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RGB-D Inertial Odometry for a Resource-restricted
Robot in Dynamic Environments

Jianheng Liu1, Xuanfu Li2, Yueqian Liu1, and Haoyao Chen1

Abstract—Current simultaneous localization and mapping
(SLAM) algorithms perform well in static environments but
easily fail in dynamic environments. Recent works introduce
deep learning-based semantic information to SLAM systems to
reduce the influence of dynamic objects. However, it is still
challenging to apply a robust localization in dynamic environ-
ments for resource-restricted robots. This paper proposes a real-
time RGB-D inertial odometry system for resource-restricted
robots in dynamic environments named Dynamic-VINS. Three
main threads run in parallel: object detection, feature tracking,
and state optimization. The proposed Dynamic-VINS combines
object detection and depth information for dynamic feature
recognition and achieves performance comparable to semantic
segmentation. Dynamic-VINS adopts grid-based feature detection
and proposes a fast and efficient method to extract high-quality
FAST feature points. IMU is applied to predict motion for
feature tracking and moving consistency check. The proposed
method is evaluated on both public datasets and real-world
applications and shows competitive localization accuracy and
robustness in dynamic environments. Yet, to the best of our
knowledge, it is the best-performance real-time RGB-D inertial
odometry for resource-restricted platforms in dynamic envi-
ronments for now. The proposed system is open source at:
https://github.com/HITSZ-NRSL/Dynamic-VINS.git

Index Terms—Localization, Visual-Inertial SLAM

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) is a
foundational capability for many emerging applications,

such as autonomous mobile robots and augmented reality.
Cameras as portable sensors are commonly equipped on mo-
bile robots and devices. Therefore, visual SLAM (vSLAM) has
received tremendous attention over the past decades. Lots of
works [1]–[4] are proposed to improve visual SLAM systems’
performance. Most of the existing vSLAM systems depend on
a static world assumption. Stable features in the environment
are used to form a solid constraint for Bundle Adjustment
[5]. However, in real-world scenarios like shopping malls and
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subways, dynamic objects such as moving people, vehicles,
and unknown objects, have an adverse impact on pose opti-
mization. Although some approaches like RANSAC [6] can
suppress the influence of dynamic features to a certain extent,
it will become overwhelmed when a vast number of dynamic
objects appear in the scene.

Therefore, it is necessary for the system to reduce dynamic
objects’ influence on the estimation results consciously. The
pure geometric methods [7]–[9] are widely used to handle
dynamic objects, but it is unable to cope with latent or slightly
moving objects. With the development of deep learning,
many researchers have tried combining multi-view geometric
methods with semantic information [10]–[13] to implement a
robust SLAM system in dynamic environments. To avoid the
accidental deletion of stable features through object detection
[14], recent dynamic SLAM systems [15], [16] exploit the
advantages of pixel-wise semantic segmentation for a bet-
ter recognition of dynamic features. Due to the expensive
computing resource consumption of semantic segmentation, it
is difficult for a semantic-segmentation-based SLAM system
to run in real-time. Therefore, some researchers have tried
to perform semantic segmentation only on keyframes and
track moving objects via moving probability propagation [17],
[18] or direct method [19] on each frame. In the cases of
missed detections or object tracking failures, the pose opti-
mization is imprecise. Moreover, since semantic segmentation
is performed after keyframe selection, real-time precise pose
estimation is inaccessible, and unstable dynamic features in
the original frame may also cause redundant keyframe creation
and unnecessary computational burdens.

The above systems still require too many computing re-
sources to perform robust real-time localization in dynamic
environments for Size, Weight, and Power (SWaP) restricted
mobile robots or devices. Some researchers [20]–[22] try to
run visual odometry in real-time on embedded computing
devices, yet the keyframe-based visual odometry is not per-
formed [23], which makes their accuracy unsatisfactory. At the
same time, increasingly embedded computing platforms are
equipped with NPU/GPU computing units, such as HUAWEI
Atlas200, NVIDIA Jetson, etc. It enables lightweight deep
learning networks to run on the embedded computing platform
in real-time. Some studies [14], [24] implemented a keyframe-
based dynamic SLAM system running on embedded com-
puting platforms. However, these works are still difficult to
balance efficiency and accuracy for mobile robot applications.

To address all these issues, this paper proposes a real-
time RGB-D inertial odometry for resource-restricted robots in
dynamic environments named Dynamic-VINS. It enables edge

ar
X

iv
:2

30
4.

10
98

7v
1 

 [
cs

.R
O

] 
 2

1 
A

pr
 2

02
3

https://github.com/HITSZ-NRSL/Dynamic-VINS.git


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

Fig. 1. The framework of Dynamic-VINS. The contributing modules are highlighted and surrounded by dash lines with different colors. Three main threads
run in parallel in Dynamic-VINS. Features are tracked and detected in the feature tracking thread. The object detection thread detects dynamic objects in each
frame in real-time. The state optimization thread summarizes the features information, object detection results, and depth image to recognize the dynamic
features. Finally, stable features and IMU preintegration results are used for pose estimation.

computing devices to provide instant robust state feedback for
mobile platforms with little computation burden. An efficient
dynamic feature recognition module that does not require a
high-precision depth camera can be used in mobile devices
equipped with depth-measure modules. The main contributions
of this paper are as follows:

1) An efficient optimization-based RGB-D inertial odom-
etry is proposed to provide real-time state estimation
results for resource-restricted robots in dynamic and
complex environments.

2) Lightweight feature detection and tracking are proposed
to cut the computing burden. In addition, dynamic
feature recognition modules combining object detection
and depth information are proposed to provide robust
dynamic feature recognition in complex and outdoor
environments.

3) Validation experiments are performed to show the pro-
posed system’s competitive accuracy, robustness, and
efficiency on resource-restricted platforms in dynamic
environments.

II. SYSTEM OVERVIEW

The proposed SLAM system in this paper is extended based
on VINS-Mono [2] and VINS-RGBD [25]; our framework
is shown in Fig. 1, and the contributing modules are high-
lighted with different colors. For efficiency, three main threads
(surrounded by dash lines) run parallel in Dynamic-VINS:
object detection, feature tracking, and state optimization. Color
images are passed to both the object detection thread and
the feature tracking thread. IMU measurements between two
consecutive frames are preintegrated [26] for feature tracking,
moving consistency check, and state optimization.

In the feature tracking thread, features are tracked with the
help of IMU preintegration and detected by grid-based feature
detection. The object detection thread detects dynamic objects
in each frame in real-time. Then, the state optimization thread
will summarize the features information, object detection
results, and depth image to recognize the dynamic features.
A missed detection compensation module is conducted in
case of missed detection. The moving consistency check

procedure combines the IMU preintegration and historical
pose estimation results to identify potential dynamic features.
Finally, stable features and IMU preintegration results are used
for the pose estimation. And the propagation of the IMU
is responsible for an IMU-rate pose estimation result. Loop
closure is also supported in this system, but this paper pays
more attention to the localization independent of loop closure.

III. METHODOLOGY

This study proposes lightweight, high-quality feature track-
ing and detection methods to accelerate the system. Semantic
and geometry information from the input RGB-D images and
IMU preintegration are applied for dynamic feature recogni-
tion and moving consistency check. The missed detection com-
pensation module plays a subsidiary role to object detection
in case of missed detection. Dynamic features on unknown
objects are further identified by moving consistency check.
The proposed methods are divided into five parts for a detailed
description.

A. Feature Matching

For each incoming image, the feature points are tracked
using the KLT sparse optical flow method [27]. In this paper,
the IMU measurements between frames are used to predict the
motion of features. Better initial position estimation of features
is provided to improve the efficiency of feature tracking by
reducing optical flow pyramid layers. It can effectively discard
unstable features such as noise and dynamic features with
inconsistent motion. The basic idea is illustrated in Fig. 2.

In the previous frame, stable features are colored red, and
newly detected features are colored blue. When the current
frame arrives, the IMU measurements between the current and
previous frames are used to predict the feature position (green)
in the current frame. Optical flow uses the predicted feature
position as the initial position to look for a match feature in the
current frame. The successfully tracked features are turned red,
while those that failed to be tracked are marked as unstable
features (purple). In order to avoid the repetition and aggrega-
tion of feature detection, an orange circular mask centered on
the stable feature is set; the region where the unstable features
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Fig. 2. Illustration of feature tracking and detection. Stable features and
new features are colored red and blue, respectively. The green circles denote
the prediction for optical flow. The successfully tracked features turn red;
otherwise, the features turn purple. The orange and purple dash-line circles as
masks are set for a uniform feature distribution and reliable feature detection.
New feature points are detected from unmasked areas in the current frame.

are located is considered an unstable feature detection region
and masked with a purple circular to avoid unstable feature
detection. According to the mask, new features are detected
from unmasked areas in the current frame and colored blue.

The above means can obtain uniformly distributed features
to capture comprehensive constraints and avoid repeatedly
extracting unstable features on the area with blurs or weak
textures. Long-term feature tracking can reduce the time
consumption with the help of grid-based feature detection in
the following.

B. Grid-based Feature Detection

The system maintains a minimum number of features for
stability. Therefore, feature points need to be extracted from
the frame constantly. This study adopts grid-based feature
detection. Image is divided into grids, and the boundary of
each grid is padded to prevent the features at the edge of
the grid from being ignored; the padding enables the current
grid to obtain adjacent pixel information for feature detection.
Unlike traversing the whole image to detect features, only the
grid with insufficient matched features will conduct feature
detection. The grid cell that fails to detect features due to weak
texture or is covered by the mask will be skipped in the next
detection frame to avoid repeated useless detection. The thread
pool technique is used to exploit the parallel performance of
grid-based feature detection. Thus, the time consumption of
feature detection is significantly reduced without loss.

The FAST feature detector [28] can efficiently extract
feature points but easily treats noise as features and extracts
similar clustered features. Therefore, the ideas of mask in
Sec. III-A and Non-Maximum-Suppression are combined to
select high-quality and uniformly distributed FAST features.

C. Dynamic Feature Recognition

Most feature points can be stably tracked through the
above improvement. However, long-term tracking features on
dynamic objects always come with abnormal motion and
introduce wrong constraints to the system. For the sake of
efficiency and computational cost, a real-time single-stage
object detection method, YOLOv3 [11], is used to detect many

Fig. 3. Illustration of semantic mask setting for dynamic feature recognition
when all pixel’s depth is available (d > 0). The left scene represents when an
objected bounding box’s farthest corner’s depth is bigger than the center to
a threshold ε and a semantic mask with weighted depth is set between them
to separate features on dynamic objects from the background. Otherwise, the
semantic mask is set behind the bounding box’s center with the distance of
ε , shown on the right.

kinds of dynamic scene elements like people and vehicles. If
a detected bounding box covers a large region of the image,
blindly deleting feature points in the bounding box might
result in no available features to provide constraints. Therefore,
semantic-segmentation-like masks are helpful to maintain the
system’s running by tracking features not occluded by dynamic
objects.

This paper combines object detection and depth information
for highly efficient dynamic feature recognition to achieve
performance comparable to semantic segmentation. As the
farther the depth camera measures, the worse the accuracy
is. This problem makes some methods, such as Seed Filling,
DBSCAN, and K-Means, which make full use of the depth
information, exhibit poor performance with a low accuracy
depth camera, as shown in Fig. 5(a). Therefore, a set of
points in the detected bounding box and depth information are
integrated to obtain comparable performance to the semantic
segmentation, as illustrated in Fig. 3.

A pixel’s depth d is available, if d > 0, otherwise, d = 0.
Considering that the bounding box corners of most dynamic
objects correspond to the background points, and the dynamic
objects commonly have a relatively large depth gap with the
background. The K-th dynamic object’s largest background
depth Kdmax is obtained as follow

Kdmax = max
(Kdtl ,

Kdtr,
Kdbl ,

Kdbr
)
, (1)

where Kdtl , Kdtr, Kdbl , Kdbr are the depth values of the Kth
object detection bounding box’s corners, respectively. Next,
the Kth bounding box’s depth threshold K d̄ is defined as

K d̄ =


1
2

(
Kdmax +

Kdc
)
, if Kdmax−Kdc > ε, Kdc > 0,

Kdc + ε, if Kdmax−Kdc < ε, Kdc > 0,
Kdmax, if Kdmax > 0, Kdc = 0,
+∞, otherwise ,

(2)
where Kdc is the depth value of the bounding box’s center;
ε > 0 is a predefined distance according to the most common
dynamic objects’ size in scenes. The depth threshold K d̄ is
defined in the middle of the center’s depth Kdc and the deepest
background depth Kdmax. When the dynamic object has a close
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Fig. 4. Results of missed detection compensation. The dynamic feature recognition results are shown in the first row. The green box shows the dynamic
object’s position from the object detection results. The second row shows the generated semantic mask. With the help of missed detection compensation, even
if object detection failed in (b) and (d), a semantic mask including all dynamic objects could be built.

connection with the background or is behind an object Kdmax−
Kdc < ε , the depth threshold is defined at ε distance from
the dynamic object. If the depth is unavailable, a conservative
strategy is adopted to choose an infinite depth as the threshold.

On the semantic mask, the area covered by the K-th dynamic
object bounding box is set to the weighted depth K d̄; the
area without dynamic objects is set to 0. Each incoming
feature’s depth d is compared with the corresponding pixel’s
depth threshold d̄ on the semantic mask. If d < d̄, the feature
is considered as a dynamic one. Otherwise, the feature is
considered as a stable one. Therefore, the region where the
depth value is smaller than the weighted depth d̄ constitutes the
generalized semantic mask, as shown in Fig. 4 and Fig. 5(b).

(a) Seed Filling (b) Proposed Method

Fig. 5. Results of dynamic feature recognition. The stable features are circled
by yellow. The dynamic feature recognition results generated by Seed Filling
and the proposed method are shown in (a) and (b), respectively. The weighted
depth d̄ is colored gray; the brighter means a bigger value. The feature point
on the white area will be marked as a dynamic feature.

Considering that dynamic objects may exist in the field of
view for a long time, the dynamic features are tracked but
not used for pose estimation, different from directly deleting
dynamic features. According to its recorded information, each
incoming feature point from the feature tracking thread will be
judged whether it is a historical dynamic feature or not. The
above methods can avoid blindly deleting feature points while
ensuring efficiency. It can save time from detecting features on

dynamic objects, has the robustness to the missed detection of
object detection, and recycle false-positive dynamic features,
as illustrated in Sec. III-E.

D. Missed Detection Compensation

Since object detection might sometimes fail, the proposed
Dynamic-VINS utilizes the previous detection results to pre-
dict the following detection result to compensate for missed
detections. It is assumed that the dynamic objects in adjacent
frames have a consistent motion. Once a dynamic object is
detected, its pixel velocity and bounding box will be updated.
Assumed that j is the current detected frame and j−1 is the
previous detected frame, the pixel velocity Kvc j (pixel/frame)
of the Kth dynamic object between frames is defined as

Kvc j = Kuc j
c −Kuc j−1

c , (3)

where Kuc j
c , Kuc j−1

c represent the pixel location of the Kth
object detection bounding box’s center in jth frame and j−
1th frame, respectively. A weighted predicted velocity K v̂ is
defined as

K v̂c j+1 =
1
2
(Kvc j +K v̂c j), (4)

With the update going on, the velocities of older frames will
have a lower weight in K v̂. If the object fail to be detected in
the next frame, the bounding box KBox containing the corners’
pixel locations Kutl ,

Kutr,
Kubl and Kubr, will be updated based

on the predicted velocity K v̂ as follow
K ˆBoxc j+1 = KBoxc j +K v̂c j+1 , (5)

When the missed detection time is over a threshold, this
dynamic object’s compensation will be abandoned. The result
is shown in Fig. 4. It improves the recall rate of object
detection and is helpful for a more consistent dynamic feature
recognition.

E. Moving Consistency Check

Since object detection can only recognize artificially defined
dynamic objects and has a missed detection problem, the state
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Fig. 6. Per-sequence testing results with the OpenLORIS-Scene datasets. Each black dot on the top line represents the start of one data sequence. For each
algorithm, blue dots indicate successful initialization moments, and blue lines indicate successful tracking span. The percentage value on the top left of each
scene is the average correct rate; the higher the correct rate of an algorithm, the more robust it is. The float value on the first line below is average ATE
RMSE and the values on the second line below are T.RPE and R.RPE from left to right, and smaller means more accurate.

Fig. 7. Results of Moving Consistency Check. Features without yellow
circular are the outliers marked by the Moving Consistency Check module.

optimization will still be affected by unknown moving objects
like books moved by people. Dynamic-VINS combines the
pose predicted by IMU and the optimized pose in the sliding
windows to recognize dynamic features.

Consider the kth feature is first observed in the ith image
and is observed by other m images in sliding windows. The
average reprojection residual rk of the feature observation in
the sliding windows is defined as

rk =
1
m ∑

j 6=i

∥∥∥uci
k −π

(
Tc

bTbi
w Tw

b j
Tb

cPc j
k

)∥∥∥, (6)

where uci
k is the observation of kth feature in the ith frame;

Pc j
k is the 3D location of kth feature in the jth frame; Tb

c
and Tw

b j
are the transforms from camera frame to body frame

and from jth body frame to world frame, respecvtively; π

represents the camera projection model. When the rk is over
a preset threshold, the kth feature is considered as a dynamic
feature.

As shown in Fig. 7, the moving consistency check (MCC)
module can find out unstable features. However, some stable
features are misidentified (top left image), and features on
standing people are not recognized (bottom right image). A
low threshold holds a high recall rate of unstable features.
Further, a misidentified unstable feature with more observa-

tions will be recycled if its reprojection error is lower than the
threshold.

IV. EXPERIMENTAL RESULTS
Quantitative experiments1 are performed to evaluate the

proposed system’s accuracy, robustness, and efficiency. Public
SLAM evaluation datasets, OpenLORIS-Scene [29] and TUM
RGB-D [30], provide sensor data and ground truth to evaluate
SLAM system in complex dynamic environments. Since our
system is built on VINS-Mono [2] and VINS-RGBD [25], they
are used as the baselines to demonstrate our improvement.
VINS-Mono [2] provides robust and accurate visual-inertial
odometry by fusing IMU preintegration and feature observa-
tions. VINS-RGBD [25] integrates RGB-D camera based on
VINS-Mono for better performance. Furthermore, DS-SLAM
[15] and Ji et al. [24], state-of-the-art semantic algorithms
based on ORB-SLAM2 [4], are also included for comparison.

The accuracy is evaluated by Root-Mean-Square-Error
(RMSE) of Absolute Trajectory Error (ATE), Translational
Relative Pose Error (T.RPE), and Rotational Relative Pose
Error (R.RPE). Correct Rate (CR) [29] measuring the correct
rate over the whole period of data is used to evaluate the
robustness. The RMSE of an algorithm is calculated only
for its successful tracking outputs. Therefore, the longer an
algorithm tracks successfully, the more error is likely to
accumulate. It implies that evaluating algorithms purely by
ATE could be misleading. On the other hand, considering only
CR could also be misleading.

In order to demonstrate the efficiency of the proposed
system, all experiments of Dynamic-VINS are performed on
the embedded edge computing devices, HUAWEI Atlas200
DK and NVIDIA Jetson AGX Xavier. And the compared
algorithms’ results are included from their original papers.
Atlas200 DK has an 8-core A55 Arm CPU (1.6GHz), 8 GB
of RAM, and a 2-core HUAWEI DaVinci NPU. Jetson AGX
Xavier has an 8-core ARMv8.2 64-bit CPU (2.25GHz), 16 GB
of RAM, and a 512-core Nvidia Volta GPU. And the results
tested on both devices are named Dynamic-VINS-Atlas and
Dynamic-VINS-Jetson, respectively. Yet, to the best of our

1The experimental video is available at https://youtu.be/y0U1IVtFBwY

https://youtu.be/y0U1IVtFBwY


6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

TABLE I
RESULTS OF RMSE OF ATE [m], T.RPE [m/s], AND R.RPE [◦/s] ON TUM RGB-D f r3 walking DATASETS.

Sequence ORB-SLAM2 [4] DS-SLAM [15] Ji et al. [24] Dynamic-VINS
ATE T.RPE R.RPE ATE T.RPE R.RPE ATE T.RPE R.RPE ATE T.RPE R.RPE

f r3 walking xyz 0.7521 0.4124 7.7432 0.0247 0.0333 0.8266 0.0194 0.0234 0.6368 0.0486 0.0578 1.6932
f r3 walking static 0.3900 0.2162 3.8958 0.0081 0.0102 0.2690 0.0111 0.0117 0.2872 0.0077 0.0095 0.4581
f r3 walking rpy 0.8705 0.4249 8.0802 0.4442 0.1503 3.0042 0.0371 0.0471 1.0587 0.0629 0.0595 5.0839
f r3 walking hal f 0.4863 0.3550 7.3744 0.0303 0.0297 0.8142 0.0290 0.0423 0.9650 0.0608 0.0665 5.2116

TABLE II
ABLATION EXPERIMENT RESULTS OF RMSE OF ATE [m], T.RPE [m/s], AND R.RPE [◦/s] ON TUM RGB-D f r3 walking DATASETS.

Sequence W/O CIRCULAR MASK W/O OBJECT DETECTION W/O SEG-LIKE MASK W/O MCC
ATE T.RPE R.RPE ATE T.RPE R.RPE ATE T.RPE R.RPE ATE T.RPE R.RPE

f r3 walking xyz 0.9795 0.6156 6.2692 0.0592 0.0575 1.7181 0.0523 0.0608 1.7474 0.0676 0.0604 1.8020
f r3 walking static 0.4111 0.4052 9.8985 0.3458 0.3136 9.2520 0.0305 0.0194 0.5463 0.0454 0.0229 0.5676
f r3 walking rpy 0.4111 0.4052 9.8985 0.2138 0.1191 5.4847 0.1174 0.0729 5.5470 0.1236 0.0996 5.4196
f r3 walking hal f 1.1218 0.6779 11.521 0.0988 0.0651 5.1839 0.0754 0.0672 5.1952 0.1748 0.1169 5.8525

knowledge, the proposed method is the best-performance real-
time RGB-D inertial odometry for dynamic environments on
resource-restricted embedded platforms.

A. OpenLORIS-Scene Dataset

OpenLORIS-Scene [3] is a real-world indoor dataset with
a large variety of challenging scenarios like dynamic scenes,
featureless frames, and dim illumination. The results on the
OpenLORIS-Scene dataset are shown in Fig. 6, including the
results of VINS-Mono, ORB-SLAM2, and DS-SLAM from
[3] as baselines.

The OpenLORIS dataset includes five scenes and 22 se-
quences in total. The proposed Dynamic-VINS shows the
best robustness among the tested algorithms. In o f f ice scenes
that are primarily static environments, all the algorithms
can track successfully and achieve a decent accuracy. It is
challenging for the pure visual SLAM systems to track stable
features in home and corridor scenes that contain a large
area of textureless walls and dim lighting. Thanks to the IMU
sensor, the VINS systems show robustness superiority when
the camera is unreliable. The scenarios of home and ca f e
contain a number of sitting people with a bit of motion,
and market exists lots of moving pedestrians and objects
with unpredictable motion. And the market scenes cover the
largest area and contain highly dynamic objects, as shown
in Fig. 5. Although DS-SLAM is able to filter out some
dynamic features, its performance is still unsatisfactory. VINS-
RGBD has a similar performance with Dynamic-VINS in
relative static scenes, while VINS-RGBD’s accuracy drops in
highly dynamic market scenes. The proposed Dynamic-VINS
can effectively deal with complex dynamic environments and
improve robustness and accuracy.

B. TUM RGB-D Dataset

The TUM RGB-D dataset [30] offers several sequences con-
taining dynamic objects in indoor environments. The highly
dynamic f r3 walking sequences are chosen for evaluation
where two people walk around a desk and change chairs’

positions while the camera moves in different motions. As
the VINS system does not support VO mode and the TUM
RGB-D dataset does not provide IMU measurements, a VO
mode is implemented by simply disabling modules relevant to
IMU in Dynamic-VINS for experiments. The results are shown
in Table I. The compared methods’ results are included from
their original published papers. The algorithms based on ORB-
SLAM2 and semantic segmentation perform better. Although
Dynamic-VINS is not designed for pure visual odometry,
it still shows competitive performance and has a significant
improvement over ORB-SLAM2.

To validate the effectiveness of each module in Dynamic-
VINS, ablation experiments are conducted as shown in Table
II. The system without applying circular masks (W/O CIRCU-
LAR MASK) from the Sec. III-A and Sec. III-B fails to extract
evenly distributed stable features, which seriously degrades
the accuracy performance. Without the object detection (W/O
OBJECT DETECTION), dynamic features introduce wrong
constraints to impair the system’s accuracy. Dynamic-VINS-
W/O-SEG-LIKE-MASK shows the results that mask all fea-
tures in the bounding boxes. The background features help the
system maintain as many stable features as possible to provide
more visual constraints. The moving consistency check plays
an important role when object detection fails, as shown in the
column W/O-MCC.

C. Runtime Analysis

This part compares VINS-Mono, VINS-RGBD, and
Dynamic-VINS for runtime analysis. These methods are ex-
pected to track and detect 130 feature points, and the frames
in Dynamic-VINS are divided into 7x8 grids. The object
detection runs on the NPU/GPU parallel to the CPU. The
average computation times of each module and thread are
calculated on OpenLORIS market scenes; the results run on
both embedded platforms are shown in Table III. It should be
noted that the average computation time is only to be updated
when the module is used. Specifically, in VINS architecture,
the feature detection is executed at a consistent frequency with
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TABLE III
AVERAGE COMPUTATION TIME [ms] OF EACH MODULE AND THREAD ON OPENLORIS market SCENES.

Platforms Mehods Feature Feature Tracking Dynamic Feature State Optimization Object
Tracking Detection Thread* Recognition Modules† Optimization Thread* Detection*

HUAWEI
Atlas200 DK

VINS-Mono [2] 18.6226 58.2712 57.6301 - 76.5047 85.0247 -
VINS-RGBD [25] 20.6066 58.9413 81.4598 - 75.2211 83.3476 -

Dynamic-VINS 15.5350 1.7645 19.8980 1.3424 74.9509 82.4916 17.5850

NVIDIA Jetson
AGX Xavier

VINS-Mono [2] 4.4990 14.3691 10.9123 - 49.5326 52.4842 -
VINS-RGBD [25] 4.1099 15.4521 11.9251 - 49.0472 52.3388 -

Dynamic-VINS 3.3649 0.9396 5.5416 0.4707 43.0424 47.5377 21.9211
* Tracking Thread, Optimization Thread and Object Detection correspond to the three different threads shown in Fig. 1, respectively.
† Dynamic Feature Recognition Modules sum up the Dynamic Feature Recognition, Missed Detection Compensation, and Moving Consistency

Check modules.

the state optimization thread, which means the frequency of
feature detection is lower than that of Feature Tracking Thread.

On edge computing devices with AI accelerator modules,
the single-stage object detection method is computed by an
NPU or GPU without costing the CPU resources and can
output inference results in real-time. With the same parame-
ters, Dynamic-VINS shows significant improvement in feature
detection efficiency in both embedded platforms and is the
one able to achieve instant feature tracking and detection
in HUAWEI Atlas200 DK. The dynamic feature recognition
modules (Dynamic Feature Recognition, Missed Detection
Compensation, Moving Consistency Check) to recognize dy-
namic features only take a tiny part of the consuming time.
For real-time application, the system is able to output a faster
frame-to-frame pose and a higher-frequency imu-propagated
pose rather than waiting for the complete optimization result.

D. Real-World Experiments

Fig. 8. A compact aerial robot equipped with an RGB-D camera, an autopilot
with IMUs, an onboard computer, and an embedded edge computing device.
The whole size is about 255x165mm.

A compact aerial robot is shown in Fig. 8. An RGB-
D camera (Intel Realsense D455) provides 30Hz color and
aligned depth images. An autopilot (CUAV X7pro) with an
onboard IMU (ADIS16470, 200Hz) is used to provide IMU
measurements. The aerial robot is equipped with an onboard
computer (Intel NUC, i7-5557U CPU) and an embedded
edge computing device (HUAWEI Atlas200 DK). These two
computation resource providers play different roles in the
aerial robot. The onboard computer charges for peripheral
management and other core functions requiring more CPU
resources, such as planning and mapping. The edge computing
device as auxiliary equipment offers instant state feedback and
object detection results to the onboard computer.

(a) HITSZ campus (b) THUSZ campus
Fig. 9. The estimated trajectories in the outdoor environment aligned with
the Google map. The green line is the estimated trajectory from Dynamic-
VINS, the red line is from VINS-RGBD, and the yellow line represents the
loop closure that happened at the end of the dataset.

Large-scale outdoor datasets with moving people and ve-
hicles on the HITSZ and THUSZ campus are recorded by
the handheld aerial robot above for safety. The total path
lengths are approximately 800m and 1220m, respectively. The
dataset has a similar scene at the beginning and the end for
loop closure, while loop closure fails in the THUSZ campus
dataset. VINS-RGBD and Dynamic-VINS run the dataset on
NVIDIA Jetson AGX Xavier. The estimated trajectories and
loop closure trajectory aligned with the Google map are shown
in Fig. 9. In outdoor environments, the depth camera is limited
in range and affected by the sunlight. The dynamic feature
recognition modules can still segment dynamic objects but
with a larger mask region, as shown in Fig. 10. Compared with
loop closure results, Dynamic-VINS could provide a robust
and stable pose estimation with little drift.

Fig. 10. Results of dynamic feature recognition in outdoor environments.
The dynamic feature recognition modules are still able to segment dynamic
objects but with a larger mask region.
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V. CONCLUSIONS

This paper presents a real-time RGB-D inertial odometry
for resource-restricted robots in dynamic environments. Cost-
efficient feature tracking and detection methods are pro-
posed to cut down the computing burden. A lightweight
object-detection-based method is introduced to deal with
dynamic features in real-time. Validation experiments show
the proposed system’s competitive accuracy, robustness, and
efficiency in dynamic environments. Furthermore, Dynamic-
VINS is able to run on resource-restricted platforms to out-
put an instant pose estimation. In the future, the proposed
approaches are expected to be validated on the existing pop-
ular SLAM frameworks. The missed detection compensation
module is expected to develop into a moving object tracking
module, and semantic information will be further introduced
for high-level guidance on mobile robots or mobile devices in
complex dynamic environments.
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