temporal Recurrent Fusion: VideoBEV
recurrently fuses the history BEV feature. Hence, only one
BEV feature memory needs to be stored during inference.
When a new frame comes, we only need to fuse its BEV
feature to the stored one with a lightweight recurrent fusion
module. This is efficient for both memory and computation. As
shown in Fig. 5, when increasing the number of used history
frames, the overhead of memory and latency is consistently
lower compared to SOLOFusion [4], which is nearly the same
as that without any history frame.

c) Robustness to Missed Frames: In practice, the frames
could sometimes miss, resulting in different time intervals.
However, we empirically find that varied time intervals be-
tween two adjacent frames can seriously hurt the velocity
prediction. We use the frame missing rate (FMR) to study
the influence of varied time intervals. As shown in Fig. 3,
a higher FMR leads to a higher error in velocity prediction.
Specifically, the error of velocity increases by 54.69% with
50% FLR compared to that without missed frames. However,
when the temporal embedding is used, the error decreases
significantly by 25.13%. This indicates that the temporal
embedding correctly encodes the time information for velocity
prediction, alleviating the missed frames issue.

d) Shallower-Layer Fusion: Short-term temporal fusion
is as critical as long-term fusion since it provides more
accurate depth estimation through stereo matching [4]. To
study if combining VideoBEV with such short-term fusion
could further bring benefits, we implement our VideoBEV
based on recently proposed BEVStereo [18] that leverages
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short-term fusion. As shown in Tab. VII, with the shallower-
layer temporal fusion (only one history frame is fused), the
performance of VideoBEV is significantly improved on mAP
and mATE. This implies more advanced temporal fusion on
low-level features may further improve the 3D perception,
leaving space for future investigation.

e) Visualization Analysis: In Fig. 4, we visualize the
prediction results of VideoBEV and the single-frame baseline
for a qualitative comparison. By leveraging and fusing long-
term temporal information, VideoBEV successfully corrects
the wrong predictions caused by commonly met issues like
false negatives, wrong orientation estimation, and inaccurate
identification for occluded objects. It demonstrates the supe-
riority of long-term temporal fusion that may be essential for
the understanding of comprehensive driving scenes.

V. CONCLUSIONS

This study investigates a simple recurrent long-term tempo-
ral fusion framework based on LSS-based methods for camera-
based Bird’s-Eye-View 3D perception, dubbed VideoBEV.
Unlike previous works, VideoBEV decouples the recurrent
spatiotemporal fusion with a lightweight fusion process.
Compared to parallel temporal fusion, VideoBEV’s resource-
efficient recurrent fashion yields a superior computation bud-
get, while enjoying the merits of parallel temporal fusion
for long-term information modeling. In addition, a dedicated
temporal embedding is proposed, which alleviates the frame
missing issue in real-world scenarios. Extensive experiments
on diverse BEV 3D perception tasks, including 3D object
detection, map segmentation, 3D object tracking, and 3D

object motion prediction, are conducted, demonstrating the
leading performance of our VideoBEV. This study reveals that
long-term temporal information is essential for comprehensive
scene understanding in 3D BEV perception. For the first time,
we show that a longer-term (e.g., 16 frames in 8s) recurrent
temporal fusion brings further benefits for perception accuracy.
This study establishes a new baseline for spatiotemporal
BEV 3D perception, and we believe our findings will inspire
future research into long-term temporal information fusion for
autonomous driving.
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