
Distributed Consistent Multi-Robot Semantic Localization and Mapping

Vladimir Tchuiev1 and Vadim Indelman2 ∗

Abstract

We present an approach for multi-robot consistent distributed localization and semantic mapping in an un-
known environment, considering scenarios with classification ambiguity, where objects’ visual appearance generally
varies with viewpoint. Our approach addresses such a setting by maintaining a distributed posterior hybrid belief
over continuous localization and discrete classification variables. In particular, we utilize a viewpoint-dependent
classifier model to leverage the coupling between semantics and geometry. Moreover, our approach yields a con-
sistent estimation of both continuous and discrete variables, with the latter being addressed for the first time, to
the best of our knowledge. We evaluate the performance of our approach in a multi-robot semantic SLAM simu-
lation and in a real-world experiment, demonstrating an increase in both classification and localization accuracy
compared to maintaining a hybrid belief using local information only.

1 Introduction

Deployment of multi-robot systems allow for fast information gathering, and can be used in a wide variety of
applications, for example: search and rescue, autonomous driving, and agriculture. A significant part of ongoing
research is multi-robot Simultaneous Localization and Mapping (SLAM), where a group of robots localize themselves
and cooperatively map the environment. Multi-robot SLAM is utilized in a variety of navigation tasks such as
cooperative search and rescue, underwater navigation, or warehouse management. SLAM itself is a widely researched
problem (see e.g. [1]) in the robotics community. In particular, semantic SLAM reasons about objects within the
environment with richer information, such as object’s class, compared to geometric SLAM. Yet, often when observed
from certain viewpoints, inferring the correct class of an object can be challenging, i.e. an object may visually appear
similar to representative objects from different classes. This induces a viewpoint dependency for classifier outputs
and requires information from different viewpoints for maintaining a belief over classification variables.

In this paper we present the first distributed multi-robot approach for semantic localization and mapping in
the above setting. Our approach maintains a hybrid belief over continuous variables (object and camera poses)
and discrete variables (object classes), while considering the coupling between classification and localization, and
enforcing consistent, double-counting-free estimation.

In contrast, existing approaches for multi-robot semantic SLAM utilize most-likely class measurements to solve
data association. Moreover, these approaches do not maintain a belief over classification variables, nor model the
coupling between semantic and geometric information.

As each robot uses information from other robots, it must not use measurements more than once, otherwise it
will lead to erroneous and overconfident estimates, i.e. it will double count information. To address this key problem,
multiple approaches were proposed, all considering continuous variables: from complex book-keeping (e.g. [2]) to
information removal techniques (e.g. [3]). In this work we address consistent inference of a hybrid belief that consists
of continuous and discrete variables. To the best of our knowledge, the latter has not been addressed thus far.

To summarize, our main contributions are as follows. (i) we contribute a multi-robot approach that maintains a
hybrid belief over robot and object poses, and object classes in a distributed setting, while addressing the coupling
between semantic and geometric information via viewpoint-dependent classifier model; (ii) we address estimation
consistency aspects considering both continuous and discrete random variables; (iii) we demonstrate the strength of
this approach in simulation and real-world experiment, comparing to single robot and distributed multi-robot with
double counting. This paper is accompanied with supplementary material which provides further details and results.

∗The authors are with the Department of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
{vovatch1, vadim.indelman2}@technion.ac.il. This work was partially supported by the Israel Ministry of Science & Technology
(MOST).
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Parameters
x Robot pose
xo
n, cn n’th object pose and class
Xo

k Poses of objects observed up to time k
Xo

new,k Poses of objects newly observed at time k
Xk Robot and object poses up to time k
Ck Object seen up to time k class realization
Cnew,k Classes of objects newly observed at time k
Zk Measurements at time k including geometric and semantic
Mk Motion model from xk−1 to xk

Lk Measurement likelihood of Zk

Hk History of measurements and action up to time k
bk Conditional continuous belief at time k
wk Discrete weight at time k
ξk Continuous object marginal belief at time k
φk Discrete marginal belief at time k
Nk(·) Number of objects observed by a robot or a group up to time k
Superscripts
r States of robot r
R States of robots communicating with r, directly and indirectly, including itself

Table 1: Main notations used in the paper.

2 Related Work

Various works have utilized sequential classification with a classifier model for a single robot. Omidshafiei et al. [4]
presented a sequential classification approach that used a Dirichlet distributed classifier model. The classifier model
was not modeled as viewpoint-dependent. Kopitkov and Indelman [5] presented an approach to train a viewpoint
dependent classifier model. Feldman and Indelman [6] proposed a sequential object classification that utilizes a
viewpoint dependent classifier with known relative poses a-priori. Tchuiev et al. [7] maintained a hybrid belief with
a viewpoint dependent classifier to disambiguate between data association realizations. These works, [7], address
only sequential classification and do not consider the coupled problem with SLAM. To our knowledge, our work is
the first to address the coupled problem in a distributed setting.

There are different approaches for distributed multi-robot SLAM; Walls et al. [8] proposed a distributed geometric
SLAM approach that communicates factors between robots. Other approaches for geometric SLAM include Extended
Kalman Filter (such as [9]) or Particle Filter based methods (such as [10]). Choudhary et al. [11] presented an
approach for distributed semantic SLAM which communicates relative poses between robots and uses object class
information for data association. The geometric approaches do not reason about object classes, while the semantic
approaches consider only most likely classification, i.e. do not maintain a belief over class variables. Our semantic
approach maintains a belief over object classes and considers the coupling between the continuous and discrete
variables.

Consistent estimation is a key issue in a distributed setup, with multiple approaches proposed to address it. Bahr
et al. [2] proposed a distributed algorithm for under-water vehicles, with an approach for using all measurements
without information loss. Indelman et al. [12] proposed a graph based method that calculated cross-covariance terms
that represent the correlation between measurements from different robots, utilizing it for consistent estimation.
Cunningham et al. [13] presented the DDF-SAM distributed SLAM algorithm that avoided double counting by
creating two maps for each robot: local and global. The global map is updated with condensed local maps. A later
work by Cunningham et al. [3] introduced DDF-SAM2, where each robot maintains only the global map. To avoid
double counting, the old information during communication is filtered out via down-dating by each robot. These
approaches consider continuous random variables. In contrast, we reason about discrete variables as well.

3 Notations and Problem Formulation

Consider a group of robots operating in an unknown environment represented by object landmarks. All of the robots
aim to localize themselves, and map the environment geometrically and semantically within a distributed multi-robot
framework. In this work we consider a closed-set setting, where each of the objects is of one of M possible classes.
The number of objects in the environment prior to the scenario is unknown.

We denote states inferred by robot r with a superscript �r. Set R is the set of all robots communicating with
robot r (including itself), either directly, or relayed through other robots. Note that R can increase its size with time.
Let xk denote robot pose at time k, xon and cn denote the n’th object pose and class respectively. Let X o .

= {xon}n
and C

.
= {cn}n denote poses and classes of objects, and Xk .

= {x0:k,X ok } denotes all poses up to time k. Subscript
new, k representing the objects newly observed at k.

Let Zrk be the set of measurements robot r receives at time k by its own sensors. Zrk is composed of geometric and
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semantic measurements Zgeo,rk , and Zsem,rk respectively. We assume independence between geometric and semantic
measurements, as well as between different time steps.

We assume Gaussian and known identical motionMk
.
= P(xk|xk−1, ak−1) and geometric P(zgeo,rk |xrk, xo,r) models

for all robots. At each time step, there is a subset of object poses involved in the geometric and classifier model
that is determined by data association (DA). Unlike our previous work [7], herein, DA is assumed to be externally
determined.

Additionally, we use a viewpoint-dependent classifier model that ”predicts” classification scores (a vector of
class probabilities). This model couples classifier scores with viewpoint dependency between object and camera; this
coupling can be used to improve pose inference performance [7]. The viewpoint dependency is modeled as a Gaussian
with parameters that depend on the relative viewpoint from the camera to the object xo,r 	 xrk and object’s class c:

P(zsem,rk |xrk, xo, c)=N (hc(x
r
k, x

o,r),Σc(x
r
k, x

o,r)), (1)

where hc(·) and Σc(·) can be learned offline via a Gaussian Process (GP) [6] or a deep neural network [5]. Note that
for M candidate classes, M viewpoint-dependent models have to be learned.

Let Lrk
.
= P(Zrk |X rk , Crk) be the local measurement likelihood of r that consists of geometric and classifier models:

Lrk
.
=

∏

xo,r,cr

P(Zgeo,rk |xrk, xo,r)P(Zsem,rk |xrk, xo,r, cr), (2)

where xo,r ∈ X o,rβk
and cr ∈ Crβk

; the term βk represents the local DA of robot r at time k, i.e. the correspondences

between observations and object IDs. Denote X o,rβk
the set of all poses of objects that observed by r at time k, and

similarly denote Crβk
for object classes. For the reader’s convenience, Table 1 presents the important notations used

in the paper, some will be defined in the next section.

Problem formulation For each robot r we aim to maintain the following hybrid belief:

P(XRk , CR|HRk ), (3)

where HRk
.
= {Zr′1:k, a

r′
0:k−1}r′∈R is the history of measurements of robot r itself and transmitted information to r,

as well as actions from all robots in R. The belief in Eq. (3) is a hybrid belief over both continuous (camera and
object poses), and discrete (object classes) random variables. We aim to update this hybrid belief per each robot in
a recursive manner, using both local measurements and information sent from other robot in the neighborhood, as
well as sending information by itself. We aim to keep estimation consistency by avoiding double counting, i.e. using
every measurement only once.

4 Approach

We present a framework for distributed classification, localization, and mapping. As with many multi-robot dis-
tributed frameworks, over-confident estimations, due to double counting, is a key issue; We propose a framework
that simplifies the book-keeping that allows relaying of information (e.g. robot 1 sends information to robot 2, then
2 sends to 3 information that also includes the received from robot 1). This framework requires the maintenance of
a local belief P(X rk , Cr|Hrk) per each robot that can be sent and relayed to other robots. From multiple local beliefs
a distributed belief can be constructed. The local beliefs are stored by each robot, and updated accordingly when
new information arrives, and the receiving robot filters out the old information, thus avoiding double counting.

In the next sections we derive a recursive formulation for maintenance of the local belief, the distributed hybrid
belief, and the information stack each robot holds and transmits.

4.1 Local Hybrid Belief Maintenance

Our formulation for maintaining local hybrid beliefs builds upon our previous work [7], with the main differences
being that here we assume the DA is solved, and the number of objects is unknown a-priori. In this section we
present an overview of this approach.

We maintain the hybrid belief of robot r only from local information. This belief can be split into continuous
and discrete parts as in:

P(X rk , Crk |Hrk) = P(X rk |Crk ,Hrk)︸ ︷︷ ︸
brk

P(Crk |Hrk)︸ ︷︷ ︸
wr

k

. (4)
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To maintain this hybrid belief, we must maintain a set of continuous beliefs conditioned on the class realization of
all objects observed in the scene by robot r thus far.

The continuous part can be updated as follows:

brk ∝ brk−1 · Lrk · Mr
k · P(X o,rnew,k), (5)

where P(X o,rnew,k) =
P(Xo,r

k )

P(Xo,r
k−1)

is the prior over object poses newly observed at time k. As opposed to [7], this formulation

also supports an increasing number of objects known at each time step, with both X o,rk and Crk increasing in dimension.
Note that in general brk is different for each class realization, as models (1) are different for each class.

The discrete part is the weight associated to its corresponding continuous belief. As our measurement models
depend on continuous variables, we use Bayes rule on P(Crk |Hrk) and marginalize the measurement likelihood as
follows:

wrk ∝ wrk−1P(Crnew,k)

∫

X r
k

Lrk · brk−1 · Mr
kdX rk , (6)

where P(Crnew,k) =
P(Cr

k)
P(Cr

k−1) is the prior over classes of new objects locally observed by r at time k. We compute the

integral in Eq. (6) by sampling the continuous variables that participate in P(Zrk |X rk , Crk), i.e. the last robot pose xrk
and the poses of observed objects X o,rβk

at time k. These variables are sampled from the propagated belief brk−1 ·Mr
k.

Variables that do not participate in Lrk can be marginalized analytically.

4.2 Distributed Hybrid Belief Maintenance

In this section we extend the formulation presented in Sec. 4.1 to include updates from other robots, considering
a distributed multi-robot setting. As will be seen, our formulation uses each measurement only once, thus keeping
estimation consistency and avoiding double counting. Similarly to (4), we factorize the distributed hybrid belief (3)

P(XRk , CRk |HRk ) = P(XRk |CRk ,HRk )︸ ︷︷ ︸
bRk

P(CRk |HRk )︸ ︷︷ ︸
wR

k

. (7)

As in the single robot case, maintaining this belief requires managing multiple hypotheses of class realizations. Com-
pared to the single robot case, the number of objects observed will be equal or greater for distributed belief, therefore
the number of possible realizations increases as well. Importantly, information transmitted by other robots im-
pacts both bRk and wRk . Furthermore, the classifier viewpoint-dependent model induces coupling between localization
uncertainty and classification of different robots.

We present a recursive formulation for maintaining each of the parts in (7). The distributed measurement history
HRk can be split to a prior part, and a new part, defined as ∆HRk , that consists of measurements and actions from
time k, s.t: HRk = HRk−1∪∆HRk . Similarly, let Hrk

.
= Hrk−1∪{Zrk , ark−1} for the single robot case. Note information in

∆HRk transmitted by other robots can potentially be from earlier time instances (as each robot during communication
transmits to robot r its own stack of local beliefs of other robots, see Section 4.3). Crucially, each measurement must
be used once to avoid double counting. We also denote history without local measurements and action at time k as

HR−k
.
=HRk \{Zrk , ark−1} , ∆HR−k

.
=∆HRk \{Zrk , ark−1}. (8)

Using the above notations, one can observe HR−k = HRk−1 ∪ ∆HR−k . Next, we detail our approach for maintaining

both the conditional continuous part bRk and the discrete part wRk recursively for a realization of object classes CRk .

4.2.1 Maintaining bRk

Using Bayes rule, we rewrite bRk as:
bRk = η · Lrk · bR−k (9)

where η
.
= P(Zrk |Crk ,HRk \Zrk)

−1
is a normalization constant the does not participate in inference of the continuous

belief. The local measurement likelihood, Lrk, is defined in Eq. (2).
The term bR−k

.
= P(XRk |CRk ,HRk \Zrk) is the distributed propagated belief that is conditioned on information

transmitted by other robots at time k, and on the latest action of robot r but not on its local measurement. During
update, bR−k is saved to be used in maintenance of wRk , as seen in the next subsection. Using chain rule, we can
extract the motion model of the latest action as well:

bR−k =Mr
k · P(XRk \xrk|CRk ,HR−k ). (10)
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We can express P(XRk \xrk|CRk ,HR−k ) in terms of the distributed continuous prior bRk−1
.
= P(XRk−1|CRk−1,HRk−1), and

the new information received from other robots (see supplementary material Sec. 2):

P(XRk \xrk|CRk ,HR−k ) = bRk−1 ·
P(X o,Rk |Co,Rk ,∆HR−k )

P(X o,Rk−1)
(11)

Finally, we substitute Eq. (11) to Eq. (10) and in turn to Eq. (9), and get the following recursive formulation:

bRk ∝ bRk−1 · Lrk · Mr
k · P(X o,Rnew,k)

P(X o,Rk |Co,Rk ,∆HR−k )

P(X o,Rk )
, (12)

where the measurement likelihood Lrk accounts for the new local measurement, Mr
k accounts for the latest action of

robot r, and P(X o,Rk |Co,Rk ,∆HR−k ) (shown in blue) accounts for new information sent to r by other robots in R at

time k. This pdf is only over object poses (X o,Rk ), while the other robots’ poses are marginalized out. Thus, robots
communicate the environment states, which are implicitly affected by the robots’ pose estimation. Computation of
the blue part is further discussed in Sec. 4.3. Compared to the local belief update (5), the blue part is the main

difference. The expression P(X o,Rnew,k) represents pose prior of objects newly known by r at time k.

The distributed belief has at worst MNk(R) continuous beliefs with corresponding weights, where the number
of objects Nk(R) known by r can increase with time. Naturally, a multi-robot system will observe more objects
than a single robot, therefore the computational burden for distributed belief will be larger than for the local belief.
Therefore, the significance of pruning beliefs with small weight grows. We set a threshold for the ratio between a
weight and the largest weight in the distributed hybrid belief.

4.2.2 Maintaining wRk

To maintain wRk , we use a similar derivation to the weight update via local information only, presented in Sec. 4.1.
We use Bayes rule to extract the last local measurement likelihood:

wRk = η · wR−k · P(Zrk |CRk ,HRk \Zrk), (13)

where wR−k
.
= P(CRk |HRk \Zrk) is the posterior distributed weight without accounting for the latest local measure-

ments, and η
.
= P(Zrk |HRk \Zrk)

−1
is a normalization constant that is identical in all realizations of CRk , thus does

not participate in weight inference. As we use a viewpoint dependent classifier model that utilizes the coupling
between relative viewpoint and object class, we need to marginalize P(Zrk |CRk ,HRk \Zrk) over the involved poses in
this likelihood: the last robot pose xrk, and poses of objects observed at time k. We denote the latter by X o,rβk

, and

to shorten notations denote X rinv,k
.
= {xrk,X r,kβk

}, and by ¬X rinv,k. Thus, P(Zrk |CRk ,HRk \Zrk) is marginalized as

P(Zrk |CRk ,HRk \Zrk) =

∫

X r
inv,k

Lrk · P(X rinv,k|Crk ,HRk \Zrk)dX rinv,k, (14)

where P(X rinv,k|Crk ,HRk \Zrk) is computed by marginalizing bR−k over the uninvolved variables ¬X rinv,k, with XRk =
X rinv,k ∪ ¬X rinv,k, as

P(X rinv,k|Crk ,HRk \Zrk) =

∫

¬X r
inv,k

bR−k d¬X rinv,k. (15)

The propagated distributed belief bR−k is given to us from the continuous belief with Eq. (10), and includes the
external information, shown in blue.

In practice, we sample the involved variables X rinv,k in the current measurement likelihood and compute its value.

As bRk and Lrk are Gaussian, η does not play a role in the sampling process. Despite the classifier outputs being
modeled as Gaussian, we integrate over poses; In the general case, expectation and covariance of the classifier model
are a function of the relative viewpoint, thus we need to sample X rinv,k as presented in Sec. 4.1 at Eq. (6).

The other term we will address from Eq. (13) is wR−k . We express wR−k in terms of wRk−1:

wR−k ∝ wRk−1 · P(CRk−1)
−1 · P(CRk |∆HRk \Zrk). (16)

Finally, we substitute Eq. (14) and (16) to Eq. (13) to reach our final recursive form for the discrete belief update:

wRk ∝ wRk−1 · P(CRnew,k)
P(CR

k |∆HR
k \Zr

k)

P(CR
k )

∫
X r

inv,k
Lrk·

·P(X rinv,k|Crk ,HRk \Zrk)dX rinv,k,
(17)
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with P(X rinv,k|Crk ,HRk \Zrk) computed via Eq. (15). This is a recursive formulation that includes the discrete prior

wRk−1, external updates for the class probability from other robots (shown in red), and the external updates for the
continuous belief contained within the integral.

Remark : One might be tempted to infer the class of each object separately, but it is not accurate due to the
coupling between relative viewpoint and object class, as each object class is possibly implicitly dependent on all
poses: robot and objects (see supplementary material Sec. 3).

4.3 Communication Between Robots

In Sec. 4.2 we presented a framework to maintain a hybrid belief of r given information obtained from other robots
in R. That information was represented by the continuous blue expression in Eq. (12) and implicitly in Eq. (17),
and the discrete red expression in Eq. (17). In this section, we present our approach for computing these parts, thus
describing the management of this information and what each robot sends when communicating. We aim to achieve
two goals:

1. Simple double counting prevention when maintaining the distributed belief without complex bookkeeping.

2. Distributed belief inference also via data not directly transmitted (e.g. robot r1 sends data to r2, r2 to r3, and
r3 is using data from r1).

As will be shown next, the blue and red terms in Eqs. (12) and (17) can be expressed via local information transmitted
by different robots in R to robot r. To that end, each robot r maintains and broadcasts a stack of local hybrid beliefs
of other robots it is aware of. In contrast to (4), these local beliefs are marginal beliefs over object poses and classes,
i.e. robot poses are marginalized out. Each slot for robot r′ in the stack of robot r contains Nk(r′) continuous and

discrete marginal beliefs (defined below as ξr,r
′

k and φr,r
′

k ), one pair per class realization, following a factorization
similar to (4). Additionally, each slot includes a time-stamp that indicates on what data the local hybrid belief is

conditioned upon. All in all, every stack contains
∑|R|
i=1Nk(ri) continuous and discrete beliefs. Eq. (18) presents the

stack of robot r as a set of slots, where each slot contains a hybrid belief of a particular robot ri ∈ R over object
poses and classes, normalized by their priors.

Srk
.
=

{(
P(X o,riki

|Criki ,H
ri
ki

)P(Criki |H
ri
ki

)

P(X o,riki
)P(Criki )

, ki

)}

ri∈R
, (18)

where ki is the time-stamp when robot r received information about ri. In general, time ki is not synchronized
with k. The marginal continuous and discrete beliefs that robot r has about robot ri ∈ R are denoted ξr,rik

.
=

P(X o,riki
|Criki ,H

ri
ki

)/P(X o,riki
) for the continuous part, and φr,rik

.
= P(Criki |H

ri
ki

)/P(Criki ) for the discrete part.
With these definitions of ξr,rik and φr,rik , it is possible to show that the blue part in Eq. (12) can be expressed as

(see full derivation in supplementary material)

P(X o,Rk |CRk ,∆HR−k )

P(X o,Rk )
=
∏

ri∈R

ξr,rik

ξr,rik−1

(19)

Similarly, the red term in Eq. (17) can be expressed as (see full derivation in supplementary material):

P(CRk |∆HRk \Zrz )

P(CRk )
=
∏

ri∈R

φr,rik

φr,rik−1

. (20)

Eqs. (19) and (20) present the external update as a product of local beliefs, with only the updates from k − 1 for
robot r are present. This formulation avoids double counting by removing old information, ξr,rik−1 and φr,rik−1, in each
communication and uses measurements only once. Specifically for ξr,rik−1, we use the approach presented in [3]. Doing
so by maintaining stacks of individual information does not require complex book-keeping, only time-stamps for each
slot; Thus we fulfill the first goal. Robots can also relay information transmitted to them, thus the distributed belief
can be updated by information from robots that did not transmit to the inferring robot, thus fulfilling the second
goal.

Robot ri sends the entire stack during information broadcast. When robot r receives information, it integrates
the broadcast in as follows: recall that ri’s stack is divided to slots, with a time stamp per each slot. Robot r
compares time stamps with the received information per slot, and replaces the information within the slot if the
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received time stamps is newer. If r receives information from more than one other robot at the same time, it will
select the newest information per slot. This procedure is dependent on the relations between time-stamps, thus it is
not necessary to synchronize time between the robots.

In the following section we discuss double counting aspects of discrete random variables, corresponding to Eq. (20).

4.4 Double Counting of Discrete Random Variables

Double counting leads to over-confident estimations, and if an erroneous measurement is counted multiple times, it
may lead to a large error in the state’s estimation in turn. While the implications of double counting on continuous
random variables (e.g. camera poses and objects) have been investigated, it is not so for discrete random variables.
Both cases have a common thread: measurements counted multiple times will ’push’ the posterior estimation to a
certain direction while leading to lower uncertainty than when double counting is appropriately avoided (i.e. each
measurement is used at most once). In the continuous Gaussian case, it manifests in a covariance matrix with smaller
eigenvalues. Comparatively, in the discrete case the highest probability category will have its probability increase
while the probability of not being in this category decreases.

To illustrate the above, consider an example with a categorical random variable c; we receive two sets of data
Za = {z1, z2}, and Zb = {z2, z3}, with a common measurement z2. Considering a measurement likelihood P(z|c),
the posterior over c is (see e.g. Bailey et al. [14]):

P(c|Za, Zb)∝P(c)P(Za, Zb|c)=P(c)
P(z1|c)P(z2|c)2P(z3|c)

P(z2|c)
. (21)

If the common data (measurement z2) is not removed via the denominator in Eq. (21), it will be double counted.
Compared to Eq. (20), the above nominator and denominator correspond, respectively, to the terms φr,rik and φr,rik−1.

Denote P(z2|c = i)
.
= ai, and to shorten the notations P(c = i)P(z1|c = i)P(z3|c = i)

.
= Li. The normalized

posterior can be written as:

P(c = i|Za, Zb) =
aiLi∑m
j=1 ajLj

=
a2
iLi∑m

j=1 ajLj · ai
(22)

where m is the number of candidate categories. Double counting, i.e. without the denominator in Eq. (21), gives

after normalization
a2iLi∑m

j=1 a
2
jLj

.

The largest ai is denoted amax, with imax being the category corresponding to amax, and subsequently the product
of all other terms for imax is denoted Lmax. Double counting of P(z2|ci) will increase the probability of imax:

P(c = imax|Za, Zb) =
a2
maxLmax∑m

j=1 ajLj · amax
≤ a2

maxLmax∑m
j=1 a

2
jLj

. (23)

Similarly, it can be shown that with higher power (i.e. counting the data more) can increase the posterior probability
even further; In addition, the reverse can be shown for the lowest probability in a. This increase in influence can
be disastrous if the category of the highest probability likelihood is not correct, possibly leading to pruning of the
correct class hypothesis when maintaining the hybrid belief (3).

A visualization can be seen in Fig. 1, where there are 4 categories with uninformed prior and a measurement
likelihood; in Figs. 1a, 1b and 1c the likelihood is counted once, twice and thrice respectively. Evidently, the strongest
category’s probability (cat. 3) is increased when counted more times while all other have their probability diminish.

5 Experiments

We evaluated our approach in a multi-robot SLAM simulation and with real-world data where we consider an
environment comprising several scattered objects observed by multiple mobile cameras from different viewpoints.
Fig. 2a and Fig. 5a present the ground truth for simulation and experiment respectively. Our implementation uses
the GTSAM library [15] with a python wrapper. The hardware used is an Intel i7-7700 processor running at 2.8GHz
and 16GB RAM, with GeForce GTX 1050Ti with 4GB RAM.

5.1 Simulation Setting, Compared Approaches and Metrics

Consider 3 robots, denoted r1, r2, and r3, moving in a 2D environment represented by N = 15 scattered objects.
We consider a closed-set setting and assume, for simplicity, M = 2 classes, where each object can be one of the two.
In this scenario the maximum number of possible class realizations is MN = 32768.
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Figure 1: Conceptual demonstration of the effects of double counting on discrete random variables. Consider 4 possible categories with an
uninformative prior over them. (a) is the measurement likelihood for the categories. Considering the uninformative prior, it is the posterior
distribution as well. (b) and (c) counts the same likelihood twice and thrice respectively.

Our approach is evaluated for both classification, and pose inference accuracy, as we maintain a hybrid belief.
We consider an ambiguous scenario where the classifier model cannot distinguish between the two classes from a
certain viewpoint, thus requiring additional viewpoints to correctly disambiguate between the two classes. The robots
communicate between themselves, increasing performance for discrete and continuous variables, i.e. classification and
SLAM. Additionally, the distributed setting extends the sensing horizon, allowing robots to reason about objects
that are not directly observed, while keeping estimation consistency.

Each robot only communicates with robots within a 10 meter communication range, relaying the local information
stored in its stack. In particular, initially r2 and r3 share information with each other, then r1 and r2, relaying
information from r3 through r2. For a complete table of communication in the considered scenario, see supplementary
material. Further, we assume the robots share a common reference frame (this assumption can be relaxed as in [16]).
We simulate relative pose odometry and geometric measurements, and we crafted a classifier model that simulates
perceptual aliasing.

In the evaluation we compare between three approaches: local estimations, our approach, and our approach with
double counting, i.e. ξr,rik−1 = 1 and φr,rik−1 = 1 in Eq. (19) and (20) respectively. In all benchmarks we average the
results for each robot. The parameters are presented in the supplementary material Sec. 6.
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Figure 2: Simulation figures; (a) present the ground truth of the scenario. Red points represent the initial position of the robots, with different
colored lines represent different robots. The green points represent the object poses. (b) and (c) represent the average x̃wavg for robot and object
position respectively as a function of time. (d) and (e) present the corresponding square-root of the position covariance for the robot and object
average respectively.

As explained in Sec. 4.4, when double counting occurs, the posterior class probability will converge to extreme
results quicker, and may result on either completely right or wrong classifications. Therefore, reasoning about a
single run is insufficient, and a statistical study is required. To quantify classification accuracy, we sample 100 times
different geometric and semantic measurements, and perform a statistical study over the results. For that, we use
mean square detection error (MSDE) averaged over all objects, robots, and runs (also used by Teacy et al. [17] and
Feldman & Indelman [6]). We define MSDE per robot and object as follows:

MSDE
.
=

1

m

m∑

i=1

(Pgt(c = i)− P(c = i|HRk ))2, (24)

where Pgt(c = i) represents the classification ground truth and can be either 1 for the correct class or 0 for all other
classes. Therefore MSDE = 1 for completely incorrect classification, thus allowing us to perform statistical study
of the effects of double counting of discrete random variables. To quantify localization accuracy, we use estimation
error x̃wavg which is the weighted average of Euclidean distance between the estimated and ground truth poses.
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Figure 3: (a) presents average MSDE for the robots over 100 runs with different measurements. The rest are figures for time k = 60 of r1. (b)
and (d) represent multiple SLAM hypotheses for local and distributed setting respectively; Black dots with gray ellipse represent object pose
estimation, red & blue signs with red ellipse represent robot pose estimation. Green and red points represent ground truth for object and robot
positions respectively. (c) and (e) represent class probabilities for c = 1 for objects observed thus far for local and distributed respectively. The
X notations represent ground truth (1 for class c = 1, 0 for class c = 2).

5.2 Simulation Results

Fig. 2 presents results for continuous variables, i.e. robot and object poses. Figs. 2b and 2c show a clear advantage
to our approach, where the localization error is the smallest for robots and objects respectively after the first 10 time
steps. In Figs. 2d and 2e the estimation covariance is presented, where the double counted approach has the smallest
values as expected. Fig. 2e shows ’spikes’ in the average objects’ position covariance; these correspond to new object
detections where the localization uncertainty is still high.

Fig. 3 visualizes classification and estimations at time k = 60 for local only and for distributed beliefs of robot r2.
At that time, robot r2 communicated earlier with r3, and for the first time communicates with r1. When comparing
Fig. 3b (local) to Fig. 3d (distributed), the number of possible class realizations is reduced. In addition, the estimate
of r2’s pose, as well as the objects, is more certain and accurate. When comparing Figs. 3c and 3e, the latter presents
a larger map, i.e. more objects observed, and the class estimations (classification) are closer to the ground truth.

Fig. 3a presents the average MSDE over 100 runs, where as a whole our approach shows lower MSDE values, i.e.
statistically stronger classification results. In supplementary material we present additional classification and SLAM
results.

5.3 Experiment Setting

In our scenario 3 robots are moving within an environment with multiple objects within it. We scattered 6 chairs
within the environment and photographed them using a camera on a stand, keeping a constant height. In Fig. 4a
we show an image from the scenario with the corresponding bounding box. The chairs were detected with YOLO3
DarkNet detector [18], which provided bounding boxes, and then each bounding box was classified using a ResNet50
convolutional neural network [19]. We considered 3 candidate classes out of 1000: ’barber chair’, ’punching bag’,
and ’traffic light’, as c = 1, 2, 3 respectively with c = 1 being the ground truth class. We trained three viewpoint-
dependent classifier models using three sets of relative pose and class probability vector pairs, with the spatial
parameters being the yaw and pitch angles from camera to object; The models are presented in the supplementary
material Sec. 9. For the ground truth class we photographed an objects from multiple viewpoints, and then classified
it using ResNet 50. For the other two classifier models, we sampled class probability vectors with larger probability
for the corresponding class of the model, and used the same relative poses as the first model. Fig. 4b, 4c presents
expectation of c = 1 for two of the classifier models as a function of the spatial parameters.

In the experiment (deployment phase), we utilized both geometric and semantic measurements, using the corre-
sponding (learned) measurement likelihood models. Relative pose geometric measurements for odometry and between
camera and objects were generated by corrupting ground truth with Gaussian noise, while the semantic measure-
ments are provided by YOLO3 and ResNet from real images. For parameter details, see supplementary material
Sec. 9. The same metrics as the simulation are used here.

5.4 Experimental Results

Fig. 5 presents SLAM results for the same benchmarks as in Fig. 2. Figs. 5b and 5c present an average x̃wavg over all
robots for robot and object positions, respectively. In general, the advantage of our approach is evident with lower
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Figure 4: (a) is an image used in the experiment, with corresponding the bounding box. (b) and (c) are class probability expectation for class
c = 1 for classifier models of c = 1 and c = 2 respectively.
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Figure 5: Experiment figures; (a) present the ground truth of the scenario. Red points represent the initial position of the robots, with different
colored lines represent different robots. The green points represent the object poses. (b) and (c) represent the average x̃wavg for robot and object
positions respectively as a function of time for the experiment. (d) and (e) present the corresponding square-root of the position covariance for
the robot and object average respectively.

errors. In addition, Figs. 5d and 5e present a similar pattern to Figs. 2d and 2e, respectively, where the covariance
of our approach is smaller than the single robot case, but larger than the over-confident double counting case.

For classification results, Fig. 6a shows the average MSDE per robot as a function of time step, where eventually
our approach out-performs both the single robot and the double counting cases, with higher probability for the
correct class realization. In Fig. 6, SLAM and classification results for Robot 2 at time step k = 35 are presented,
showing similar resulting trends to Fig. 3. Comparing Fig. 6b and Fig. 6d, the later shows more accurate SLAM
compared to the former, with less class realizations. In addition, compared to Fig. 6e, Fig. 6c shows more accurate
classification with an additional object classified.

For additional results at different time steps, refer to the supplementary material Sec. 10-11 and multimedia
submission.
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Figure 6: (a) presents average MSDE for the robots over 100 runs with different measurements. The rest are figures for time k = 35 of r2. (b)
and (d) represent multiple SLAM hypotheses for local and distributed setting respectively; Black dots with gray ellipse represent object pose
estimation, red & blue signs with red ellipse represent robot pose estimation. Green and red points represent ground truth for object and robot
poses respectively. (c) and (e) represent class probabilities for c = 1 and c = 2 for objects observed thus far for local and distributed respectively,
with blue and orange for classes 1 and 2 respectively. In this case, the ground truth class of all objects is c = 1.
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6 Conclusions

We presented an approach for multi-robot semantic SLAM in an unknown environment. In this approach a distributed
hybrid belief is maintained per robot using local information transmitted to other robots as a ’stack’, designed to keep
estimation consistency without complex book-keeping, both for continuous and discrete states. We utilized a view-
point dependent classifier model to account for the coupling of relative pose between robot and object, and object’s
class. In simulation and real-world experiment we showed that our approach improves classification and localization
performance while avoiding double counting. Future work will incorporate data association disambiguation.
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Supplementary Material

Technical Report ANPL-2020-01

Vladimir Tchuiev and Vadim Indelman

1 Supplementary Derivation

We present a relation that is used in equation derivation; Let A be a random variable conditioned on the set {Bi}
of random variables Bi that are independent from each other. By using Bayes Law, we can split the conditional
probability P(A|{Bi}) to a product of conditional probabilities:

P(A|{Bi}) =
P({Bi}|A)P(A)

P({Bi})
=

∏
i P(Bi|A)∏
i P(Bi)

P(A). (1)

Using Bayes Law again on each element in the product, we reach the following expression:

P(A|{Bi}) =
∏

i

(
P(A|Bi)

P(A)

)
P(A). (2)

This allow to express a random variable as a multiplication of conditionals, which will be useful to separate local
and external measurements.

2 Derivation of P(XR
k \xrk|CR

k ,HR−
k )

Recall splitting HR−
k into prior history HR

k−1 and non-local measurements & actions:

HR−
k = HR

k−1 ∪∆HR−
k . (3)

We then use the above definition and relation (2) to split P(XR
k \xrk|CR

k ,HR−
k ) into a product of two beliefs, one that

depends on prior history, and one that depends on external new measurements:

P(XR
k \xrk|CR

k ,HR−
k ) = P(XR

k \xrk|CR
k )l

P(XR
k \xrk|CR

k ,∆HR−
k )

P(XR
k \xrk|CR

k )

P(XR
k \xrk|CR

k ,HR
k−1)

P(XR
k \xrk|CR

k )
. (4)

This formulation allows us to isolate the new information sent by other robots at time k, from information already
used for inference at previous times. Next, we have to address that not all known objects are present in the sent
local beliefs. Because the priors are assumed independent between poses and classes, P(XR

k \xrk|CR
k ) = P(XR

k \xrk).
From P(XR

k \xrk|CR
k ,HR

k−1) we can split XR
k \xrk into poses of objects that are involved in HR

k−1 and ones that do not
as:

P(XR
k \xrk|CR

k ,HR
k−1) = P(X o,R

new,k|CR
new,k,HR

k−1)P(XR
k−1|CR

k ,HR
k−1). (5)

Poses of objects that r wasn’t aware of at time k − 1 are independent of HR
k−1, and without measurements, X o,R

new,k

are independent of CR
new,k as well. In addition, XR

k−1 is independent of classes of objects that are observed only at
time k, thus we can write:

P(XR
k \xrk|CR

k ,HR
k−1) = P(X o,R

new,k) · P(XR
k−1|CR

k−1,HR
k−1), (6)

The authors are with the Department of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
{vovatch, vadim.indelman}@technion.ac.il.
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which is the prior for poses of newly known objects at time step k, multiplied by the conditional continuous belief for
objects already known. Similarly to Eq. (6), the prior for XR

k \xrk is separated to previously known and new objects:

P(XR
k \xrk) = P(X o,R

new,k)P(XR
k−1), (7)

therefore we can write:
P(XR

k \xrk|CR
k ,HR

k−1)

P(XR
k \xrk|CR

k )
=

bRk−1

P(XR
k−1)

, (8)

and substitute it into the rightmost fracture in Eq. (4). Then we cancel out P(XR
k \xrk|CR

k ) and proceed to remove
r’s poses from the prior by:

P(XR
k \xrk|CR

k ,∆HR−
k )

P(XR
k−1)

=
P(X o,R

k |CR
k ,∆HR−

k )

P(X o,R
k−1)

, (9)

as robot r’s poses up until time k − 1 are independent from the new external measurements. Finally, after factoring
out P(XR

k \xrk|CR
k ), and Eq. (8) and (9) with Eq. (4) we reach the following expression that is used in the paper:

P(XR
k \xrk|CR

k ,HR−
k ) = bRk−1 ·

P(X o,R
k |Co,R

k ,∆HR−
k )

P(X o,R
k−1)

(10)

3 Dependency Between Object Classes

In this section we show that the classes of two objects are not independent. We present a simple example where c1
and c2 be the underlying classes of objects 1 and 2 respectively. Let HR be the total measurement history, including
semantic measurements zsem1 and zsem2 for objects 1 and 2 respectively. Recall that measurements are assumed
independent from each other. Using the Bayes Law:

P(c1, c2|HR) ∝ P(c1, c2|HR\zsem1 , zsem2 )P(zsem1 |c1)P(zsem2 |c2). (11)

We use a viewpoint dependent classifier model, so we must marginalize P(zsem1 |c1)P(zsem2 |c2) by the corresponding
relative viewpoints, denoted xrel1 and xrel2 respectively:

P(zsem1 |c1)P(zsem2 |c2) =

∫

xrel
1 ,xrel

2

P(zsem1 |c1, xrel1 )P(zsem2 |c2, xrel2 )P(xrel1 , xrel2 |HR)dxrel1 dxrel2 . (12)

From the above equation, the condition for c1 and c2 to be independent is that xrel1 and xrel2 must be independent,
which is not true in the general case, thus c1 and c2 are dependent.

4 Derivation of
P(X o,R

k |CR
k ,∆HR−

k )

P(X o,R
k )

(Continuous Belief Update)

Using the relation (2) we can split the blue part by separating the new measurements and actions per robot, excluding
r itself as it is not present in ∆HR−

k :

P(X o,R
k |CR

k ,∆HR−
k ) =

∏

k′,r′∈R\r

(
P(X o,R

k′ |Cr′
k′ ,∆Hr′

k′)

P(X o,R
k′ )

)
P(X o,R

k ). (13)

From that, we will address every element in the product. Poses of objects that r′ doesn’t observe locally can be
canceled out as follows, leaving only the object poses that r′ observed:

P(X o,R
k′ |Cr′

k′ ,∆Hr′
k′)

P(X o,R
k′ )

=
P(X o,r′

k′ |Cr′
k′ ,∆Hr′

k′)

P(X o,r′
k′ )

. (14)

Then, using relation (2) again, we can expand P(X o,r′

k′ |Cr′
k′ ,Hr′

k′) to separate between known prior and new measure-
ments:

P(X o,r′

k′ |Cr′
k′ ,Hr′

k′) = P(X o,r′

k′ )
P(X o,r′

k′ |Cr′
k′ ,Hr′

k′−l′)

P(X o,r′
k′ )

P(X o,r′

k′ |Cr′
k′ ,∆Hr′

k′)

P(X o,r′
k′ )

, (15)
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with l′ being the time difference between subsequent slots of r (that can be 0 if the slot isn’t updated). Then we

take out all the poses that aren’t dependent on the prior information, and we reach the definition of ξr,r
′

k−1, i.e. the
marginal object poses at the previous time.

P(X o,r′

k′ |Cr′
k′ ,Hr′

k′−l′)

P(X o,r′
k′ )

=
P(X o,r′

k′−l′ |Cr′
k′−l′ ,Hr′

k′−l′)

P(X o,r′
k′−l′)

.
= ξr,r

′

k−1. (16)

With the definition of ξr,r
′

k , and by substituting Eq. (16) into Eq. (15) we reach the expression for a single element
of the product in Eq. (13):

P(X o,r′

k′ |Cr′
k′ ,∆Hr′

k′)

P(X o,r′
k′ )

=
ξr,r

′

k

ξr,r
′

k−1

. (17)

Finally, substituting Eq. (17) we reach the expression for the external continuous update belief:

P(X o,R
k |CR

k ,∆HR−
k )

P(X o,R
k )

=
∏

r′∈R

ξr,r
′

k

ξr,r
′

k−1

. (18)

5 Derivation of
P(CR

k |∆HR−
k )

P(CR
k )

(Discrete Belief Update)

The discrete belief update is similar to the continuous in its derivation, with probability over class realization, rather
than object poses. Again, using the relation (2) we can split the red part by separating the new measurements and
actions per robot, excluding r itself as it is not present in ∆HR−

k :

P(CR
k |∆HR−

k ) =
∏

k′,r′∈R\r

(
P(CR

k′ |∆Hr′
k′)

P(CR
k′)

)
P(CR

k′) (19)

From that, we will address every element in the product. Classes of objects that r′ doesn’t observe locally can be
canceled out as follows, leaving only the classes of object that r′ observed:

P(CR
k′ |∆Hr′

k′)

P(CR
k′)

=
P(Cr′

k′ |∆Hr′
k′)

P(Cr′
k′ )

. (20)

Then, using relation (2) again, we can expand P(Cr′
k′ |Hr′

k′) to separate between known prior and new measurements:

P(Cr′
k′ |Hr′

k′) = P(Cr′
k′ )

P(Cr′
k′ |Hr′

k′−l′)

P(Cr′
k′ )

P(Cr′
k′ |∆Hr′

k′)

P(Cr′
k′ )

, (21)

with l′ being the time difference between subsequent slots of r (that can be 0 if the slot isn’t updated). Then we

take out all the classes of objects that not appear in prior information, and we reach the definition of φr,r
′

k−1, i.e. the
marginal object poses at the previous time.

P(Cr′
k′ |Hr′

k′−l′)

P(Cr′
k′ )

=
P(Cr′

k′−l′ |Hr′
k′−l′)

P(Cr′
k′−l′)

.
= φr,r

′

k−1 (22)

With the definition of φr,r
′

k , and by substituting Eq. (22) into Eq. (21) we reach the expression for a single element
of the product in Eq. (19):

P(Cr′
k′ |∆Hr′

k′)

P(Cr′
k′ )

=
φr,r

′

k

φr,r
′

k−1

(23)

Finally, substituting Eq. (23) we reach the expression for the external continuous update belief:

P(CR
k |∆HR−

k )

P(CR
k )

=
∏

r′∈R

φr,r
′

k

φr,r
′

k−1

. (24)

3



6 Simulation: Parameters

We consider a motion model with noise covariance Σw = diag(0.003, 0.003, 0.001), and geometric model with noise
covariance Σgeo

v = diag(0.1, 0.1, 0.01), both corresponding to position coordinates in meters and orientation in radians.
Our semantic model parameters are defined as:

hc(c = 1, ψ)
.
= [0.25 · sin(ψ) + 0.75, 0.25(1− sin(ψ))]

T

hc(c = 2, ψ)
.
= [0.25(1− sin(ψ)), 0.25 · sin(ψ) + 0.75]

T
,

where hc(c = i, ψ) ∈ RM is the predicted probability vector given object class c is i. Recall that our semantic
measurements zsem,r

k are probability vectors as well. ψ is the relative orientation between robot and object, computed
from the relative pose xrelk

.
= xo	xk. The measurement covariance is defined via the square root information matrix,

such that Σc
.
= (RTR)−1, and R =

[
1.5 −0.75
0 1.5

]
. Both the geometric and semantic measurements are limited to

10 meters from the robot’s pose. The highest probability for ambiguous class measurements is at ψ = −90◦, where
hc = [0.5, 0.5]T for both classes.
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7 Simulation: Table of Stack Time Stamps

In this section we present a table of stack time stamps that indicates direct and indirect communication between robots
in our scenario. Recall that the maximal communication radius is 10 meters, thus robots r2 and r3 communicate
from time k = 6, robots r1 starts communicating to others from time k = 13.

Time step Stack of r1 Stack of r2 Stack of r3

k = 1
t(r1): 1
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 1

k = 2
t(r1): 2
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 2

k = 3
t(r1): 3
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 3
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 3

k = 4
t(r1): 4
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 4
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 4

k = 5
t(r1): 5
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 5
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 5

k = 6
t(r1): 6
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 6
t(r3): 5

t(r1): 0
t(r2): 5
t(r3): 6

k = 7
t(r1): 7
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 7
t(r3): 6

t(r1): 0
t(r2): 6
t(r3): 7

k = 8
t(r1): 8
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 8
t(r3): 7

t(r1): 0
t(r2): 7
t(r3): 8

k = 9
t(r1): 9
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 9
t(r3): 8

t(r1): 0
t(r2): 8
t(r3): 9

k = 10
t(r1): 10
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 10
t(r3): 9

t(r1): 0
t(r2): 9
t(r3): 10

k = 11
t(r1): 11
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 11
t(r3): 10

t(r1): 0
t(r2): 10
t(r3): 11

k = 12
t(r1): 12
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 12
t(r3): 11

t(r1): 0
t(r2): 11
t(r3): 12

k = 13
t(r1): 13
t(r2): 12
t(r3): 12

t(r1): 12
t(r2): 13
t(r3): 12

t(r1): 12
t(r2): 12
t(r3): 13

k = 14
t(r1): 14
t(r2): 13
t(r3): 13

t(r1): 13
t(r2): 14
t(r3): 13

t(r1): 13
t(r2): 13
t(r3): 14

k = 15
t(r1): 15
t(r2): 14
t(r3): 14

t(r1): 14
t(r2): 15
t(r3): 14

t(r1): 14
t(r2): 14
t(r3): 15

Time step Stack of r1 Stack of r2 Stack of r3

k = 16
t(r1): 16
t(r2): 15
t(r3): 15

t(r1): 15
t(r2): 16
t(r3): 15

t(r1): 15
t(r2): 15
t(r3): 16

k = 17
t(r1): 17
t(r2): 16
t(r3): 16

t(r1): 16
t(r2): 17
t(r3): 16

t(r1): 16
t(r2): 16
t(r3): 17

k = 18
t(r1): 18
t(r2): 17
t(r3): 17

t(r1): 17
t(r2): 18
t(r3): 17

t(r1): 17
t(r2): 17
t(r3): 18

k = 19
t(r1): 19
t(r2): 18
t(r3): 18

t(r1): 18
t(r2): 19
t(r3): 18

t(r1): 18
t(r2): 18
t(r3): 19

k = 20
t(r1): 20
t(r2): 19
t(r3): 19

t(r1): 19
t(r2): 20
t(r3): 19

t(r1): 19
t(r2): 19
t(r3): 20

k = 21
t(r1): 21
t(r2): 20
t(r3): 20

t(r1): 20
t(r2): 21
t(r3): 20

t(r1): 20
t(r2): 20
t(r3): 21

k = 22
t(r1): 22
t(r2): 21
t(r3): 21

t(r1): 21
t(r2): 22
t(r3): 21

t(r1): 21
t(r2): 21
t(r3): 22

k = 23
t(r1): 23
t(r2): 22
t(r3): 22

t(r1): 22
t(r2): 23
t(r3): 22

t(r1): 22
t(r2): 22
t(r3): 23

k = 24
t(r1): 24
t(r2): 23
t(r3): 23

t(r1): 23
t(r2): 24
t(r3): 23

t(r1): 23
t(r2): 23
t(r3): 24

k = 25
t(r1): 25
t(r2): 24
t(r3): 24

t(r1): 24
t(r2): 25
t(r3): 24

t(r1): 24
t(r2): 24
t(r3): 25

k = 26
t(r1): 26
t(r2): 25
t(r3): 25

t(r1): 25
t(r2): 26
t(r3): 25

t(r1): 25
t(r2): 25
t(r3): 26

k = 27
t(r1): 27
t(r2): 26
t(r3): 26

t(r1): 26
t(r2): 27
t(r3): 26

t(r1): 26
t(r2): 26
t(r3): 27

k = 28
t(r1): 28
t(r2): 27
t(r3): 27

t(r1): 27
t(r2): 28
t(r3): 27

t(r1): 27
t(r2): 27
t(r3): 28

k = 29
t(r1): 29
t(r2): 28
t(r3): 28

t(r1): 28
t(r2): 29
t(r3): 28

t(r1): 28
t(r2): 28
t(r3): 29

k = 30
t(r1): 30
t(r2): 29
t(r3): 29

t(r1): 29
t(r2): 30
t(r3): 29

t(r1): 29
t(r2): 29
t(r3): 30
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Time step Stack of r1 Stack of r2 Stack of r3

k = 31
t(r1): 31
t(r2): 30
t(r3): 30

t(r1): 30
t(r2): 31
t(r3): 30

t(r1): 30
t(r2): 30
t(r3): 31

k = 32
t(r1): 32
t(r2): 31
t(r3): 31

t(r1): 31
t(r2): 32
t(r3): 31

t(r1): 31
t(r2): 31
t(r3): 32

k = 33
t(r1): 33
t(r2): 32
t(r3): 32

t(r1): 32
t(r2): 33
t(r3): 32

t(r1): 32
t(r2): 32
t(r3): 33

k = 34
t(r1): 34
t(r2): 33
t(r3): 33

t(r1): 33
t(r2): 34
t(r3): 33

t(r1): 33
t(r2): 33
t(r3): 34

k = 35
t(r1): 35
t(r2): 34
t(r3): 34

t(r1): 34
t(r2): 35
t(r3): 34

t(r1): 34
t(r2): 34
t(r3): 35

k = 36
t(r1): 36
t(r2): 35
t(r3): 35

t(r1): 35
t(r2): 36
t(r3): 35

t(r1): 35
t(r2): 35
t(r3): 36

k = 37
t(r1): 37
t(r2): 36
t(r3): 36

t(r1): 36
t(r2): 37
t(r3): 36

t(r1): 36
t(r2): 36
t(r3): 37

k = 38
t(r1): 38
t(r2): 37
t(r3): 37

t(r1): 37
t(r2): 38
t(r3): 37

t(r1): 37
t(r2): 37
t(r3): 38

k = 39
t(r1): 39
t(r2): 38
t(r3): 38

t(r1): 38
t(r2): 39
t(r3): 38

t(r1): 38
t(r2): 38
t(r3): 39

k = 40
t(r1): 40
t(r2): 39
t(r3): 39

t(r1): 39
t(r2): 40
t(r3): 39

t(r1): 39
t(r2): 39
t(r3): 40

k = 41
t(r1): 41
t(r2): 40
t(r3): 40

t(r1): 40
t(r2): 41
t(r3): 40

t(r1): 40
t(r2): 40
t(r3): 41

k = 42
t(r1): 42
t(r2): 41
t(r3): 41

t(r1): 41
t(r2): 42
t(r3): 41

t(r1): 41
t(r2): 41
t(r3): 42

k = 43
t(r1): 43
t(r2): 42
t(r3): 42

t(r1): 42
t(r2): 43
t(r3): 42

t(r1): 42
t(r2): 42
t(r3): 43

k = 44
t(r1): 44
t(r2): 43
t(r3): 43

t(r1): 43
t(r2): 44
t(r3): 43

t(r1): 43
t(r2): 43
t(r3): 44

k = 45
t(r1): 45
t(r2): 44
t(r3): 44

t(r1): 44
t(r2): 45
t(r3): 44

t(r1): 44
t(r2): 44
t(r3): 45

Time step Stack of r1 Stack of r2 Stack of r3

k = 46
t(r1): 46
t(r2): 45
t(r3): 45

t(r1): 45
t(r2): 46
t(r3): 45

t(r1): 45
t(r2): 45
t(r3): 46

k = 47
t(r1): 47
t(r2): 46
t(r3): 46

t(r1): 46
t(r2): 47
t(r3): 46

t(r1): 46
t(r2): 46
t(r3): 47

k = 48
t(r1): 48
t(r2): 47
t(r3): 47

t(r1): 47
t(r2): 48
t(r3): 47

t(r1): 47
t(r2): 47
t(r3): 48

k = 49
t(r1): 49
t(r2): 48
t(r3): 48

t(r1): 48
t(r2): 49
t(r3): 48

t(r1): 48
t(r2): 48
t(r3): 49

k = 50
t(r1): 50
t(r2): 49
t(r3): 49

t(r1): 49
t(r2): 50
t(r3): 49

t(r1): 49
t(r2): 49
t(r3): 50

k = 51
t(r1): 51
t(r2): 50
t(r3): 50

t(r1): 50
t(r2): 51
t(r3): 50

t(r1): 50
t(r2): 50
t(r3): 51

k = 52
t(r1): 52
t(r2): 51
t(r3): 51

t(r1): 51
t(r2): 52
t(r3): 51

t(r1): 51
t(r2): 51
t(r3): 52

k = 53
t(r1): 53
t(r2): 52
t(r3): 52

t(r1): 52
t(r2): 53
t(r3): 52

t(r1): 52
t(r2): 52
t(r3): 53

k = 54
t(r1): 54
t(r2): 53
t(r3): 53

t(r1): 53
t(r2): 54
t(r3): 53

t(r1): 53
t(r2): 53
t(r3): 54

k = 55
t(r1): 55
t(r2): 54
t(r3): 54

t(r1): 54
t(r2): 55
t(r3): 54

t(r1): 54
t(r2): 54
t(r3): 55

k = 56
t(r1): 56
t(r2): 55
t(r3): 55

t(r1): 55
t(r2): 56
t(r3): 55

t(r1): 55
t(r2): 55
t(r3): 56

k = 57
t(r1): 57
t(r2): 56
t(r3): 56

t(r1): 56
t(r2): 57
t(r3): 56

t(r1): 56
t(r2): 56
t(r3): 57

k = 58
t(r1): 58
t(r2): 57
t(r3): 57

t(r1): 57
t(r2): 58
t(r3): 57

t(r1): 57
t(r2): 57
t(r3): 58

k = 59
t(r1): 59
t(r2): 58
t(r3): 58

t(r1): 58
t(r2): 59
t(r3): 58

t(r1): 58
t(r2): 58
t(r3): 59

k = 60
t(r1): 60
t(r2): 59
t(r3): 59

t(r1): 59
t(r2): 60
t(r3): 59

t(r1): 59
t(r2): 59
t(r3): 60
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8 Simulation: Additional Results

In this section we present additional results for the simulation. In Fig. 1, 2, 3, and 4 we show the beliefs at various
stages of the path.
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Figure 1: Figures for robot r2 and r3, local beliefs for time k = 15 and k = 20 respectively. (a) and (b) show results for r2, (c) and (d) for r3.
(a) and (c) present SLAM results, (b) and (d) present classification results.
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Figure 2: Figures for robot r2 and r3, distributed beliefs for time k = 15 and k = 20 respectively. (a) and (b) show results for r2, (c) and (d)
for r3. (a) and (c) present SLAM results, (b) and (d) present classification results.

The results of all the graphs support the paper results, where both classification and SLAM in general are more
accurate for the distributed belief. In addition, the robots inferring the distributed belief take into account objects
that they didn’t observe directly.

In Fig. 5 we show the time each inference time-step takes to compute for the distributed case, without and with
double-counting. In general, computation time is influenced by the number of class realizations that aren’t pruned,
and is higher when robots communicate between each other. For each newly observed object the algorithm must
consider all realizations for the said object, thus the computation time ”spikes” at the first step the new object is
observed.
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Figure 3: Figures for robot r2 and r1, local beliefs for time k = 25 and k = 50 respectively. (a) and (b) show results for r2, (c) and (d) for r1.
(a) and (c) present SLAM results, (b) and (d) present classification results.
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Figure 4: Figures for robot r2 and r1, distributed beliefs for time k = 25 and k = 50 respectively. (a) and (b) show results for r2, (c) and (d)
for r1. (a) and (c) present SLAM results, (b) and (d) present classification results.
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9 Experiment: Parameters

We consider a motion model with noise covariance Σw = diag(0.0003, 0.0003, 0.0001), and geometric model with noise
covariance Σgeo

v = diag(0.04, 0.04, 0.005), both corresponding to position coordinates in meters and orientation in
radians. We simulated noisy odometry and geometric measurements, while using YOLO3 to create object proposals
and a classifier to classify them. The communication radius in this scenario is 3 meters. The robot’s and chair ground
truth was measured via motion capture cameras with OptiTrack. The chairs’ center of mass is used as a frame of
reference for relative poses.

The classifier used in our experiment is the Pytorch implementation of ResNet 50, pre-trained on ImageNet
dataset [1]. We trained three classifier models, one per each class. Class c = 1 is ’Barber Chair’ and is considered our
ground truth. Class c = 2 is ’Punching Bag’ and class c = 3 is ’Traffic Light’. We trained the classifiers using pairs
of relative pose and probability vectors; for c = 1, we used images of a chair used in the experiment, while for c = 2
and c = 3, we sampled measurements from Dirichlet Distribution with parameters α = [5, 15, 3] and α = [5, 3, 15]
respectively. Each relative pose was parametrized by the relative yaw angle ψ, and the relative θ, with the camera
being viewed from the object’s frame of reference.

Fig. 6 presents 4 of the images used in the experiment, with bounding boxes for the chairs. Fig. 7, Fig 8, and 9
present the trained expected probability values for each relative ψ and θ values, i.e. P(zsem|c = i, ψ, θ) for each figure
with different i. Each subfigure (a) to (c) representing measurement probability of class c = 1 to c = 3 respectively.

Figure 6: Four of the experiment images shown with corresponding bounding boxes.
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Figure 7: Classifier model for c = 1, trained on real images: probabilities of classes 1 to 3 depending on relative yaw and pitch angles presented
i (a) to (c) respectively. Higher surfaces go have bluer color.
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Figure 8: Classifier model for c = 2, trained on real images: probabilities of classes 1 to 3 depending on relative yaw and pitch angles presented
i (a) to (c) respectively. Higher surfaces go have bluer color.
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Figure 9: Classifier model for c = 3, trained on real images: probabilities of classes 1 to 3 depending on relative yaw and pitch angles presented
i (a) to (c) respectively. Higher surfaces go have bluer color.
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10 Experiment: Table of Stack Time Stamps

In this section we present a table of stack time stamps that indicates direct and indirect communication between robots
in our scenario. Recall that the maximal communication radius is 3 meters, thus all robots start to communicate
between them at step k = 6.

Time step Stack of r1 Stack of r2 Stack of r3

k = 1
t(r1): 1
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 1

k = 2
t(r1): 2
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 2

k = 3
t(r1): 3
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 3
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 3

k = 4
t(r1): 4
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 4
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 4

k = 5
t(r1): 5
t(r2): 0
t(r3): 0

t(r1): 0
t(r2): 5
t(r3): 0

t(r1): 0
t(r2): 0
t(r3): 5

k = 6
t(r1): 6
t(r2): 5
t(r3): 5

t(r1): 5
t(r2): 6
t(r3): 5

t(r1): 5
t(r2): 5
t(r3): 6

k = 7
t(r1): 7
t(r2): 6
t(r3): 6

t(r1): 6
t(r2): 7
t(r3): 6

t(r1): 6
t(r2): 6
t(r3): 7

k = 8
t(r1): 8
t(r2): 7
t(r3): 7

t(r1): 7
t(r2): 8
t(r3): 7

t(r1): 7
t(r2): 7
t(r3): 8

k = 9
t(r1): 9
t(r2): 8
t(r3): 8

t(r1): 8
t(r2): 9
t(r3): 8

t(r1): 8
t(r2): 8
t(r3): 9

k = 10
t(r1): 10
t(r2): 9
t(r3): 9

t(r1): 9
t(r2): 10
t(r3): 9

t(r1): 9
t(r2): 9
t(r3): 10

k = 11
t(r1): 11
t(r2): 10
t(r3): 10

t(r1): 10
t(r2): 11
t(r3): 10

t(r1): 10
t(r2): 10
t(r3): 11

k = 12
t(r1): 12
t(r2): 11
t(r3): 11

t(r1): 11
t(r2): 12
t(r3): 11

t(r1): 11
t(r2): 11
t(r3): 12

k = 13
t(r1): 13
t(r2): 12
t(r3): 12

t(r1): 12
t(r2): 13
t(r3): 12

t(r1): 12
t(r2): 12
t(r3): 13

k = 14
t(r1): 14
t(r2): 13
t(r3): 13

t(r1): 13
t(r2): 14
t(r3): 13

t(r1): 13
t(r2): 13
t(r3): 14

k = 15
t(r1): 15
t(r2): 14
t(r3): 14

t(r1): 14
t(r2): 15
t(r3): 14

t(r1): 14
t(r2): 14
t(r3): 15

Time step Stack of r1 Stack of r2 Stack of r3

k = 16
t(r1): 16
t(r2): 15
t(r3): 15

t(r1): 15
t(r2): 16
t(r3): 15

t(r1): 15
t(r2): 15
t(r3): 16

k = 17
t(r1): 17
t(r2): 16
t(r3): 16

t(r1): 16
t(r2): 17
t(r3): 16

t(r1): 16
t(r2): 16
t(r3): 17

k = 18
t(r1): 18
t(r2): 17
t(r3): 17

t(r1): 17
t(r2): 18
t(r3): 17

t(r1): 17
t(r2): 17
t(r3): 18

k = 19
t(r1): 19
t(r2): 18
t(r3): 18

t(r1): 18
t(r2): 19
t(r3): 18

t(r1): 18
t(r2): 18
t(r3): 19

k = 20
t(r1): 20
t(r2): 19
t(r3): 19

t(r1): 19
t(r2): 20
t(r3): 19

t(r1): 19
t(r2): 19
t(r3): 20

k = 21
t(r1): 21
t(r2): 19
t(r3): 19

t(r1): 19
t(r2): 21
t(r3): 20

t(r1): 19
t(r2): 20
t(r3): 21

k = 22
t(r1): 22
t(r2): 19
t(r3): 19

t(r1): 19
t(r2): 22
t(r3): 21

t(r1): 19
t(r2): 21
t(r3): 22

k = 23
t(r1): 23
t(r2): 19
t(r3): 22

t(r1): 21
t(r2): 23
t(r3): 21

t(r1): 22
t(r2): 21
t(r3): 23

k = 24
t(r1): 24
t(r2): 19
t(r3): 23

t(r1): 21
t(r2): 24
t(r3): 21

t(r1): 23
t(r2): 21
t(r3): 24

k = 25
t(r1): 25
t(r2): 23
t(r3): 24

t(r1): 21
t(r2): 25
t(r3): 24

t(r1): 24
t(r2): 24
t(r3): 25

k = 26
t(r1): 26
t(r2): 24
t(r3): 25

t(r1): 24
t(r2): 26
t(r3): 25

t(r1): 25
t(r2): 25
t(r3): 26

k = 27
t(r1): 27
t(r2): 25
t(r3): 26

t(r1): 25
t(r2): 27
t(r3): 26

t(r1): 26
t(r2): 26
t(r3): 27

k = 28
t(r1): 28
t(r2): 26
t(r3): 27

t(r1): 26
t(r2): 28
t(r3): 27

t(r1): 27
t(r2): 27
t(r3): 28

k = 29
t(r1): 29
t(r2): 27
t(r3): 28

t(r1): 27
t(r2): 29
t(r3): 28

t(r1): 28
t(r2): 28
t(r3): 29

k = 30
t(r1): 30
t(r2): 29
t(r3): 29

t(r1): 29
t(r2): 30
t(r3): 29

t(r1): 29
t(r2): 29
t(r3): 30
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Time step Stack of r1 Stack of r2 Stack of r3

k = 31
t(r1): 31
t(r2): 30
t(r3): 30

t(r1): 30
t(r2): 31
t(r3): 30

t(r1): 30
t(r2): 30
t(r3): 31

k = 32
t(r1): 32
t(r2): 31
t(r3): 31

t(r1): 31
t(r2): 32
t(r3): 31

t(r1): 31
t(r2): 31
t(r3): 32

k = 33
t(r1): 33
t(r2): 32
t(r3): 32

t(r1): 32
t(r2): 33
t(r3): 32

t(r1): 32
t(r2): 32
t(r3): 33

k = 34
t(r1): 34
t(r2): 33
t(r3): 33

t(r1): 33
t(r2): 34
t(r3): 33

t(r1): 33
t(r2): 33
t(r3): 34

k = 35
t(r1): 35
t(r2): 34
t(r3): 34

t(r1): 34
t(r2): 35
t(r3): 34

t(r1): 34
t(r2): 34
t(r3): 35

k = 36
t(r1): 36
t(r2): 35
t(r3): 35

t(r1): 35
t(r2): 36
t(r3): 35

t(r1): 35
t(r2): 35
t(r3): 36

k = 37
t(r1): 37
t(r2): 36
t(r3): 36

t(r1): 36
t(r2): 37
t(r3): 36

t(r1): 36
t(r2): 36
t(r3): 37

k = 38
t(r1): 38
t(r2): 37
t(r3): 37

t(r1): 37
t(r2): 38
t(r3): 37

t(r1): 37
t(r2): 37
t(r3): 38

k = 39
t(r1): 39
t(r2): 38
t(r3): 38

t(r1): 38
t(r2): 39
t(r3): 38

t(r1): 38
t(r2): 38
t(r3): 39

k = 40
t(r1): 40
t(r2): 39
t(r3): 39

t(r1): 39
t(r2): 40
t(r3): 39

t(r1): 39
t(r2): 39
t(r3): 40
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11 Experiment: Additional Results

In this section we present additional results for the experiment. We show the beliefs at various stages of the path.
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Figure 10: Figures for robot r3 and r2, local beliefs for time k = 15 and k = 20 respectively. (a) and (b) show results for r3, (c) and (d) for
r2. (a) and (c) present SLAM results, (b) and (d) present classification results.
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Figure 11: Figures for robot r2 and r1, distributed beliefs for time k = 15 and k = 20 respectively. (a) and (b) show results for r3, (c) and (d)
for r2. (a) and (c) present SLAM results, (b) and (d) present classification results.

The results of all the graphs support the paper results as well, where both classification and SLAM in general
are more accurate for the distributed belief. In addition, the robots inferring the distributed belief take into account
objects that they didn’t observe directly.

In Fig. 14 we show the time each inference time-step takes to compute for the distributed case, without and with
double-counting. In general, computation time is influenced by the number of class realizations that aren’t pruned,
and is higher when robots communicate between each other. For each newly observed object the algorithm must
consider all realizations for the said object, thus the computation time ”spikes” at the first step the new object is
observed. Because the classifier model in the experiment uses deep neural networks, the computation is slower than
in the simulation where hand crafted models were used.
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Figure 12: Figures for robot r3 and r1, local beliefs for time k = 35 and k = 40 respectively. (a) and (b) show results for r3, (c) and (d) for
r1. (a) and (c) present SLAM results, (b) and (d) present classification results.
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Figure 13: Figures for robot r3 and r1, distributed beliefs for time k = 35 and k = 40 respectively. (a) and (b) show results for r3, (c) and (d)
for r1. (a) and (c) present SLAM results, (b) and (d) present classification results.
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Figure 14: Calculation time as a function of the time step in seconds.
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