
IEEE Copyright Notice
c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

The work has been submitted to Robotics and Automation Letters in September 2019, with the ICRA 2020 option.

ar
X

iv
:1

90
9.

05
52

3v
1 

 [
cs

.R
O

] 
 1

2 
Se

p 
20

19



Maximally manipulable vision-based motion planning for robotic
rough-cutting on arbitrarily shaped surfaces

T. Pardi 1,2, V. Ortenzi1,2, C. Fairbairn1,4, T. Pipe1,5, A. M. Ghalamzan E.1,3, and R. Stolkin1,2.

Abstract— This paper presents a method for constrained
motion planning from vision, which enables a robot to move
its end-effector over an observed surface, given start and
destination points. The robot has no prior knowledge of the
surface shape, but observes it from a noisy point-cloud camera.
We consider the multi-objective optimisation problem of finding
robot trajectories which maximise the robot’s manipulability
throughout the motion, while also minimising surface-distance
travelled between the two points. This work has application in
industrial problems of rough robotic cutting, e.g. demolition of
legacy nuclear plant, where the cut path need not be precise
as long as it achieves dismantling. We show how detours in the
cut path can be leveraged, to increase the manipulability of
the robot at all points along the path. This helps avoid singu-
larities, while maximising the robot’s capability to make small
deviations during task execution, e.g. compliantly responding to
cutting forces via impedance control. We show how a sampling-
based planner can be projected onto the Riemannian manifold
of a curved surface, and extended to include a term which
maximises manipulability. We present the results of empirical
experiments, with both simulated and real robots, which are
tasked with moving over a variety of different surface shapes.
Our planner enables successful task completion, while avoiding
singularities and ensuring significantly greater manipulability
when compared against a conventional RRT* planner.

I. INTRODUCTION

A. Background

Robotic cutting actions engender an interesting problem
of motion-planning for a serial arm under semi-closed chain
constraints. The end-effector cutting tool is constrained to
touch the cutting surface, thereby forming a closed chain
at any given time step. However, the cutting surface can
be regarded as a manifold upon which the end-effector has
locally two or three degrees of freedom to move (depending
on whether rotations about the axis of the cutting tool are
permitted, in addition to translations on the manifold). Note
that we typically must align the cutting tool axis with the
local surface normal, Fig. 1.

Here we are concerned with rough cutting for problems
such as robotic demolition in hazardous environments. In
such applications, the exact cutting path is not important,
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Fig. 1. Proof-of-principle mobile manipulator robot, cutting a pipe with
an axial rotary cutter. Robot developed by Bristol Robotics Lab, T. Pipe et
al.1,5. The kinematics of path-planning is similar to that for a laser cutter,
in that the cutter axis must be maintained normal to the local surface
curvature, and rotations of the robot around the tool axis are allowable.
However, additional dynamics problems are engendered by forceful contact
between robot and work-piece.

Fig. 2. Nuclear decommissioning worker wearing air-fed plastic suit
underneath heavy leather overcoat, and multiple layers of gloves, while using
power tools to cut legacy nuclear plant contaminated by alpha-radiation
emitting substances, such as plutonium dust. The leather coat protects the
plastic suit from being punctured by hot sparks during cutting. Maximum
2hrs work per day is possible, due to extreme discomfort and heat exhaustion
as the suit fogs and fills with sweat. Image courtesy of Sellafield Ltd.

as long as the robot successfully e.g. cuts an object into
two pieces, or cuts open a container so that its contents
can be inspected. A particular focus of our work is the
use of robots for cleanup of legacy nuclear waste [1],
[2], [3], however other applications include e.g. asbestos-
contaminated buildings [4], and emergency operations such
as bomb-disposal, fire-fighting and disaster-response [5].

The UK alone contains an estimated 4.9 million tonnes
of legacy nuclear waste. Without significant advances in
robotics, it is expected to require at least one million entries
of human workers into radioactive zones, wearing cumber-
some protective air-fed suits while cutting and dismantling
contaminated structures Fig. 2. For numerous higher radi-



ation environments, no entry of humans is possible at all,
and so there is no way to achieve decommissioning without
remote manipulation technology.

A variety of tooling can be used for robotic cutting. Our
team previously worked closely with the UK nuclear industry
to achieve a world-first of autonomous vision-guided robotic
laser cutting of contaminated metal inside a radioactive
facility [6]. Lasers, and other non-contact methods such
as water jet or plasma cutting, are convenient in that no
contact forces are exerted, although close geometric surface
following (with a few mm stand-off) must still be achieved.

In contrast, we are now experimenting with axial rotary
cutting tools (similar to the cutter of a milling machine), Fig.
1. The kinematic path-planning constraints for such tools are
similar to those for a laser, in that the cutter axis must be
maintained normal to the local surface curvature, and rota-
tions of the robot around the tool axis are allowable. How-
ever, with the rotary cutter, forceful interactions, between
the robot and cut materials of uncertain properties, introduce
significant perturbations. We would like the robot to have
sufficient manipulability to provide capacity for responding
compliantly to such perturbations, while following a desired
cutting path.

B. Related work

There is a large body of literature on path-planning for tool
paths in multi-axis CNC machining [7]. This work is aimed
at precision manufacturing, where it is essential that the
cutting tool rigidly follows an exact path through the work-
piece. In contrast, for our application, other factors such
as safely avoiding singularity configurations, and allowing
capacity for perturbations, are of much more importance than
the exact cutting path. This is particularly the case in legacy
nuclear sites, where material properties are significantly
uncertain, partly due to lack of exact records after many
decades, and also due to uncertain degradation of materials
under radiation dose, corrosion and ageing.

A related problem is the use of serial robots for depositing
paint, surface coatings or e.g. applying heat treatments over
the surface of components and products in manufacturing.
Optimised end-effector (e.g. paint-gun) trajectories should
deposit an even thickness of paint, requiring a constant
speed of the end-effector over the surface, constant stand-off
distance, and constant distance between successive parallel
“mowing-the-lawn” type traverses of the surface. However
these constraints are less rigid than for CNC machining, and
can be treated as fitness functions for numerically optimising
the end-effector path. Originally such paint robots were
hand-programmed [8]. Later work plans “mowing-the-lawn”
type traverses on a surface manifold modeled as e.g. Bezier
curves [9]. More recent work such as [10] models a work-
piece as a set of surface patches, and uses route searching
approaches such as Fast Marching to find end-effector paths
which link all such patches together to achieve coverage.

However, unlike our work, these paint-planing methods
predominantly focus on planning the route of an end-effector

tool, without taking into account the corresponding inverse-
kinematics and robot configurations. These methods also
rely on explicit 3D CAD models of the work-piece as a-
priori knowledge. They also tackle a problem where the
tool path itself is of prime importance. Since they deal
with known manufactured parts, it is acceptable to devote
large computational resource and long run-times to optimise
trajectories off-line prior to repeated execution on many
identical objects.

In contrast, nuclear decommissioning or disaster response
involves highly unstructured environments, Fig. 2, and we
must plan cuts in near-to-real time on unknown objects
observed by noisy partial point-cloud views. Furthermore,
we are not concerned about following an exact cutting path.
Instead, it is important for us to consider inverse-kinematics
throughout the planned motion, and we modify the cutting
path itself to avoid singularity configurations in the arm,
and to improve robustness to perturbations by maximising
manipulability throughout the motion.

There has been comparatively little work done by the
robotics research community on cutting. Recent literature on
robotic tool use includes e.g. [11], in which a co-bot learns
to assist a human with a backwards and forwards sawing
motion. However, this work does not consider actually plan-
ning the cut. The work of [12] explores intelligent tool use
more broadly, in the sense that the robot should sequentially
grasp and use tools such as hooks and sticks, to push or
drag objects on a table, during physical puzzle solving (using
implements to reach and move distant objects). The main
contribution is a hybrid planning approach, that combines
high-level logical planning of sequences of action-primitives
(e.g. “push” or “grasp”), with low-level motion planning of
each action, exploiting physics simulators to assist with pre-
diction. Related work, combining task-level logical planning
with low-level motion planning for manipulation, includes
[13], but this is focused on grasping with pick-and-place
tasks.

There is now a large body of literature, and well estab-
lished set of robust methods for robot path-planning with
obstacle avoidance. Early work by Khatib modelled obstacles
as artificial potential fields, and optimised collision-free paths
by descending an energy gradient. More recent methods, for
path-planning by gradient descent of cost functions, include
the well-known CHOMP [14] and stochastic variant STOMP
[15]. It is now common to use sampling-based methods, such
as PRM [16] and RRT [17], to generate a net of points
which can be explored to find collision-free paths. Later
variants include RRT* [18], [19] with improved convergence
properties.

In this paper, we are not concerned with the typical
formulation of the path-planning problem, i.e. finding a
shortest collision-free path. Instead, we wish to plan non-
shortest paths which are optimal in other ways with re-
spect to additional information and considerations (maximis-
ing manipulability under constraints). Various authors have
sought to augment the classical path-planning approaches by
incorporating modified cost functions, based on additional



kinds of information, to induce useful additional robotic
behaviours.

A cost-based optimisation approach was proposed in [20],
to enable an Autonomous Underwater Vehicle (AUV) to plan
a path between specified start and destination locations. The
method exploits computational ocean model forecasts of wa-
ter current speeds and directions at different locations, depths
and times. The robot plans large deviations in its route, to
avoid adverse currents, while exploiting (i.e. “riding” on)
currents in useful directions to minimise energy expendi-
ture during the journey. The route is optimised according
to a multi-objective cost function, which includes separate
terms for avoiding obstacles, minimising energy expenditure,
minimising journey time and other considerations. Related
work in the Unmanned Aerial Vehicle (UAV) literature also
considers environmental factors, e.g. [21], and planning on
non-flat surfaces with constraints is considered in the ground-
vehicle [21] and legged locomotion [22], [23] literature.
The estimation of kinematic constraints from contacts with
surfaces is also analysed e.g. in [24].

Unmodified conventional path planning algorithms are
not immediately useful for computing a cutting path on an
object surface suitable for a robotic manipulator. An end-
effector (cutting tool) path computed with these approaches
may be out of the reachable workspace of the manipulator
or may pass through singular configurations of the robot.
Furthermore, in demolition rough-cutting scenarios, we are
dealing with a highly unstructured environment, in which a-
priori 3D models for the cut object are typically unavailable.

At any particular instant during cutting, a serial arm is
constrained to form a closed chain with the cut surface.
There is a body of prior literature that explores end-effector
constraints during the path generation. Combining closed-
chain constraints with sampling-based planning (PRM) was
explored in [25] for motion of parallel manipulators. In [26],
end-effector constraints are characterised as “Task Space
Regions” (TSRs), which can encode e.g. the constrained
trajectory of a robot hand when opening a door. Planning
under such constraints is handled by sampling from an
appropriate TSR. Unlike our work, [26] explores tasks where
a variety of destination poses are possible, e.g. bi-manual
constraints on a pair of arms that must grasp a box while
placing it anywhere on a table. Furthermore, manipulability
during task execution is not explored in [26], and complete
a-priori 3D knowledge of the scene is assumed.

In [27] and [28], a transition-based RRT algorithm driven
by a cost based on mechanical work generates a collision-free
path between points. Similarly, a heuristically biased RRT is
proposed in [29] to guide the search on the tree. Inverse
kinematics guide the search in the implementation of RRT
in [30], while the manipulability of the robot is exploited to
bias the sampling process in [31]. A higher manipulability
over the path might improve the likelihood of succeeding in
performing the task as it has been discussed in [32] for grasp
planning.

(a) (b)

Fig. 3. An experimental robotic cutting setup (Fig. 3(a)). A 3-D camera
(positioned in front of the robot at 2.8 [m] distance facing the robot) captures
the point cloud of the object surface. Our approach computes a cutting
path with given initial and end points. This path is suitable for the robot
kinematics as our algorithm accounts for a manipulability index. Fig. 3(b)
shows the manipulability of the robot: each point is coloured based on the
manipulability corresponding to the configuration the robot is in when its
end effector touches such point. Points with lower manipulability are shown
in blue; points with higher manipulability are represented in yellow and red.

C. Contributions of this paper

The contribution of this paper is twofold: (i) RRT* is
adapted to obtain a path with higher robot manipulability
combining end-effector path-planning with kinematic consid-
erations; (ii) we use logarithmic (and exponential) mapping
to generate samples on the raw point cloud of the object to
cut, thus making our approach model-free in terms of object
models. Our experimental results show that the robot suc-
cessfully follows the path obtained by our approach whereas
the robot may fail to follow a path obtained by a naive RRT*.
Although our work is motivated by sort and segregation
of nuclear waste by industrial manipulators, the proposed
approach can be readily used in many other domains, e.g., a
humanoid robot can use the computed cutting path to peel
an orange with a knife.

II. PROBLEM FORMULATION

We use RRT* to generate a path from point A to point
B. Moreover, we incorporate Riemannian manifold mapping
into our approach to generate samples that lie on the point
cloud of the object. We also include a cost function based
on the manipulability of the robot into RRT*. These mod-
ifications to the naive RRT* guarantee that the computed
path (i) connects the start point (A) and the end point (B)
possibly specified by a user, (ii) lies on the object surface and
(iii) is feasible for the manipulator. As such, our approach
is called “RRT*-RMM” which stands for RRT* with added
Riemannian Manifold mapping and added Manipulability
cost.

Rapidly-exploring Random Tree*: Rapidly-exploring Ran-
dom Tree (RRT) is one of the most common sampling-
based path planners, [17]. The basic idea behind RRT is
to sample points within a region of interest and add them in
a tree structure based on a distance metric. Every iteration,



the algorithm generates a new point based on some motion
constraints and, then, connects it to the closest node in the
tree. RRT* is an extension to the classical RRT proposed in
[18], which allows the re-evaluation of nodes already in the
tree when a new point is available. This procedure is usually
referred to as rewiring. During the rewiring, the algorithm
selects the neighbourhood of a point (points in the tree within
a range distance to the point) and evaluates whether these
nodes improve their value passing through the new available
point. This process provides RRT with better convergence to
a solution and the solution converges to the shortest path as
the number of samples goes to ∞.

Manipulability: Let q ∈ Rn represent the robot configura-
tion where n is the number of degrees of freedom (dof) of the
robot. Given a specific q, position and orientation of every
point of the robot are uniquely defined (forward kinematics).
This mapping, fr, is commonly expressed as

r = fr(q), (1)

where r ∈ Rm is the position and/or the orientation of a
point of interest of the robot in the Cartesian space and m
is the dimension of this representation (e.g., m = 3 for
3D position, or m = 6 for 3D position and orientation).
Differential kinematics are defined using the robot Jacobian
J(q) as

ṙ = J(q)q̇ (2)

and relate velocities in the configuration space to velocities
in the Cartesian space1. If we constrain the norm of the
configuration velocities to be unitary, the configuration lies
on the unitary sphere S1

|q̇| = q̇T q̇ = ṙTJ†TJ†ṙ = ṙT Γ†ṙ = 1 (3)

where † is the inverse matrix when J is square or the pseudo-
inverse matrix when it is not.

Previous work leverages manipulability to yield optimal
manipulation movements for planning a suitable grasping
pose [33]. We would also like to optimise the manipulation
capability for robotic cutting. The conventional measure of
manipulability [34] is defined as

w(q) =
√
det(JTJ) =

√
λ1λ2...λn, (4)

where λi are the eigenvalues of ΓT . This index provides a
value that is proportional to the volume of the manipulability
ellipsoid, and it does not require a long computational time.

Riemannian Manifold: Computing distances between
points is not straightforward on curved surfaces. By defi-
nition, a manifold is an n-dimension topological space that
approximates the Euclidean space in the neighbourhood of
any of its points. Furthermore, a Riemannian Manifold is
defined as a smooth manifold M equipped with an inner
product g on the tangent space TpM of each point p ∈M,
which changes smoothly from point to point and its vector
spaces are differentiable. The family of inner products on
the manifold is called Riemannian metrics. Let M be a

1Since the Jacobian matrix always depends on the configuration q, we
drop the dependence on q, and in the following we write J(q) as J .

Fig. 4. The figure shows an example of the exponential map, φ, which
projects the point L ∈ TpM, where TpM is the tangent space to the point
p ∈ M, to the manifold M.

manifold, p a point onM, and let v ∈ TpM be a tangential
vector to the manifold at point p. Then, there is a unique
geodesic γv(s), with s ∈ [0, 1], such that γv(0) = p is
satisfied and with initial tangent vector γ̇v(0) = v. Under
these assumptions, we can interpret the vector v as the linear
velocity at the point p along the trajectory γv(s). Therefore,
in a neighbourhood of p, it is possible to define a map, called
exponential map (Fig. 4), such that

φ = expp(L) = γv(1). (5)

This map φ : TpM 7→ M projects every point L in TpM
onto the manifold M. Thanks to this exponential map, we
are able to generalise the concept of straight line in Euclidean
space to curved surfaces, and the new metric that measures
the distance between two points onto the manifold is called
geodesic. Conversely, we can define a function which moves
elements from the manifold into the tangent space of p. This
map is usually called logarithmic map, and it is defined by

φ−1 = logp(∆) (6)

where φ−1 :M 7→ TpM, and ∆ is a point on the manifold
M, as in Fig. 4.

Proposed method RRT*-RMM: Algorithm 1 shows the
pseudocode of our proposed approach. Our RRT* method
randomly selects a point on the point cloud and finds the
closest point, denoted by xnearest, in the tree (lines 3 and 4 in
Alg. 1). We then compute a tangent plane to the closest point
(line 5 in Alg. 1) on which the random point is projected,
denoted by xr−p, (line 6 in Alg. 1). We obtain a new point,
denoted by xnew−p, by linear combination of the closest
point and the projected point.

xnew−p = xnearest + β(xr−p − xnearest) (7)

To satisfy the assumption required for logarithmic and ex-
ponential mapping between a Riemannian and Euclidian
manifold in eqs. (5) and (6), we choose a small step size
at this phase, i.e. β � 1. As per eq. (7), we assure a small
distance between closest point and new point, i.e., xnearest
and xnew−p are very close. These three points (xnearest,
xnew−p and xr−p) lie on the tangent plane (as shown in
Fig. 4).

We introduce a modified cost (lines 14, 15 and 16 in
Alg. 1) to be used in our RRT*, which is the sum of a



(a) (b) (c)

Fig. 5. This image shows the path proposed by the two algorithms for a path connecting the two points indicated with the markers. 5(b) shows the point
cloud of the helmet captured by the camera in V-REP and the path proposed by RRT* and our proposed approach are shown in red and blue dotted lines,
respectively. In 5(c), the manipulability of both paths is shown.

Algorithm 1 RRT*-Riemannian-mapping-manipulability
1: T.init(xinit)
2: for k = 1 to K do
3: xrand ← RandomState()
4: xnearest ← Nearest(xrand)
5: TpM ← computeTangentP lane(xnearest)
6: xr−p ← projectonTangentP lane(xrand, TpM)
7: xnew−p ← getNewPointontonTpM(xr−p, TpM)
8: xnew ← expRiemannianMap(xnew−p)
9: if ObstacleFree(xnew) then

10: Xnear ← Near(xnew)
11: qnew ← Ik(xnew)
12: for k = 1 to N do
13: Cd ← computeDistance(xnew, Xnear(k))
14: CM ← computeMan(qnew, Xnear(k))
15: C(k) = (1− α)Cd + αCM

16: xp ← selectMinimumElement(C,Xnear)
17: T.add vertex(xnew, xparent)
18: T.add edge(xparent, xnew)
19: T.rewire(Xnear, xnew, qnew)

20: return T

”manipulability” cost along the path scaled by the number
of elements in the path and a cost of ”distance” from the
starting point, as per eq. 8.

C(p) = (1− α)Cd(p,pS) + αCM (qp) (8)

where p ∈ R3 is the evaluated point, pS ∈ R3 is the starting
point, Cd is the distance cost, CM is the manipulability cost
accounting for the robot configuration qp which is obtained
using the robot’s inverse kinematics at point p, i.e., qp =
f−1
r (p). The coefficient α ∈ [0, 1] is a trade-off between

the costs and weighs the two contributions appropriately. In
other words, when α→ 0, the proposed algorithm turns into
the classical RRT*; while α→ 1 puts all the importance on
the manipulability, discarding any consideration on distance.
Such parameter must be chosen based on domain knowledge.
As per eq. (9), we compute the sum of all segments over the

path to reach p = pNp
where p1 is the initial point in eq. (8).

Cd(p) =

Np∑
np=1

g(pnp ,pnp−1) (9)

where Np is the number of points visited in the tree until
reaching pNp

from p1 and g(.) is the geodesic distance
between two adjacent points in the path. Assuming adja-
cent points are very close this geodesic distance can be
approximated by g(pnp ,pnp−1) = ‖pnp − pnp−1‖. The
manipulability cost is also computed over the path, as per
eq. (10).

CM (q) =
1

Np

Np∑
np=1

1

w(qnp
)

(10)

where w is manipulability index presented in eq. 4. We use
the inverse of w to make the cost suitable to sum with RRT*
cost to be minimised. Minimising the manipulability cost is
equivalent to maximising manipulability (in eq. (4)).

To summarise, the computed path is the result of a trade-
off between the minimum travelling distance between start
and end point and the maximum manipulability of the robot
while following that path. Also, we use the Riemannian
manifold mapping described earlier to project a random
generated point onto the object surface (point cloud).

III. EXPERIMENTAL RESULTS

We use a Panda robot manufactured by Franka EMIKA for
the real-world experiments2. We also provide some results
with Sawyer in V-REP3. Both are 7-DOF robotic arms
equipped with a standard parallel jaw gripper. An Orbbec
Astra RGB-D camera scans the area in front of the robot
(Fig. 3), and we remove points outside the robot’s workspace
as preprocessing filtering on the point cloud. The camera is
calibrated with respect to the robot base frame. As such, we
can express the point cloud captured by the camera in the
robot base frame. Furthermore, we attach two markers to

2Experimental results are reported in the attached video.
3 Although the algorithm needs the robot kinematics, our ROS imple-

mentation takes the robot URDF directly from the ROS server parameter.
Therefore, we present some data collected with Panda and some others with
Sawyer to show the robustness of our approach to changes of the kinematic
chains.



Fig. 6. Test objects used for testing our algorithm, (a) a barrel, (b) a
curved object, (c) a helmet and (d) a flat object. The pictures also show the
position of the markers.

each object, as shown in Fig. 5(a). These markers represent
the start point A and the end point B of the path and allow a
human operator to select the initial and end points of the cut.
In this work, we do not cope with developing a controller for
the robot to follow the trajectory. We, therefore, overestimate
the point cloud to be able to move the robot throughout the
path without jeopardising it. The RGB-D camera takes the
point cloud of the scene in front of the robot as input, and
our algorithm computes a cutting path between point A and
point B.
Fig. 3 shows the experimental setup with a cylindrical con-
tainer emulating a nuclear waste barrel. A heat map overlaid
on the surface of the object represents the manipulability
corresponding to the configuration the robot is in when its
end-effector is at the point on the object. We use the standard
inverse kinematics (IK) of the robot to compute the joint
configurations and we use the same IK to move the robot.
We developed a full ROS package to compute the optimal
cutting path. As the robot URDF can be loaded onto the
parameter server and used by the algorithm, we can easily
repeat our computation with any manipulator whose URDF
is available.

We used four objects (Fig. 6) to illustrate the effectiveness
of our approach in generating a cutting path on different
objects surfaces. These objects are a barrel (cylindrical
container), a curved object (made of foam), a safety helmet
and a flat object (also made of foam). These objects represent
typical objects that are to be cut in a nuclear environment.
Future work will include the deployment of the proposed al-
gorithm to cut real-world object found in such environments.

Fig. 5 shows the helmet we used for our experiments
along with the markers attached to the object. The markers
fix the initial and end point of the cutting path. These
points can be provided by a human operator during real-
world deployments. Fig. 5(b) shows the point cloud of the
helmet captured by the camera and visualised in V-REP. The
paths computed by RRT* and our proposed approach, RRT*-
RMM, are shown with red and blue dotted lines, Fig. 5(b).

These results show that RRT* and RRT*-RMM effectively
generate cutting path on the object surface. Fig. 5(c) also
shows the manipulability corresponding to the paths obtained
by RRT* and RRT*-RMM with red and blue lines, respec-
tively. This figure shows that our algorithm finds a path
that has a significantly improved manipulability for the robot
throughout the whole path. We see that RRT* generates a
path specific just to the shape of the object.

In contrast, RRT*-RMM computes paths not only specific
to the shape of the object, but also specific to (i) the
position of the object relative to the robot base frame and
(ii) the kinematic chain of the robot. If we change either
object position or the robotic arm, RRT*-RMM computes
another path which is best for that scenario. As such, our
algorithm always finds a path which is the best fit for the
specific problem setting. Nonetheless, these changes can be
easily embedded in the algorithm by using the URDF of the
corresponding robot and the relative position of the object is
captured by the RGB-D sensor calibrated in the robot base
frame and the markers.

We performed similar experiments with all four objects
shown in Fig. 6. Sample point clouds of 4 objects visualised
in V-REP are shown in Fig.7 along with the computed path
by RRT* and RRT*-RMM, red and blue respectively. In
detail, Fig. 7(d) shows that the robot faces singularity if
it follows the path obtained by RRT* for the flat object
shown in Fig. 6c. In contrast, it does not experience this issue
when using the path obtained with RRT*-RMM because the
approach is explicitly designed to avoid such an issue. The
paths visualised in V-REP in Fig. 7 correspond to the markers
positions shown in Fig. 6. These figures show that slight
differences in the path obtained by RRT* and RRT*-RMM
yield higher manipulation capability for the manipulator.

For every object, we repeated the experiment five times,
each time with a different endpoint. We collected the data of
manipulability and the length of the computed path by RRT*
and RRT*-RMM. This allowed us to extensively measure
how much our algorithm increases the path length, with
respect to the RRT* baseline, and whether our approach has
a beneficial effect on the manipulability. Fig. 8 shows the
box plot of obtained manipulability for all the objects. The
results summarised in the box plot suggest that RRT*-RMM
yields path with generally higher manipulability. Because the
nature of the approaches is random sample generations, the
variation of the data captures the underlying behaviour of
both approach. However, it is clear that the RRT*-RMM has
generally improved the manipulability in the obtained path.
RRT*-RMM also yields smaller variation of manipulability
which is another desired characteristic. As we expected, the
path length is increased with respect to the RRT* baseline,
as it is traded-off for a higher manipulability throughout the
path. Nonetheless, this increment is not very high as it is
shown in Fig. 9. The increased path length is ∼10% for the
barrel, the curved object and the safety helmet, and ∼50%
for the flat object.
This paper is accompanied by a video including experiments
using Sawyer robot in V-REP simulation and using real



(a) (b) (c) (d)

Fig. 7. Paths proposed by RRT* and RRT*-RMM for the four objects, using initial and target positions shown in Fig. 6 using the markers. Fig. 7(b) shows
how RRT* proposes a path close a singularity for the robot (orange path) instead, the RRT*-RMM does a semicircle route to avoid it. In our experiments,
we empirically selected α = 0.7 to trade-off path’s length and manipulability.

Fig. 8. Box plot of the manipulability values obtained by RRT* and RRT*-
RMM for all four objects. The order of these figures corresponds with the
order of object figures shown in Fig. 6, i.e., (a) top left, (b) top right, (c)
bottom left and (d) bottom right.

Fig. 9. This figure shows the path length found for the same objects. Every
object has been tested using five goal positions, and the plots include the
data for all the trials.

Panda robot.

IV. CONCLUSION

This paper addresses the problem of constrained motion
planning from vision, which enables a robot to move its

end-effector on an observed surface, given start and desti-
nation points. We find robot trajectories which maximise the
robots manipulability throughout the motion. This work has
application in industrial problems of robotic rough cutting.
Our approach uses a mapping between Euclidean space and
Riemannian manifold to project the random samples gener-
ated by RRT* onto the object surface and vice versa. This
mapping step in our algorithm allows us to compute the path
on an object surface using only a point cloud, without the
need of a complete 3-D model. Moreover, we use a modified
RRT* cost that sums a manipulability index and a cost based
on the Euclidean distance between a new randomly generated
point and the end point of the cut. The manipulability index
added to the RRT* cost assures the generated samples of
the path yield higher manipulability values. We presented a
series of experiments with a Panda robot and a Sawyer robot.
The experiments include computing the cutting paths on 4
different objects. Since the core of RRT* and RRT*-RMM is
random sample generation, we perfomed a statistical study
that shows how RRT*-RMM improves the manipulability
index while trading off on the length of the path, thus issuing
longer paths with respect to the baseline of the classical
RRT*. While RRT*-RMM obtains an increased manipulation
capability at the cost of increased path length, having longer
paths, in our cutting problem of interest, which avoid robot-
related issues, i.e., singularity, is acceptable.

Future work includes the extension of this algorithm to
non-Riemannian surfaces as this would allow the use of
this algorithm to objects with sharp edges. Moreover, we
are studying a suitable control architecture to include the
proposed algorithm in a force control framework to enable
effective cutting tasks and operations.
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